Rank 2 stable sheaves on toric threefolds: classical and virtual counts

Amin Gholampour
University of Maryland

$$
4 / 21 / 2016
$$

Moduli space

X smooth projective variety over \mathbb{C} of dimension n.
Compactify "moduli space of holomorphic vector bundles on X ":
X smooth projective variety over \mathbb{C} of dimension n.
Compactify "moduli space of holomorphic vector bundles on X ": Have to include torsion free sheaves on X :
\mathcal{E} is torsion free if $\operatorname{Supp}(\mathcal{F})=X$ for all $0 \neq \mathcal{F} \subseteq \mathcal{E}$.
X smooth projective variety over \mathbb{C} of dimension n.
Compactify "moduli space of holomorphic vector bundles on X ": Have to include torsion free sheaves on X :
\mathcal{E} is torsion free if $\operatorname{Supp}(\mathcal{F})=X$ for all $0 \neq \mathcal{F} \subseteq \mathcal{E}$.
Construct the moduli space of torsion free sheaves on X using GIT:
X smooth projective variety over \mathbb{C} of dimension n.
Compactify "moduli space of holomorphic vector bundles on X ": Have to include torsion free sheaves on X :

$$
\mathcal{E} \text { is torsion free if } \operatorname{Supp}(\mathcal{F})=X \text { for all } 0 \neq \mathcal{F} \subseteq \mathcal{E}
$$

Construct the moduli space of torsion free sheaves on X using GIT:

- Fix rank and Chern classes: r, c_{1}, \ldots, c_{n}.
- Fix a polarization H on X and consider H-stable sheaves.
X smooth projective variety over \mathbb{C} of dimension n.
Compactify "moduli space of holomorphic vector bundles on X ": Have to include torsion free sheaves on X :

$$
\mathcal{E} \text { is torsion free if } \operatorname{Supp}(\mathcal{F})=X \text { for all } 0 \neq \mathcal{F} \subseteq \mathcal{E}
$$

Construct the moduli space of torsion free sheaves on X using GIT:

- Fix rank and Chern classes: r, c_{1}, \ldots, c_{n}.
- Fix a polarization H on X and consider H-stable sheaves.

Get moduli space $\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)$.
X smooth projective variety over \mathbb{C} of dimension n.
Compactify "moduli space of holomorphic vector bundles on X ": Have to include torsion free sheaves on X :

$$
\mathcal{E} \text { is torsion free if } \operatorname{Supp}(\mathcal{F})=X \text { for all } 0 \neq \mathcal{F} \subseteq \mathcal{E}
$$

Construct the moduli space of torsion free sheaves on X using GIT:

- Fix rank and Chern classes: r, c_{1}, \ldots, c_{n}.
- Fix a polarization H on X and consider H-stable sheaves.

Get moduli space $\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)$. Assuming $\operatorname{gcd}\left(r, c_{1} \cdot H^{n-1}\right)=1$, the moduli space is projective.

Generating function of Euler characteristics

Consider generating function of Euler characteristics

$$
G_{c_{1}, \ldots, c_{n-1}}(q)=\sum_{c_{n}} e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)\right) q^{c_{n}}
$$

Generating function of Euler characteristics

Consider generating function of Euler characteristics

$$
G_{c_{1}, \ldots, c_{n-1}}(q)=\sum_{c_{n}} e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)\right) q^{c_{n}}
$$

$\operatorname{dim} X=2$: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...).

Generating function of Euler characteristics

Consider generating function of Euler characteristics

$$
G_{c_{1}, \ldots, c_{n-1}}(q)=\sum_{c_{n}} e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)\right) q^{c_{n}}
$$

$\operatorname{dim} X=2$: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...).
E.g. X a surface, $r=1$:

Generating function of Euler characteristics

Consider generating function of Euler characteristics

$$
G_{c_{1}, \ldots, c_{n-1}}(q)=\sum_{c_{n}} e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)\right) q^{c_{n}}
$$

$\operatorname{dim} X=2$: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...).
E.g. X a surface, $r=1$:

If $H^{1}\left(\mathcal{O}_{X}\right)=0$ then $\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}\right)=\operatorname{Hilb}^{k}(X)$ for $k=k\left(c_{1}, c_{2}\right)$:

Consider generating function of Euler characteristics

$$
G_{c_{1}, \ldots, c_{n-1}}(q)=\sum_{c_{n}} e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)\right) q^{c_{n}}
$$

$\operatorname{dim} X=2$: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...).
E.g. X a surface, $r=1$:

If $H^{1}\left(\mathcal{O}_{X}\right)=0$ then $\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}\right)=\operatorname{Hilb}^{k}(X)$ for $k=k\left(c_{1}, c_{2}\right)$:
Göttsche (1990)

$$
G_{0}(q)=\prod_{k>0} \frac{1}{\left(1-q^{k}\right)^{e(X)}}=q^{e(X) / 24} \eta(q)^{-e(X)}
$$

Consider generating function of Euler characteristics

$$
G_{c_{1}, \ldots, c_{n-1}}(q)=\sum_{c_{n}} e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, \ldots, c_{n}\right)\right) q^{c_{n}}
$$

$\operatorname{dim} X=2$: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...).
E.g. X a surface, $r=1$:

If $H^{1}\left(\mathcal{O}_{X}\right)=0$ then $\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}\right)=\operatorname{Hilb}^{k}(X)$ for $k=k\left(c_{1}, c_{2}\right)$:
Göttsche (1990)

$$
G_{0}(q)=\prod_{k>0} \frac{1}{\left(1-q^{k}\right)^{e(X)}}=q^{e(X) / 24} \eta(q)^{-e(X)}
$$

X 3-fold, $r=1$,
X 3-fold, $r=1$,
If $H^{1}\left(\mathcal{O}_{X}\right)=0$ then $\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right)=\operatorname{Hilb}_{\beta, k}(X)$
for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_{2}(X, \mathbb{Z})$ determined by c_{1}, c_{2}, c_{3}.
X 3-fold, $r=1$,
If $H^{1}\left(\mathcal{O}_{X}\right)=0$ then $\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right)=\operatorname{Hilb}_{\beta, k}(X)$
for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_{2}(X, \mathbb{Z})$ determined by c_{1}, c_{2}, c_{3}.
$c_{1}=c_{2}=0:$ Cheah (1996)

$$
G_{0,0}(q)=M(q)^{e(X)}
$$

where

$$
M(q)=\sum_{\pi} q^{|\pi|}=\prod_{k>0} \frac{1}{\left(1-q^{k}\right)^{k}} \quad \text { McMahon function. }
$$

X 3-fold, $r=1$,
If $H^{1}\left(\mathcal{O}_{X}\right)=0$ then $\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right)=\operatorname{Hilb}_{\beta, k}(X)$
for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_{2}(X, \mathbb{Z})$ determined by c_{1}, c_{2}, c_{3}.
$c_{1}=c_{2}=0$: Cheah (1996)

$$
G_{0,0}(q)=M(q)^{e(X)}
$$

where

$$
M(q)=\sum_{\pi} q^{|\pi|}=\prod_{k>0} \frac{1}{\left(1-q^{k}\right)^{k}} \quad \text { McMahon function. }
$$

When X is toric the problem is reduced to counting the number of $e(X)$-tuples of 3D partitions.
X 3-fold, $r=1$,
If $H^{1}\left(\mathcal{O}_{X}\right)=0$ then $\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right)=\operatorname{Hilb}_{\beta, k}(X)$
for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_{2}(X, \mathbb{Z})$ determined by c_{1}, c_{2}, c_{3}.
$c_{1}=c_{2}=0$: Cheah (1996)

$$
G_{0,0}(q)=M(q)^{e(X)}
$$

where

$$
M(q)=\sum_{\pi} q^{|\pi|}=\prod_{k>0} \frac{1}{\left(1-q^{k}\right)^{k}} \quad \text { McMahon function. }
$$

When X is toric the problem is reduced to counting the number of $e(X)$-tuples of 3D partitions.

Reflexive hulls

For torsion free sheaf \mathcal{E} define $\mathcal{E}^{*}=\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ and $\mathcal{E}^{* *}$ is called reflexive hull of \mathcal{E}.

Reflexive hulls

For torsion free sheaf \mathcal{E} define $\mathcal{E}^{*}=\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ and $\mathcal{E}^{* *}$ is called reflexive hull of \mathcal{E}.
Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ is an isomorphism are called reflexive.

For torsion free sheaf \mathcal{E} define $\mathcal{E}^{*}=\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ and $\mathcal{E}^{* *}$ is called reflexive hull of \mathcal{E}.
Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ is an isomorphism are called reflexive.
Reflexive hulls are reflexive.

For torsion free sheaf \mathcal{E} define $\mathcal{E}^{*}=\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ and $\mathcal{E}^{* *}$ is called reflexive hull of \mathcal{E}.
Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ is an isomorphism are called reflexive.
Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves.

For torsion free sheaf \mathcal{E} define $\mathcal{E}^{*}=\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ and $\mathcal{E}^{* *}$ is called reflexive hull of \mathcal{E}.
Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ is an isomorphism are called reflexive.
Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves. Reflexive sheaves are locally free outside finite number of points (singularities).

For torsion free sheaf \mathcal{E} define $\mathcal{E}^{*}=\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ and $\mathcal{E}^{* *}$ is called reflexive hull of \mathcal{E}.
Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ is an isomorphism are called reflexive.
Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves. Reflexive sheaves are locally free outside finite number of points (singularities).
Moduli of reflexive sheaves (non-compact!): $\mathcal{N}_{X}^{H}\left(r, c_{1}, c_{2}, c_{3}\right)$.

For torsion free sheaf \mathcal{E} define $\mathcal{E}^{*}=\mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ and $\mathcal{E}^{* *}$ is called reflexive hull of \mathcal{E}.
Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{* *}$ is an isomorphism are called reflexive.
Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves. Reflexive sheaves are locally free outside finite number of points (singularities).
Moduli of reflexive sheaves (non-compact!): $\mathcal{N}_{X}^{H}\left(r, c_{1}, c_{2}, c_{3}\right)$.
There exists a constructible map

$$
()^{* *}: \mathcal{M}_{X}^{H}\left(r, c_{1}, c_{2}, c_{3}\right) \rightarrow \coprod_{c_{2}^{\prime}, c_{3}^{\prime}} \mathcal{N}_{X}^{H}\left(r, c_{1}, c_{2}^{\prime}, c_{3}^{\prime}\right)
$$

fibre over R is

$$
\operatorname{Quot}\left(R, c_{2}^{\prime \prime}, c_{3}^{\prime \prime}\right):=\left\{R \rightarrow Q \rightarrow 0 \mid c_{2}(Q)=c_{2}^{\prime \prime}, \quad c_{3}(Q)=c_{3}^{\prime \prime}\right\}
$$

Reflexive hulls

Idea: When X toric with torus T compute $e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, c_{2}, c_{3}\right)\right)$ from:

$$
e\left(\mathcal{N}^{H}\left(r, c_{1}, c_{2}^{\prime}, c_{3}^{\prime}\right)^{T}\right), e\left(\operatorname{Quot}\left(R, c_{2}^{\prime \prime}, c_{3}^{\prime \prime}\right)^{T}\right)
$$

Reflexive hulls

Idea: When X toric with torus T compute $e\left(\mathcal{M}_{X}^{H}\left(r, c_{1}, c_{2}, c_{3}\right)\right)$ from:

$$
e\left(\mathcal{N}^{H}\left(r, c_{1}, c_{2}^{\prime}, c_{3}^{\prime}\right)^{T}\right), e\left(\operatorname{Quot}\left(R, c_{2}^{\prime \prime}, c_{3}^{\prime \prime}\right)^{T}\right)
$$

G-Kool (2013) Rank 2

For X nonsingular toric threefold $\mathcal{N}_{X}^{H}\left(2, c_{1}, c_{2}^{\prime}, c_{3}^{\prime}\right)^{T}$ can be described explicitly. It is a union of configuration spaces of distinct points on \mathbb{P}^{1}.

Example: Reflexive sheaves on \mathbb{P}^{3}

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1).

Example: Reflexive sheaves on \mathbb{P}^{3}

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1). Type 1 are configuration space of 4 distinct points on \mathbb{P}^{1} modulo the action of $S L_{2}(\mathbb{C})$, whereas types 2 and 3 are isolated.

Example: Reflexive sheaves on \mathbb{P}^{3}

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1). Type 1 are configuration space of 4 distinct points on \mathbb{P}^{1} modulo the action of $S L_{2}(\mathbb{C})$, whereas types 2 and 3 are isolated.

G-Kool (2013)

For any c_{1}, c_{2}, there are explicit subsets $D_{i}\left(c_{1}, c_{2}\right) \subset \mathbb{Z}_{\geq 0}^{4}$,
$i=1,2,3$ defined by explicit polynomial equalities and inequalities, such that

$$
\begin{aligned}
& G_{2, c_{1}, c_{2}}^{r e f l}(q)=\sum_{\mathbf{v} \in D_{1}\left(c_{1}, c_{2}\right)}-q^{C_{1}(\mathbf{v})}+\sum_{\mathbf{v} \in D_{2}\left(c_{1}, c_{2}\right)} 6 q^{C_{2}(\mathbf{v})}+\sum_{\mathbf{v} \in D_{3}\left(c_{1}, c_{2}\right)} 4 q^{C_{3}(\mathbf{v})} \\
& C_{1}(\mathbf{v})=\sum_{1 \leq i<j<k \leq 4} v_{i} v_{j} v_{k}, C_{2}(\mathbf{v})=\left(v_{1}+v_{2}\right) v_{3} v_{4}, C_{3}(\mathbf{v})=v_{1} v_{2} v_{3} .
\end{aligned}
$$

Example: Reflexive sheaves on \mathbb{P}^{3}

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1). Type 1 are configuration space of 4 distinct points on \mathbb{P}^{1} modulo the action of $S L_{2}(\mathbb{C})$, whereas types 2 and 3 are isolated.

G-Kool (2013)

For any c_{1}, c_{2}, there are explicit subsets $D_{i}\left(c_{1}, c_{2}\right) \subset \mathbb{Z}_{\geq 0}^{4}$,
$i=1,2,3$ defined by explicit polynomial equalities and inequalities, such that

$$
\begin{aligned}
& G_{2, c_{1}, c_{2}}^{r e f f}(q)=\sum_{\mathbf{v} \in D_{1}\left(c_{1}, c_{2}\right)}-q^{C_{1}(\mathbf{v})}+\sum_{\mathbf{v} \in D_{2}\left(c_{1}, c_{2}\right)} 6 q^{C_{2}(\mathbf{v})}+\sum_{\mathbf{v} \in D_{3}\left(c_{1}, c_{2}\right)} 4 q^{C_{3}(\mathbf{v})} \\
& C_{1}(\mathbf{v})=\sum_{1 \leq i<j<k \leq 4} v_{i} v_{j} v_{k}, C_{2}(\mathbf{v})=\left(v_{1}+v_{2}\right) v_{3} v_{4}, C_{3}(\mathbf{v})=v_{1} v_{2} v_{3} .
\end{aligned}
$$

E.g. For $c_{1}=-1$ and $c_{2}=1,2,3, \ldots$

$$
G_{2,-1, c_{2}}^{\text {refl }}(q)=4 q, 24 q^{4},-4 q^{7}+36 q^{9}, \ldots
$$

Polynomiality and upper bound

$G_{2, c_{1}, c_{2}}^{\text {refl }}(q)$ is a polynomial for any smooth projective 3-fold.
$G_{2, c_{1}, c_{2}}^{r e f l}(q)$ is a polynomial for any smooth projective 3-fold.
It can be seen that $c_{3} \in H^{6}(X, \mathbb{Z}) \cong \mathbb{Z}$ for a rank 2 stable reflexive sheaf is bounded by 0 from below and a constant from above.
Finding the constant is a hard problem in general.

Polynomiality and upper bound

$G_{2, c_{1}, c_{2}}^{\text {refl }}(q)$ is a polynomial for any smooth projective 3-fold. It can be seen that $c_{3} \in H^{6}(X, \mathbb{Z}) \cong \mathbb{Z}$ for a rank 2 stable reflexive sheaf is bounded by 0 from below and a constant from above.
Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for T-equivariant)

R rank 2 stable reflexive sheaf on $X=\mathbb{P}^{3}$ with Chern classes C_{1}, c_{2}, C_{3}.
(1) $c_{3}=c_{1} c_{2} \bmod 2$, if $c_{1} \in\{-1,0\}$, then $c_{2}>0$,
(2) if $c_{1}=-1$, then $0 \leq c_{3} \leq c_{2}^{2}$, and if $c_{1}=0$, then $0 \leq c_{3} \leq c_{2}^{2}-c_{2}+2$. Both upper bounds are sharp.

Polynomiality and upper bound

$G_{2, c_{1}, c_{2}}^{\text {refl }}(q)$ is a polynomial for any smooth projective 3-fold. It can be seen that $c_{3} \in H^{6}(X, \mathbb{Z}) \cong \mathbb{Z}$ for a rank 2 stable reflexive sheaf is bounded by 0 from below and a constant from above.
Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for T-equivariant)

R rank 2 stable reflexive sheaf on $X=\mathbb{P}^{3}$ with Chern classes c_{1}, c_{2}, c_{3}.
(1) $c_{3}=c_{1} c_{2} \bmod 2$, if $c_{1} \in\{-1,0\}$, then $c_{2}>0$,
(2) if $c_{1}=-1$, then $0 \leq c_{3} \leq c_{2}^{2}$, and if $c_{1}=0$, then $0 \leq c_{3} \leq c_{2}^{2}-c_{2}+2$. Both upper bounds are sharp.

G-Kool

For $c_{2}>1, \quad e\left(\mathcal{N}_{\mathbb{P}^{3}}\left(2,-1, c_{2}, c_{2}^{2}\right)\right)=12 c_{2}$.

Assumption for most of the talk

X toric 3 -fold, H polarization, $r=2, c_{1}$ s.t. $\operatorname{gcd}\left(2, c_{1} \cdot H\right)=1$.

Assumption for most of the talk

X toric 3-fold, H polarization, $r=2, c_{1}$ s.t. $\operatorname{gcd}\left(2, c_{1} \cdot H\right)=1$.
Assumption: c_{2} is chosen such that:
(1) $c_{2} \cdot H$ minimal for which there exist rank 2 stable sheaves on X with Chern classes c_{1}, c_{2}.
(By Bogomolov's inequality $4 c_{2} \cdot H \geq c_{1}^{2} \cdot H$)
(2) All T-fixed rank 2 stable reflexive sheaves on X with Chern classes c_{1}, c_{2} are isolated.

Assumption for most of the talk

X toric 3-fold, H polarization, $r=2, c_{1}$ s.t. $\operatorname{gcd}\left(2, c_{1} \cdot H\right)=1$.
Assumption: c_{2} is chosen such that:
(1) $c_{2} \cdot H$ minimal for which there exist rank 2 stable sheaves on X with Chern classes c_{1}, c_{2}.
(By Bogomolov's inequality $4 c_{2} \cdot H \geq c_{1}^{2} \cdot H$)
(2) All T-fixed rank 2 stable reflexive sheaves on X with Chern classes c_{1}, c_{2} are isolated.

Many examples for this minimal c_{2}. Possibly $(1) \Rightarrow(2)$?
E.g. $X=\mathbb{P}^{3}, c_{1}=-1, c_{2}=1$.

Assumption for most of the talk

X toric 3 -fold, H polarization, $r=2, c_{1}$ s.t. $\operatorname{gcd}\left(2, c_{1} \cdot H\right)=1$.
Assumption: c_{2} is chosen such that:
(1) $c_{2} \cdot H$ minimal for which there exist rank 2 stable sheaves on X with Chern classes c_{1}, c_{2}.
(By Bogomolov's inequality $4 c_{2} \cdot H \geq c_{1}^{2} \cdot H$)
(2) All T-fixed rank 2 stable reflexive sheaves on X with Chern classes c_{1}, c_{2} are isolated.
Many examples for this minimal c_{2}. Possibly $(1) \Rightarrow(2)$?
E.g. $X=\mathbb{P}^{3}, c_{1}=-1, c_{2}=1$.

Consequences:

- If $\mathcal{E} \in \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ then the quotients $\mathcal{E}^{* *} / \mathcal{E}$ are 0-dimensional.
- $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)^{T}$ is a finite disjoint union of $\operatorname{Quot}\left(R, s-c_{3}\right)^{T}$ where R is reflexive and s is the length of singularity of R (i.e. $c_{2}^{\prime \prime}=0, c_{3}^{\prime \prime}=s-c_{3}$).
- We have universal families.

Generating function

Idea: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)^{T}$.

Generating function

Idea: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)^{T}$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at at most one T-fixed point of X.

Generating function

Idea: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)^{T}$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at at most one T-fixed point of X.
Suppose the length of the singularity of this R is s.

Generating function

Idea: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)^{T}$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at at most one T-fixed point of X.
Suppose the length of the singularity of this R is s. Components of $\operatorname{Quot}\left(R, s-c_{3}\right)^{T}$ are isomorphic to

$$
\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}
$$

and they are indexed by certain new configurations of 3D partitions.

Generating function

Idea: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)^{T}$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at at most one T-fixed point of X.
Suppose the length of the singularity of this R is s. Components of $\operatorname{Quot}\left(R, s-c_{3}\right)^{T}$ are isomorphic to

$$
\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}
$$

and they are indexed by certain new configurations of 3D partitions.

G-Kool-Young

If c_{1}, c_{2} satisfy the assumption, then $G_{2, c_{1}, c_{2}}(q)$ is given by $M(q)^{2 e(X)}$ times

$$
\sum_{R \text { locally free }} 1+\sum_{R \text { singular }} \prod_{i=1}^{v_{1}(R)} \prod_{j=1}^{v_{2}(R)} \prod_{k=1}^{v_{3}(R)} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Comments and Example

The integers $v_{1}(R), v_{2}(R), v_{3}(R)>0$ measure the length of the singularity of R.

Comments and Example

The integers $v_{1}(R), v_{2}(R), v_{3}(R)>0$ measure the length of the singularity of R.

Corollary, $X=\mathbb{P}^{3}, \quad$ Rank 2

$$
\begin{gathered}
G_{-1,1}(q)=4\left(q+q^{-1}\right) M\left(q^{-2}\right)^{8} \\
G_{-1,2}(q)=12\left(\frac{2 q^{-4}-q^{-2}+1-4 q^{2}+3 q^{4}+5 q^{8}}{\left(1-q^{2}\right)^{2}}\right) M\left(q^{-2}\right)^{8}
\end{gathered}
$$

Comments and Example

The integers $v_{1}(R), v_{2}(R), v_{3}(R)>0$ measure the length of the singularity of R.

Corollary, $X=\mathbb{P}^{3}, \quad$ Rank 2

$$
\begin{gathered}
G_{-1,1}(q)=4\left(q+q^{-1}\right) M\left(q^{-2}\right)^{8} \\
G_{-1,2}(q)=12\left(\frac{2 q^{-4}-q^{-2}+1-4 q^{2}+3 q^{4}+5 q^{8}}{\left(1-q^{2}\right)^{2}}\right) M\left(q^{-2}\right)^{8}
\end{gathered}
$$

For $c_{2}=2$ the quotients are no longer 0 -dimensional. For $c_{2}=3$ the T-fixed reflexive hulls are no longer isolated.

Virtual counts

The moduli spaces such as $\mathcal{M}=\mathcal{M}\left(X, r, c_{\bullet}\right)$ are usually highly singular and have no fundamental class.

Virtual counts

The moduli spaces such as $\mathcal{M}=\mathcal{M}\left(X, r, c_{\bullet}\right)$ are usually highly singular and have no fundamental class. However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.

Virtual counts

The moduli spaces such as $\mathcal{M}=\mathcal{M}\left(X, r, c_{\bullet}\right)$ are usually highly singular and have no fundamental class. However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.
For singular schemes \mathcal{M}, the cotangent bundle is replaced by the cotangent complex $L_{\mathcal{M}}^{\bullet}$ with $h^{0}\left(L_{\mathcal{M}}^{\bullet}\right)=\Omega_{\mathcal{M}}$ and $h^{i}\left(L_{\mathcal{M}}\right)=0$ for $i>0$.
A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet}=\left[E^{-1} \rightarrow E^{0}\right]$ of vector bundles on \mathcal{M}

Virtual counts

The moduli spaces such as $\mathcal{M}=\mathcal{M}\left(X, r, c_{\bullet}\right)$ are usually highly singular and have no fundamental class. However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.
For singular schemes \mathcal{M}, the cotangent bundle is replaced by the cotangent complex $L_{\mathcal{M}}^{\bullet}$ with $h^{0}\left(L_{\mathcal{M}}^{\bullet}\right)=\Omega_{\mathcal{M}}$ and $h^{i}\left(L_{\mathcal{M}}\right)=0$ for $i>0$.
A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet}=\left[E^{-1} \rightarrow E^{0}\right]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi: E^{\bullet} \rightarrow L^{\bullet} \mathcal{M}$ such that

Virtual counts

The moduli spaces such as $\mathcal{M}=\mathcal{M}\left(X, r, c_{\bullet}\right)$ are usually highly singular and have no fundamental class. However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.
For singular schemes \mathcal{M}, the cotangent bundle is replaced by the cotangent complex $L_{\mathcal{M}}^{\bullet}$ with $h^{0}\left(L_{\mathcal{M}}^{\bullet}\right)=\Omega_{\mathcal{M}}$ and $h^{i}\left(L_{\mathcal{M}}\right)=0$ for $i>0$.
A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet}=\left[E^{-1} \rightarrow E^{0}\right]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi: E^{\bullet} \rightarrow L^{\bullet} \mathcal{M}$ such that $h^{0}(\phi)$ isomorphism and $h^{-1}(\phi)$ surjective.

Virtual counts

The moduli spaces such as $\mathcal{M}=\mathcal{M}\left(X, r, c_{\bullet}\right)$ are usually highly singular and have no fundamental class.
However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.
For singular schemes \mathcal{M}, the cotangent bundle is replaced by the cotangent complex $L_{\mathcal{M}}^{\bullet}$ with $h^{0}\left(L_{\mathcal{M}}^{\bullet}\right)=\Omega_{\mathcal{M}}$ and $h^{i}\left(L_{\mathcal{M}}^{\bullet}\right)=0$ for $i>0$.
A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet}=\left[E^{-1} \rightarrow E^{0}\right]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi: E^{\bullet} \rightarrow L^{\bullet} \mathcal{M}$ such that $h^{0}(\phi)$ isomorphism and $h^{-1}(\phi)$ surjective.

If \mathcal{M} is equipped with a perfect obstruction theory then one can define a cycle $[\mathcal{M}]^{\text {vir }} \in A_{d}(\mathcal{M})$ for $d=\mathrm{rk} E^{0}-\mathrm{rk} E^{-1}$ called the virtual fundamental class.

Virtual counts

The moduli spaces such as $\mathcal{M}=\mathcal{M}\left(X, r, c_{\bullet}\right)$ are usually highly singular and have no fundamental class.
However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.
For singular schemes \mathcal{M}, the cotangent bundle is replaced by the cotangent complex $L_{\mathcal{M}}^{\bullet}$ with $h^{0}\left(L_{\mathcal{M}}^{\bullet}\right)=\Omega_{\mathcal{M}}$ and $h^{i}\left(L_{\mathcal{M}}^{\bullet}\right)=0$ for $i>0$.
A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet}=\left[E^{-1} \rightarrow E^{0}\right]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi: E^{\bullet} \rightarrow L^{\bullet} \mathcal{M}$ such that $h^{0}(\phi)$ isomorphism and $h^{-1}(\phi)$ surjective.

If \mathcal{M} is equipped with a perfect obstruction theory then one can define a cycle $[\mathcal{M}]^{\text {vir }} \in A_{d}(\mathcal{M})$ for $d=\mathrm{rk} E^{0}-\mathrm{rk} E^{-1}$ called the virtual fundamental class.

MNOP theory

X nonsingular threefold $\beta \in H_{2}(X, \mathbb{Z})$.

MNOP theory

X nonsingular threefold $\beta \in H_{2}(X, \mathbb{Z})$.
Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\operatorname{Hilb}_{\beta, n}(X)$.

MNOP theory

X nonsingular threefold $\beta \in H_{2}(X, \mathbb{Z})$.
Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\operatorname{Hilb}_{\beta, n}(X)$.
Determinant gives the natural morphism
$\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right) \rightarrow \operatorname{Pic}(X)$.
X nonsingular threefold $\beta \in H_{2}(X, \mathbb{Z})$.
Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\operatorname{Hilb}_{\beta, n}(X)$.
Determinant gives the natural morphism
$\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right) \rightarrow \operatorname{Pic}(X)$.
Fixing determinants to be \mathcal{O} gives the closed subscheme $\operatorname{Hilb}_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(1,0, c_{2}, c_{3}\right)$.
The perfect obstruction theory on $\mathrm{Hilb}_{\beta, n}$ is obtained by removing the ob. theory of $\operatorname{Pic}(X)$ (governed by Ext ${ }^{i}(\mathcal{O}, \mathcal{O})=H^{i}\left(\mathcal{O}_{X}\right)$) from the ob. theory of \mathcal{M} (governed Ext ${ }^{i}(\mathcal{E}, \mathcal{E})$) i.e. resulting in trace-free Ext groups $\operatorname{Ext}^{i}(\mathcal{E}, \mathcal{E})_{0}$.
X nonsingular threefold $\beta \in H_{2}(X, \mathbb{Z})$.
Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\operatorname{Hilb}_{\beta, n}(X)$.
Determinant gives the natural morphism
$\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right) \rightarrow \operatorname{Pic}(X)$.
Fixing determinants to be \mathcal{O} gives the closed subscheme $\operatorname{Hilb}_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(1,0, c_{2}, c_{3}\right)$.
The perfect obstruction theory on $\mathrm{Hilb}_{\beta, n}$ is obtained by removing the ob. theory of $\operatorname{Pic}(X)$ (governed by $\operatorname{Ext}^{i}(\mathcal{O}, \mathcal{O})=H^{i}\left(\mathcal{O}_{X}\right)$) from the ob. theory of \mathcal{M} (governed $E_{x t^{i}}(\mathcal{E}, \mathcal{E})$) i.e. resulting in trace-free Ext groups Ext ${ }^{i}(\mathcal{E}, \mathcal{E})_{0}$.
K-group fiber of the MNOP ob. theory

$$
\chi(\mathcal{E}, \mathcal{E})_{0}=\chi(\mathcal{E}, \mathcal{E})-\chi\left(\mathcal{O}_{x}\right)
$$

at any moduli point $\mathcal{E} \in \mathcal{M}$.
X nonsingular threefold $\beta \in H_{2}(X, \mathbb{Z})$.
Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\operatorname{Hilb}_{\beta, n}(X)$.
Determinant gives the natural morphism
$\mathcal{M}_{X}^{H}\left(1, c_{1}, c_{2}, c_{3}\right) \rightarrow \operatorname{Pic}(X)$.
Fixing determinants to be \mathcal{O} gives the closed subscheme $\operatorname{Hilb}_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(1,0, c_{2}, c_{3}\right)$.
The perfect obstruction theory on $\mathrm{Hilb}_{\beta, n}$ is obtained by removing the ob. theory of $\operatorname{Pic}(X)$ (governed by $\operatorname{Ext}^{i}(\mathcal{O}, \mathcal{O})=H^{i}\left(\mathcal{O}_{X}\right)$) from the ob. theory of \mathcal{M} (governed $E_{x t^{i}}(\mathcal{E}, \mathcal{E})$) i.e. resulting in trace-free Ext groups Ext ${ }^{i}(\mathcal{E}, \mathcal{E})_{0}$.
K-group fiber of the MNOP ob. theory

$$
\chi(\mathcal{E}, \mathcal{E})_{0}=\chi(\mathcal{E}, \mathcal{E})-\chi\left(\mathcal{O}_{x}\right)
$$

at any moduli point $\mathcal{E} \in \mathcal{M}$.

Rank 2 DT theory

Fixing reflexive hulls to be R, we identify a closed subscheme $\operatorname{Quot}(R)_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$.

Rank 2 DT theory

Fixing reflexive hulls to be R, we identify a closed subscheme $\operatorname{Quot}(R)_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$.
R is always stable, so it belongs to a moduli space \mathcal{N}.

Fixing reflexive hulls to be R, we identify a closed subscheme $\operatorname{Quot}(R)_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$.
R is always stable, so it belongs to a moduli space \mathcal{N}.
Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on $\operatorname{Quot}(R)_{\beta, n}$?

Fixing reflexive hulls to be R, we identify a closed subscheme $\operatorname{Quot}(R)_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$.
R is always stable, so it belongs to a moduli space \mathcal{N}.
Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on Quot $(R)_{\beta, n}$?
We do this in the level of T-fixed sets when X is a toric threefold.

Fixing reflexive hulls to be R, we identify a closed subscheme $\operatorname{Quot}(R)_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$.
R is always stable, so it belongs to a moduli space \mathcal{N}.
Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on Quot $(R)_{\beta, n}$?
We do this in the level of T-fixed sets when X is a toric threefold. If $\mathcal{E} \in \operatorname{Quot}(R)_{\beta, n}^{T} \subset \mathcal{M}^{T}$, and $R \in \mathcal{N}^{T}$ then, we define a perfect obstruction theory on \mathcal{M}^{\top} whose K -group fiber is given by $\chi(\mathcal{E}, \mathcal{E})-\chi(R, R)$.

Fixing reflexive hulls to be R, we identify a closed subscheme $\operatorname{Quot}(R)_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$.
R is always stable, so it belongs to a moduli space \mathcal{N}.
Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on Quot $(R)_{\beta, n}$?
We do this in the level of T-fixed sets when X is a toric threefold. If $\mathcal{E} \in \operatorname{Quot}(R)_{\beta, n}^{T} \subset \mathcal{M}^{T}$, and $R \in \mathcal{N}^{T}$ then, we define a perfect obstruction theory on \mathcal{M}^{\top} whose K -group fiber is given by $\chi(\mathcal{E}, \mathcal{E})-\chi(R, R)$.
This is a symmetric obstruction theory on \mathcal{M}^{T} if X is a CY3.

Fixing reflexive hulls to be R, we identify a closed subscheme $\operatorname{Quot}(R)_{\beta, n} \subset \mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$.
R is always stable, so it belongs to a moduli space \mathcal{N}.
Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on Quot $(R)_{\beta, n}$?
We do this in the level of T-fixed sets when X is a toric threefold. If $\mathcal{E} \in \operatorname{Quot}(R)_{\beta, n}^{T} \subset \mathcal{M}^{T}$, and $R \in \mathcal{N}^{T}$ then, we define a perfect obstruction theory on \mathcal{M}^{T} whose K -group fiber is given by $\chi(\mathcal{E}, \mathcal{E})-\chi(R, R)$.
This is a symmetric obstruction theory on \mathcal{M}^{T} if X is a CY3. Under the assumption, we have $\beta=0$, and the obstruction theory is symmetric for any X.

Virtual localization

If X is equipped with a torus action (e.g. if X toric)

If X is equipped with a torus action (e.g. if X toric)
Virtual localization formula (Graber-Pandharipande):

$$
[\mathcal{M}]^{\text {vir }}=\iota_{*} \sum_{\mathcal{C} \subset \mathcal{M}^{T}} \frac{[\mathcal{C}]^{\text {vir }}}{e\left(N_{\mathcal{C}}^{\text {vir }}\right)} \in A_{*}^{T}(\mathcal{M})_{\text {loc }}
$$

If X is equipped with a torus action (e.g. if X toric)
Virtual localization formula (Graber-Pandharipande):

$$
[\mathcal{M}]^{\text {vir }}=\iota_{*} \sum_{\mathcal{C} \subset \mathcal{M}^{T}} \frac{[\mathcal{C}]^{\text {vir }}}{e\left(N_{\mathcal{C}}^{\text {vir }}\right)} \in A_{*}^{T}(\mathcal{M})_{\text {loc }}
$$

Topological vertex is an algorithm for evaluating GW/DT/PT invariants of toric threefolds.

If X is equipped with a torus action (e.g. if X toric)
Virtual localization formula (Graber-Pandharipande):

$$
[\mathcal{M}]^{\text {vir }}=\iota_{*} \sum_{\mathcal{C} \subset \mathcal{M}^{T}} \frac{[\mathcal{C}]^{\text {vir }}}{e\left(N_{\mathcal{C}}^{\text {vir }}\right)} \in A_{*}^{T}(\mathcal{M})_{\text {loc }}
$$

Topological vertex is an algorithm for evaluating GW/DT/PT invariants of toric threefolds.
The vertex theory of Rank 1 DT invariants and the stable pair invariants were developed by MNOP and PT.

If X is equipped with a torus action (e.g. if X toric)
Virtual localization formula (Graber-Pandharipande):

$$
[\mathcal{M}]^{\text {vir }}=\iota_{*} \sum_{\mathcal{C} \subset \mathcal{M}^{T}} \frac{[\mathcal{C}]^{\text {vir }}}{e\left(N_{\mathcal{C}}^{\text {vir }}\right)} \in A_{*}^{T}(\mathcal{M})_{\text {loc }}
$$

Topological vertex is an algorithm for evaluating GW/DT/PT invariants of toric threefolds.
The vertex theory of Rank 1 DT invariants and the stable pair invariants were developed by MNOP and PT.
These vertex theories were used to prove the GW/MNOP/PT correspondence in the case of toric varieties.

If X is equipped with a torus action (e.g. if X toric)
Virtual localization formula (Graber-Pandharipande):

$$
[\mathcal{M}]^{\text {vir }}=\iota_{*} \sum_{\mathcal{C} \subset \mathcal{M}^{T}} \frac{[\mathcal{C}]^{\text {vir }}}{e\left(N_{\mathcal{C}}^{\text {vir }}\right)} \in A_{*}^{T}(\mathcal{M})_{\text {loc }}
$$

Topological vertex is an algorithm for evaluating GW/DT/PT invariants of toric threefolds.
The vertex theory of Rank 1 DT invariants and the stable pair invariants were developed by MNOP and PT.
These vertex theories were used to prove the GW/MNOP/PT correspondence in the case of toric varieties.

Rank 2 Donaldson-Thomas vertex

X toric 3 -fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption.

Rank 2 Donaldson-Thomas vertex

X toric 3-fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption. $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ carries a perfect obstruction theory E^{\bullet}.
X toric 3-fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption. $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ carries a perfect obstruction theory E^{\bullet}.

$$
h^{i}\left(E^{\bullet \vee}\right)_{\mathcal{E}}=E x t^{i+1}(\mathcal{E}, \mathcal{E}) \quad i=0,1
$$

X toric 3-fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption. $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ carries a perfect obstruction theory E^{\bullet}.

$$
h^{i}\left(E^{\bullet \vee}\right)_{\mathcal{E}}=E x t^{i+1}(\mathcal{E}, \mathcal{E}) \quad i=0,1
$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$
[\mathcal{M}]^{\text {vir }}=\sum_{\mathcal{C} \subset \mathcal{M}^{T} \text { components }} \iota_{*} \frac{e\left(T_{\mathcal{C}}\right)}{e\left(\left.E^{\bullet}\right|_{\mathcal{C}}\right)} \cap[\mathcal{C}]
$$

X toric 3-fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption. $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ carries a perfect obstruction theory E^{\bullet}.

$$
h^{i}\left(E^{\bullet \vee}\right)_{\mathcal{E}}=E x t^{i+1}(\mathcal{E}, \mathcal{E}) \quad i=0,1
$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$
[\mathcal{M}]^{\text {vir }}=\sum_{\mathcal{C} \subset \mathcal{M}^{T} \text { components }} \iota_{*} \frac{e\left(T_{\mathcal{C}}\right)}{e\left(\left.E^{\bullet \vee}\right|_{\mathcal{C}}\right)} \cap[\mathcal{C}] .
$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha}=\left.\mathcal{E}\right|_{U_{\alpha}}, R_{\alpha}=\left.R\right|_{U_{\alpha}}$ where $R=\mathcal{E}^{* *}$.
X toric 3-fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption. $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ carries a perfect obstruction theory E^{\bullet}.

$$
h^{i}\left(E^{\bullet \vee}\right)_{\mathcal{E}}=E x t^{i+1}(\mathcal{E}, \mathcal{E}) \quad i=0,1
$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$
[\mathcal{M}]^{\text {vir }}=\sum_{\mathcal{C} \subset \mathcal{M}^{T} \text { components }} \iota_{*} \frac{e\left(T_{\mathcal{C}}\right)}{e\left(\left.E^{\bullet \vee}\right|_{\mathcal{C}}\right)} \cap[\mathcal{C}] .
$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha}=\left.\mathcal{E}\right|_{U_{\alpha}}, R_{\alpha}=\left.R\right|_{U_{\alpha}}$ where $R=\mathcal{E}^{* *}$. For $n \in \mathbb{Z}_{\geq 0}$, let $C_{\alpha} \subset \operatorname{Quot}\left(R_{\alpha}, n\right)^{T}$ containing \mathcal{E}_{α}.
X toric 3-fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption. $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ carries a perfect obstruction theory E^{\bullet}.

$$
h^{i}\left(E^{\bullet \vee}\right)_{\mathcal{E}}=E x t^{i+1}(\mathcal{E}, \mathcal{E}) \quad i=0,1
$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$
[\mathcal{M}]^{\text {vir }}=\sum_{\mathcal{C} \subset \mathcal{M}^{T} \text { components }} \iota_{*} \frac{e\left(T_{\mathcal{C}}\right)}{e\left(\left.E^{\bullet}\right|_{\mathcal{C}}\right)} \cap[\mathcal{C}] .
$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha}=\left.\mathcal{E}\right|_{U_{\alpha}}, R_{\alpha}=\left.R\right|_{U_{\alpha}}$ where $R=\mathcal{E}^{* *}$. For $n \in \mathbb{Z}_{\geq 0}$, let $C_{\alpha} \subset$ Quot $\left(R_{\alpha}, n\right)^{T}$ containing \mathcal{E}_{α}. For any polynomial \bar{P} let $\bar{P}\left(t_{1}, t_{2}, t_{3}\right):=P\left(t_{1}^{-1}, t_{2}^{-1}, t_{3}^{-1}\right)$.
X toric 3-fold, $H^{0}\left(K_{X}^{*}\right) \neq 0$, and $H, r=2, c_{1}, c_{2}$ satisfying assumption. $\mathcal{M}_{X}^{H}\left(2, c_{1}, c_{2}, c_{3}\right)$ carries a perfect obstruction theory E^{\bullet}.

$$
h^{i}\left(E^{\bullet \vee}\right)_{\mathcal{E}}=E x t^{i+1}(\mathcal{E}, \mathcal{E}) \quad i=0,1
$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$
[\mathcal{M}]^{\text {vir }}=\sum_{\mathcal{C} \subset \mathcal{M}^{T} \text { components }} \iota_{*} \frac{e\left(T_{\mathcal{C}}\right)}{e\left(\left.E^{\bullet}\right|_{\mathcal{C}}\right)} \cap[\mathcal{C}] .
$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha}=\left.\mathcal{E}\right|_{U_{\alpha}}, R_{\alpha}=\left.R\right|_{U_{\alpha}}$ where $R=\mathcal{E}^{* *}$. For $n \in \mathbb{Z}_{\geq 0}$, let $C_{\alpha} \subset$ Quot $\left(R_{\alpha}, n\right)^{T}$ containing \mathcal{E}_{α}. For any polynomial \bar{P} let $\bar{P}\left(t_{1}, t_{2}, t_{3}\right):=P\left(t_{1}^{-1}, t_{2}^{-1}, t_{3}^{-1}\right)$.

Equivariant vertex

Define

$$
V_{\alpha}:=\operatorname{tr}_{\chi\left(R_{\alpha}, R_{\alpha}\right)-\chi\left(\mathcal{E}_{\alpha}, \mathcal{E}_{\alpha}\right)}=\frac{P\left(R_{\alpha}\right) \bar{P}\left(R_{\alpha}\right)-P\left(\mathcal{E}_{\alpha}\right) \bar{P}\left(\mathcal{E}_{\alpha}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}
$$

where P is the Poincare polynomial.

Define

$$
V_{\alpha}:=\operatorname{tr}_{\chi\left(R_{\alpha}, R_{\alpha}\right)-\chi\left(\mathcal{E}_{\alpha}, \mathcal{E}_{\alpha}\right)}=\frac{P\left(R_{\alpha}\right) \bar{P}\left(R_{\alpha}\right)-P\left(\mathcal{E}_{\alpha}\right) \bar{P}\left(\mathcal{E}_{\alpha}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}
$$

where P is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_{1}, t_{2}, t_{3} with coefficients in $K\left(C_{\alpha}\right)$.

Define

$$
V_{\alpha}:=\operatorname{tr}_{\chi\left(R_{\alpha}, R_{\alpha}\right)-\chi\left(\mathcal{E}_{\alpha}, \mathcal{E}_{\alpha}\right)}=\frac{P\left(R_{\alpha}\right) \bar{P}\left(R_{\alpha}\right)-P\left(\mathcal{E}_{\alpha}\right) \bar{P}\left(\mathcal{E}_{\alpha}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}
$$

where P is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_{1}, t_{2}, t_{3} with coefficients in $K\left(C_{\alpha}\right)$.
Define

$$
w\left(C_{\alpha}\right)=\int_{C_{\alpha}} e\left(T_{C_{\alpha}}\right) \cdot e\left(-V_{\alpha}\right) \in \mathbb{Q}\left(s_{1}, s_{2}, s_{3}\right)
$$

s_{i} is the first Chern class of the line bundle over $B T$ associated to the character t_{i}.

Define

$$
V_{\alpha}:=\operatorname{tr}_{\chi\left(R_{\alpha}, R_{\alpha}\right)-\chi\left(\mathcal{E}_{\alpha}, \mathcal{E}_{\alpha}\right)}=\frac{P\left(R_{\alpha}\right) \bar{P}\left(R_{\alpha}\right)-P\left(\mathcal{E}_{\alpha}\right) \bar{P}\left(\mathcal{E}_{\alpha}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}
$$

where P is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_{1}, t_{2}, t_{3} with coefficients in $K\left(C_{\alpha}\right)$.
Define

$$
w\left(C_{\alpha}\right)=\int_{C_{\alpha}} e\left(T_{C_{\alpha}}\right) \cdot e\left(-V_{\alpha}\right) \in \mathbb{Q}\left(s_{1}, s_{2}, s_{3}\right) .
$$

s_{i} is the first Chern class of the line bundle over $B T$ associated to the character t_{i}.
We define rank 2 DT vertex $W_{R_{\alpha}}(q) \in \mathbb{Q}[[q]]\left(s_{1}, s_{2}, s_{3}\right)$,

Define

$$
V_{\alpha}:=\operatorname{tr}_{\chi\left(R_{\alpha}, R_{\alpha}\right)-\chi\left(\mathcal{E}_{\alpha}, \mathcal{E}_{\alpha}\right)}=\frac{P\left(R_{\alpha}\right) \bar{P}\left(R_{\alpha}\right)-P\left(\mathcal{E}_{\alpha}\right) \bar{P}\left(\mathcal{E}_{\alpha}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}
$$

where P is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_{1}, t_{2}, t_{3} with coefficients in $K\left(C_{\alpha}\right)$.
Define

$$
w\left(C_{\alpha}\right)=\int_{C_{\alpha}} e\left(T_{C_{\alpha}}\right) \cdot e\left(-V_{\alpha}\right) \in \mathbb{Q}\left(s_{1}, s_{2}, s_{3}\right)
$$

s_{i} is the first Chern class of the line bundle over $B T$ associated to the character t_{i}.
We define rank 2 DT vertex $W_{R_{\alpha}}(q) \in \mathbb{Q}[[q]]\left(s_{1}, s_{2}, s_{3}\right)$,

$$
W_{R_{\alpha}}(q)=1+\sum_{n} \sum_{C_{\alpha}} w\left(C_{\alpha}\right) q^{n}
$$

CY3 specialization

Conjecture (G-Kool-Young)
$\left.W_{R_{\alpha}, \emptyset, \emptyset, \emptyset}(q)\right|_{s_{1}+s_{2}+s_{3}=0}$ is equal to $M(q)^{2}$ times

$$
\begin{cases}1 & R \text { locally } \mathrm{fr} \\ \prod_{i=1}^{v_{1}(R)} \prod_{j=1}^{v_{2}(R)} \prod_{k=1}^{v_{3}(R)} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} & R \text { singular }\end{cases}
$$

CY3 specialization

Conjecture (G-Kool-Young)

$\left.W_{R_{\alpha}, \emptyset, \emptyset, \emptyset}(q)\right|_{s_{1}+s_{2}+s_{3}=0}$ is equal to $M(q)^{2}$ times

$$
\begin{cases}1 & R \text { locally free } \\ \prod_{i=1}^{v_{1}(R)} \prod_{j=1}^{v_{2}(R)} \prod_{k=1}^{v_{3}(R)} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} & R \text { singular }\end{cases}
$$

Evidence 1: Some direct calculations.
Evidence 2: Conjecture follows from analogs of two conjectures of PT by T_{0}-localization,

$$
T_{0}=\left\{t \in T \mid t_{1} t_{2} t_{3}=1\right\}
$$

CY3 specialization

Conjecture (G-Kool-Young)

$\left.W_{R_{\alpha}, \emptyset, \emptyset, \emptyset}(q)\right|_{s_{1}+s_{2}+s_{3}=0}$ is equal to $M(q)^{2}$ times

$$
\begin{cases}1 & R \text { locally free } \\ \prod_{i=1}^{v_{1}(R)} \prod_{j=1}^{v_{2}(R)} \prod_{k=1}^{v_{3}(R)} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} & R \text { singular }\end{cases}
$$

Evidence 1: Some direct calculations.
Evidence 2: Conjecture follows from analogs of two conjectures of PT by T_{0}-localization,

$$
T_{0}=\left\{t \in T \mid t_{1} t_{2} t_{3}=1\right\}
$$

One is about the smoothness of the T_{0}-fixed locus, and the other is about the parity of the constant terms after the specialization $t_{1} t_{2} t_{3}=1$.

Localization

Consider $\mathbb{C}^{3}=\operatorname{Spec} \mathbb{C}[x, y, z]$ with standard action $T=\mathbb{C}^{* 3}$.

Localization

Consider $\mathbb{C}^{3}=\operatorname{Spec} \mathbb{C}[x, y, z]$ with standard action $T=\mathbb{C}^{* 3}$. Quasi-coherent sheaf \mathcal{F} on $\mathbb{C}^{3} \leftrightarrow \mathbb{C}[x, y, z]$-module $H^{0}(\mathcal{F})$.

Consider $\mathbb{C}^{3}=\operatorname{Spec} \mathbb{C}[x, y, z]$ with standard action $T=\mathbb{C}^{* 3}$.
Quasi-coherent sheaf \mathcal{F} on $\mathbb{C}^{3} \leftrightarrow \mathbb{C}[x, y, z]$-module $H^{0}(\mathcal{F})$.
T-equivariant $\mathcal{F} \leftrightarrow H^{0}(\mathcal{F})=\oplus_{\left(k_{1}, k_{2}, k_{3}\right) \in \mathbb{Z}^{3}} F\left(k_{1}, k_{2}, k_{3}\right)$.

Consider $\mathbb{C}^{3}=\operatorname{Spec} \mathbb{C}[x, y, z]$ with standard action $T=\mathbb{C}^{* 3}$.
Quasi-coherent sheaf \mathcal{F} on $\mathbb{C}^{3} \leftrightarrow \mathbb{C}[x, y, z]$-module $H^{0}(\mathcal{F})$.

$$
T \text {-equivariant } \mathcal{F} \leftrightarrow H^{0}(\mathcal{F})=\oplus_{\left(k_{1}, k_{2}, k_{3}\right) \in \mathbb{Z}^{3}} F\left(k_{1}, k_{2}, k_{3}\right) .
$$

Equivalent data: collection of vector spaces $\left\{F\left(k_{1}, k_{2}, k_{3}\right)\right\}_{\left(k_{1}, k_{2}, k_{3}\right) \in \mathbb{Z}^{3}}$ and linear maps

$$
\begin{aligned}
& \chi_{1}\left(k_{1}, k_{2}, k_{3}\right): F\left(k_{1}, k_{2}, k_{3}\right) \rightarrow F\left(k_{1}+1, k_{2}, k_{3}\right), \\
& \chi_{2}\left(k_{1}, k_{2}, k_{3}\right): F\left(k_{1}, k_{2}, k_{3}\right) \rightarrow F\left(k_{1}, k_{2}+1, k_{3}\right), \\
& \chi_{3}\left(k_{1}, k_{2}, k_{3}\right): F\left(k_{1}, k_{2}, k_{3}\right) \rightarrow F\left(k_{1}, k_{2}, k_{3}+1\right),
\end{aligned}
$$

such that $\chi_{i} \circ \chi_{j}=\chi_{j} \circ \chi_{i}$ for all $i, j,\left(k_{1}, k_{2}, k_{3}\right)$.

Localization

\mathcal{F} coherent $\Leftrightarrow \exists$ finitely many homogeneous generators.
\mathcal{F} coherent $\Leftrightarrow \exists$ finitely many homogeneous generators.
\mathcal{F} torsion free \Leftrightarrow all maps are inclusions:

$$
\begin{aligned}
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}+1, k_{2}, k_{3}\right), \\
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}, k_{2}+1, k_{3}\right), \\
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}, k_{2}, k_{3}+1\right) .
\end{aligned}
$$

\mathcal{F} coherent $\Leftrightarrow \exists$ finitely many homogeneous generators.
\mathcal{F} torsion free \Leftrightarrow all maps are inclusions:

$$
\begin{aligned}
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}+1, k_{2}, k_{3}\right), \\
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}, k_{2}+1, k_{3}\right), \\
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}, k_{2}, k_{3}+1\right) .
\end{aligned}
$$

\Rightarrow When $\operatorname{rank}(\mathcal{F})=r$ then get a multi-filtration of \mathbb{C}^{r}.
\mathcal{F} coherent $\Leftrightarrow \exists$ finitely many homogeneous generators.
\mathcal{F} torsion free \Leftrightarrow all maps are inclusions:

$$
\begin{aligned}
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}+1, k_{2}, k_{3}\right), \\
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}, k_{2}+1, k_{3}\right), \\
& F\left(k_{1}, k_{2}, k_{3}\right) \subset F\left(k_{1}, k_{2}, k_{3}+1\right) .
\end{aligned}
$$

\Rightarrow When $\operatorname{rank}(\mathcal{F})=r$ then get a multi-filtration of \mathbb{C}^{r}.
\mathcal{F} reflexive $\Leftrightarrow \exists$ filtrations

$$
F(k, \infty, \infty), F(\infty, k, \infty), F(\infty, \infty, k)
$$

s.t. $\quad F\left(k_{1}, k_{2}, k_{3}\right)=F\left(k_{1}, \infty, \infty\right) \cap F\left(\infty, k_{2}, \infty\right) \cap F\left(\infty, \infty, k_{3}\right)$.

When $r=2$ and $\mathcal{F}=R$ reflexive, to give three flags of \mathbb{C}^{2} we need:
(1) three integers $u_{i} \in \mathbb{Z}$ where flag i jumps from 0 to $p_{i} \in \mathbb{P}^{1}$,
(2) three integers $u_{i}^{\prime} \geq u_{i}$ where flag i jumps from p_{i} to \mathbb{C}^{2}.

When $r=2$ and $\mathcal{F}=R$ reflexive, to give three flags of \mathbb{C}^{2} we need:
(1) three integers $u_{i} \in \mathbb{Z}$ where flag i jumps from 0 to $p_{i} \in \mathbb{P}^{1}$,
(2) three integers $u_{i}^{\prime} \geq u_{i}$ where flag i jumps from p_{i} to \mathbb{C}^{2}.

Define $v_{i}=u_{i}^{\prime}-u_{i} \geq 0$.

When $r=2$ and $\mathcal{F}=R$ reflexive, to give three flags of \mathbb{C}^{2} we need:
(1) three integers $u_{i} \in \mathbb{Z}$ where flag i jumps from 0 to $p_{i} \in \mathbb{P}^{1}$,
(2) three integers $u_{i}^{\prime} \geq u_{i}$ where flag i jumps from p_{i} to \mathbb{C}^{2}.

Define $v_{i}=u_{i}^{\prime}-u_{i} \geq 0$.
R is singular \Leftrightarrow all $v_{i}>0$ and all $p_{i} \in \mathbb{P}^{1}$ are mutually distinct.

When $r=2$ and $\mathcal{F}=R$ reflexive, to give three flags of \mathbb{C}^{2} we need:
(1) three integers $u_{i} \in \mathbb{Z}$ where flag i jumps from 0 to $p_{i} \in \mathbb{P}^{1}$,
(2) three integers $u_{i}^{\prime} \geq u_{i}$ where flag i jumps from p_{i} to \mathbb{C}^{2}.

Define $v_{i}=u_{i}^{\prime}-u_{i} \geq 0$.
R is singular \Leftrightarrow all $v_{i}>0$ and all $p_{i} \in \mathbb{P}^{1}$ are mutually distinct.
Globally on toric 3-fold X : combine such a description for each chart with gluing conditions.

When $r=2$ and $\mathcal{F}=R$ reflexive, to give three flags of \mathbb{C}^{2} we need:
(1) three integers $u_{i} \in \mathbb{Z}$ where flag i jumps from 0 to $p_{i} \in \mathbb{P}^{1}$,
(2) three integers $u_{i}^{\prime} \geq u_{i}$ where flag i jumps from p_{i} to \mathbb{C}^{2}.

Define $v_{i}=u_{i}^{\prime}-u_{i} \geq 0$.
R is singular \Leftrightarrow all $v_{i}>0$ and all $p_{i} \in \mathbb{P}^{1}$ are mutually distinct.
Globally on toric 3-fold X : combine such a description for each chart with gluing conditions.
T-equivariant stable reflexive rank 2 sheaves on \mathbb{P}^{3}
Explicit formula for $\mathrm{ch}(R)$ can be obtained in terms of $u_{i}, v_{i}, \operatorname{dim}\left(p_{i} \cap p_{j}\right)$ (T-equivariant dévissage).
T-equivariant stable reflexive rank 2 sheaves on \mathbb{P}^{3}
Explicit formula for ch(R) can be obtained in terms of $u_{i}, v_{i}, \operatorname{dim}\left(p_{i} \cap p_{j}\right)$ (T-equivariant dévissage).
Consequence: R is stable $\Leftrightarrow \forall q \in \mathbb{P}^{1}$

$$
\sum_{i=1}^{4} \operatorname{dim}\left(p_{i} \cap q\right) v_{i}<\frac{1}{2} \sum_{i=1}^{4} v_{i}
$$

T-equivariant stable reflexive rank 2 sheaves on \mathbb{P}^{3}
Explicit formula for $\mathrm{ch}(R)$ can be obtained in terms of $u_{i}, v_{i}, \operatorname{dim}\left(p_{i} \cap p_{j}\right)$ (T-equivariant dévissage).
Consequence: R is stable $\Leftrightarrow \forall q \in \mathbb{P}^{1}$

$$
\sum_{i=1}^{4} \operatorname{dim}\left(p_{i} \cap q\right) v_{i}<\frac{1}{2} \sum_{i=1}^{4} v_{i}
$$

Classification of stable reflexive sheaves (G-Kool)

(1) Type I: $0<v_{i}<v_{j}+v_{k}+v_{l} \forall\{i, j, k, l\}=\{1,2,3,4\}$ and all p_{i} are mutually distinct,
(2) Type II: $v_{1}, v_{2}, v_{3}, v_{4}>0, \exists\{i, j, k, I\}=\{1,2,3,4\}$ such that $v_{i}+v_{j}<v_{k}+v_{l}, v_{k}<v_{i}+v_{j}+v_{l}, v_{l}<v_{i}+v_{j}+v_{k}, p_{i}=p_{j}$, and p_{j}, p_{k}, p_{l} are mutually distinct,
(3) Type III: $\exists\{i, j, k, I\}=\{1,2,3,4\}$ such that $v_{i}=0, v_{j}, v_{k}, v_{l}>0, v_{j}<v_{k}+v_{l}, v_{k}<v_{j}+v_{l}, v_{l}<v_{j}+v_{k}$, and p_{j}, p_{k}, p_{l} are mutually distinct.

Consequences: Get scheme theoretic description of $\overline{\mathcal{N}_{\mathbb{P}^{3}}\left(2, c_{1}, c_{2}, c_{3}\right)^{T} .}$
Get a combinatorial proof for Hartshorne's inequalities.

Consequences: Get scheme theoretic description of $\overline{\mathcal{N}_{\mathbb{P}^{3}}\left(2, c_{1}, c_{2}, c_{3}\right)^{T} .}$
Get a combinatorial proof for Hartshorne's inequalities.

$O:=\left(u_{1}, u_{2}, u_{3}\right), S:=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$,
$P_{1}:=\left(u_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right), P_{2}:=\left(u_{1}+v_{1}, u_{2}, u_{3}+v_{3}\right)$,
$P_{3}:=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}\right) . B$ is the box with sizes v_{1}, v_{2}, v_{3} and opposite vertices O and S. The S-region is the shift of the first quadrant to S.

$\operatorname{Quot}(R, n)^{T}$

R is T-equivariant rank 2 reflexive sheaf on \mathbb{C}^{3} and $n \in \mathbb{Z} \geq 0$. We would like to describe 0-dimensional quotients $R \rightarrow Q \rightarrow 0$ such that $\ell(Q)=n$.

Quot $(R, n)^{T}$

R is T-equivariant rank 2 reflexive sheaf on \mathbb{C}^{3} and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \rightarrow Q \rightarrow 0$ such that $\ell(Q)=n$.
Let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ be a triple of 3D partitions where π_{i} is placed at P_{i}, satisfying:

Quot $(R, n)^{T}$

R is T-equivariant rank 2 reflexive sheaf on \mathbb{C}^{3} and $n \in \mathbb{Z} \geq 0$. We would like to describe 0-dimensional quotients $R \rightarrow Q \rightarrow 0$ such that $\ell(Q)=n$.
Let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ be a triple of 3D partitions where π_{i} is placed at P_{i}, satisfying:
Any box in the S-region must be in the intersection of at least 2 of $\pi_{i} \mathrm{~s}$.

Quot $(R, n)^{T}$

R is T-equivariant rank 2 reflexive sheaf on \mathbb{C}^{3} and $n \in \mathbb{Z} \geq 0$. We would like to describe 0-dimensional quotients $R \rightarrow Q \rightarrow 0$ such that $\ell(Q)=n$.
Let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ be a triple of 3D partitions where π_{i} is placed at P_{i}, satisfying:
Any box in the S-region must be in the intersection of at least 2 of $\pi_{i} \mathrm{~S}$.
We say $\boldsymbol{\pi} \sim \boldsymbol{\pi}^{\prime}$ if

$$
\cup \pi_{i}=\cup \pi_{i}^{\prime}, \quad \cap \pi_{i}=\cap \pi_{i}^{\prime}
$$

Quot $(R, n)^{T}$

R is T-equivariant rank 2 reflexive sheaf on \mathbb{C}^{3} and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \rightarrow Q \rightarrow 0$ such that $\ell(Q)=n$.
Let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ be a triple of 3D partitions where π_{i} is placed at P_{i}, satisfying:
Any box in the S-region must be in the intersection of at least 2 of $\pi_{i} \mathrm{~s}$.
We say $\boldsymbol{\pi} \sim \pi^{\prime}$ if

$$
\cup \pi_{i}=\cup \pi_{i}^{\prime}, \quad \cap \pi_{i}=\cap \pi_{i}^{\prime}
$$

Define $\#(\pi):=\#\left(\cup \pi_{i}\right)-\#\left(\left(\cup \pi_{i}\right) \cap(S\right.$-region $\left.)\right)$.

Quot $(R, n)^{T}$

R is T-equivariant rank 2 reflexive sheaf on \mathbb{C}^{3} and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \rightarrow Q \rightarrow 0$ such that $\ell(Q)=n$.
Let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ be a triple of 3D partitions where π_{i} is placed at P_{i}, satisfying:
Any box in the S-region must be in the intersection of at least 2 of $\pi_{i} \mathrm{~s}$.
We say $\boldsymbol{\pi} \sim \pi^{\prime}$ if

$$
\cup \pi_{i}=\cup \pi_{i}^{\prime}, \quad \cap \pi_{i}=\cap \pi_{i}^{\prime}
$$

Define $\#(\pi):=\#\left(\cup \pi_{i}\right)-\#\left(\left(\cup \pi_{i}\right) \cap(S\right.$-region $\left.)\right)$.

Quot $(R, n)^{T}$

We say a box at $\left(x_{1}, x_{2}, x_{3}\right)$ in the S-region supported if there is a box at all the three points:

$$
\left(x_{1}-i_{1}, x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}-i_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}-i_{3}\right)
$$

where i_{j} is minimal with the property that the above points are no longer in S-region.

Quot $(R, n)^{T}$

We say a box at $\left(x_{1}, x_{2}, x_{3}\right)$ in the S-region supported if there is a box at all the three points:

$$
\left(x_{1}-i_{1}, x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}-i_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}-i_{3}\right)
$$

where i_{j} is minimal with the property that the above points are no longer in S-region.
Red boxes: Any box in the intersection of 3 partitions is colored red.

Quot $(R, n)^{T}$

We say a box at $\left(x_{1}, x_{2}, x_{3}\right)$ in the S-region supported if there is a box at all the three points:

$$
\left(x_{1}-i_{1}, x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}-i_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}-i_{3}\right)
$$

where i_{j} is minimal with the property that the above points are no longer in S-region.
Red boxes: Any box in the intersection of 3 partitions is colored red.
White boxes: Any box in the intersection of 2 partitions is colored white.

Quot $(R, n)^{T}$

We say a box at $\left(x_{1}, x_{2}, x_{3}\right)$ in the S-region supported if there is a box at all the three points:

$$
\left(x_{1}-i_{1}, x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}-i_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}-i_{3}\right)
$$

where i_{j} is minimal with the property that the above points are no longer in S-region.
Red boxes: Any box in the intersection of 3 partitions is colored red.
White boxes: Any box in the intersection of 2 partitions is colored white.
Let C be a connected components of white boxes. We say C is supported if all boxes in C are supported.

Quot $(R, n)^{T}$

We say a box at $\left(x_{1}, x_{2}, x_{3}\right)$ in the S-region supported if there is a box at all the three points:

$$
\left(x_{1}-i_{1}, x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}-i_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}-i_{3}\right)
$$

where i_{j} is minimal with the property that the above points are no longer in S-region.
Red boxes: Any box in the intersection of 3 partitions is colored red.
White boxes: Any box in the intersection of 2 partitions is colored white.
Let C be a connected components of white boxes. We say C is supported if all boxes in C are supported.
Each supported component C is labeled by a point in \mathbb{P}^{1}.

Quot $(R, n)^{T}$

We say a box at $\left(x_{1}, x_{2}, x_{3}\right)$ in the S-region supported if there is a box at all the three points:

$$
\left(x_{1}-i_{1}, x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}-i_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}-i_{3}\right)
$$

where i_{j} is minimal with the property that the above points are no longer in S-region.
Red boxes: Any box in the intersection of 3 partitions is colored red.
White boxes: Any box in the intersection of 2 partitions is colored white.
Let C be a connected components of white boxes. We say C is supported if all boxes in C are supported.
Each supported component C is labeled by a point in \mathbb{P}^{1}.

Theorem G-Kool

$\operatorname{Quot}(R, n)^{T} \leftrightarrow\left\{[\boldsymbol{\pi}]_{\text {labeled }} \mid \# \boldsymbol{\pi}=n\right\}$.

Quot $(R, n)^{T}$

We say a box at $\left(x_{1}, x_{2}, x_{3}\right)$ in the S-region supported if there is a box at all the three points:

$$
\left(x_{1}-i_{1}, x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}-i_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}-i_{3}\right)
$$

where i_{j} is minimal with the property that the above points are no longer in S-region.
Red boxes: Any box in the intersection of 3 partitions is colored red.
White boxes: Any box in the intersection of 2 partitions is colored white.
Let C be a connected components of white boxes. We say C is supported if all boxes in C are supported.
Each supported component C is labeled by a point in \mathbb{P}^{1}.

Theorem G-Kool

$\operatorname{Quot}(R, n)^{T} \leftrightarrow\left\{[\boldsymbol{\pi}]_{\text {labeled }} \mid \# \boldsymbol{\pi}=n\right\}$.

Triple of 3D partitions

Three components of white boxes: Two are unsupported (hence unlabeled), and one is supported (labeled with $s \in \mathbb{P}^{1}$).

Triple of 3D partitions

Consequence: Components of $\operatorname{Quot}(R, n)^{T}$ are isomorphic to $\left(\mathbb{P}^{1}\right)^{k}$ where

$$
k=\# \text { of labeled white components. }
$$

Triple of 3D partitions

Consequence: Components of $\operatorname{Quot}(R, n)^{T}$ are isomorphic to $\left(\mathbb{P}^{1}\right)^{k}$ where

$$
k=\# \text { of labeled white components. }
$$

E.g. In picture above $k=1$.

Triple of 3D partitions

Consequence: Components of $\operatorname{Quot}(R, n)^{T}$ are isomorphic to $\left(\mathbb{P}^{1}\right)^{k}$ where

$$
k=\# \text { of labeled white components. }
$$

E.g. In picture above $k=1$. Define

$$
G_{\mathbf{u}, \mathbf{v}}(q)=\sum_{[\pi]} 2^{k(\pi)} q^{\#(\pi)}
$$

sum over equivalence classes of triple partitions.

(G-Kool-Young)

For any integers u_{1}, u_{2}, u_{3} and $v_{1}, v_{2}, v_{3}>0$ we have

$$
G_{u, v}(q)=M(q)^{2} \prod_{i=1}^{v_{1}} \prod_{j=1}^{v_{2}} \prod_{k=1}^{v_{3}} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

where $M(q)$ denotes the MacMahon function.

(G-Kool-Young)

For any integers u_{1}, u_{2}, u_{3} and $v_{1}, v_{2}, v_{3}>0$ we have

$$
G_{u, v}(q)=M(q)^{2} \prod_{i=1}^{v_{1}} \prod_{j=1}^{v_{2}} \prod_{k=1}^{v_{3}} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

where $M(q)$ denotes the MacMahon function.
Remark: $\frac{G_{u, v}(q)}{M(q)^{2}}$ is the generating function of the number of 3 D partitions embedded in the box B.

(G-Kool-Young)

For any integers u_{1}, u_{2}, u_{3} and $v_{1}, v_{2}, v_{3}>0$ we have

$$
G_{\mathbf{u}, \mathbf{v}}(q)=M(q)^{2} \prod_{i=1}^{v_{1}} \prod_{j=1}^{v_{2}} \prod_{k=1}^{v_{3}} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

where $M(q)$ denotes the MacMahon function.
Remark: $\frac{G_{u, v}(q)}{M(q)^{2}}$ is the generating function of the number of 3 D partitions embedded in the box B. But the box configurations leading to $G_{\mathbf{u}, \mathbf{v}}(q)$ all have empty intersections with B !!

(G-Kool-Young)

For any integers u_{1}, u_{2}, u_{3} and $v_{1}, v_{2}, v_{3}>0$ we have

$$
G_{\mathbf{u}, \mathbf{v}}(q)=M(q)^{2} \prod_{i=1}^{v_{1}} \prod_{j=1}^{v_{2}} \prod_{k=1}^{v_{3}} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

where $M(q)$ denotes the MacMahon function.
Remark: $\frac{G_{u, v}(q)}{M(q)^{2}}$ is the generating function of the number of 3 D partitions embedded in the box B. But the box configurations leading to $G_{\mathbf{u}, \mathbf{v}}(q)$ all have empty intersections with $B!$! In the combinatorial proof the role of B is not clear, but B plays a big role in geometric proof we found later.

Dimer model

The combinatorial proof is via double dimer models:

Dimer model

The combinatorial proof is via double dimer models:

Labeled boxes correspond to loops in the dimer model.

Dimer model

The combinatorial proof is via double dimer models:

Labeled boxes correspond to loops in the dimer model. There is no bijection between the triple of partitions and double dimer models. However, their generating functions match.

Geometric proof

Theorem (Hartshorne-Serre correspondence)

Let X be a smooth projective 3-fold and L a line bundle on X satisfying $H^{1}(L)=H^{2}(L)=0$. Then there exists a bijection between:

Geometric proof

Theorem (Hartshorne-Serre correspondence)

Let X be a smooth projective 3 -fold and L a line bundle on X satisfying $H^{1}(L)=H^{2}(L)=0$. Then there exists a bijection between:
(1) Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with $\operatorname{det}(R) \cong L$ and $\sigma: R \rightarrow \mathcal{O}_{X}$ a cosection cutting out a 1-dimensional closed subscheme.

Geometric proof

Theorem (Hartshorne-Serre correspondence)

Let X be a smooth projective 3 -fold and L a line bundle on X satisfying $H^{1}(L)=H^{2}(L)=0$. Then there exists a bijection between:
(1) Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with $\operatorname{det}(R) \cong L$ and $\sigma: R \rightarrow \mathcal{O}_{X}$ a cosection cutting out a 1-dimensional closed subscheme.
(2) Pairs (C, ξ), where $C \subset X$ is a Cohen-Macaulay curve which is generically Ici and $\xi: \mathcal{O}_{X} \rightarrow \omega_{C} \otimes \omega_{X}^{-1} \otimes L$ has 0 -dimensional cokernel.

Geometric proof

Theorem (Hartshorne-Serre correspondence)

Let X be a smooth projective 3 -fold and L a line bundle on X satisfying $H^{1}(L)=H^{2}(L)=0$. Then there exists a bijection between:
(1) Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with $\operatorname{det}(R) \cong L$ and $\sigma: R \rightarrow \mathcal{O}_{X}$ a cosection cutting out a 1-dimensional closed subscheme.
(2) Pairs (C, ξ), where $C \subset X$ is a Cohen-Macaulay curve which is generically Ici and $\xi: \mathcal{O}_{X} \rightarrow \omega_{C} \otimes \omega_{X}^{-1} \otimes L$ has 0 -dimensional cokernel.
(1) in theorem gives $0 \rightarrow L \rightarrow R \rightarrow I_{C} \rightarrow 0$.

Geometric proof

Theorem (Hartshorne-Serre correspondence)

Let X be a smooth projective 3 -fold and L a line bundle on X satisfying $H^{1}(L)=H^{2}(L)=0$. Then there exists a bijection between:
(1) Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with $\operatorname{det}(R) \cong L$ and $\sigma: R \rightarrow \mathcal{O}_{X}$ a cosection cutting out a 1-dimensional closed subscheme.
(2) Pairs (C, ξ), where $C \subset X$ is a Cohen-Macaulay curve which is generically Ici and $\xi: \mathcal{O}_{X} \rightarrow \omega_{C} \otimes \omega_{X}^{-1} \otimes L$ has 0 -dimensional cokernel.
(1) in theorem gives $0 \rightarrow L \rightarrow R \rightarrow I_{C} \rightarrow 0$. So

$$
\begin{aligned}
R \in \operatorname{Ext}^{1}\left(I_{C}, L\right) & \cong \operatorname{Ext}^{2}\left(\mathcal{O}_{C}, L\right) \\
& \cong \operatorname{Ext}^{1}\left(L, \mathcal{O}_{C} \otimes \omega_{X}\right)^{*} \\
& \cong H^{1}\left(C, \omega_{X} \otimes L^{-1} \mid C\right)^{*} \\
& \cong H^{0}\left(C, \omega_{C} \otimes \omega_{X}^{-1} \otimes L\right)
\end{aligned}
$$

Geometric proof

Applying $\mathcal{H o m}(\cdot, L)$ to s.e.s above gives

$$
0 \longrightarrow L \rightarrow R^{*} \otimes L \rightarrow \mathcal{O}_{x} \xrightarrow{\xi} \mathcal{E} x t^{1}\left(I_{C}, L\right) \rightarrow \mathcal{E} x t^{1}(R, L) \rightarrow 0 .
$$

Geometric proof

Applying $\mathcal{H o m}(\cdot, L)$ to s.e.s above gives

$$
0 \longrightarrow L \rightarrow R^{*} \otimes L \rightarrow \mathcal{O}_{x} \xrightarrow{\xi} \mathcal{E} x t^{1}\left(I_{C}, L\right) \rightarrow \mathcal{E} x t^{1}(R, L) \rightarrow 0 .
$$

Notation: F codimension c sheaf, L line bundle define

$$
F_{L}^{D}:=\mathcal{E} x t^{c}(F, L) .
$$

Geometric proof

Applying $\mathcal{H o m}(\cdot, L)$ to s.e.s above gives

$$
0 \longrightarrow L \rightarrow R^{*} \otimes L \rightarrow \mathcal{O}_{x} \xrightarrow{\xi} \mathcal{E} x t^{1}\left(I_{C}, L\right) \rightarrow \mathcal{E} x t^{1}(R, L) \rightarrow 0 .
$$

Notation: F codimension c sheaf, L line bundle define

$$
F_{L}^{D}:=\mathcal{E} x t^{c}(F, L) .
$$

Note $\omega_{C}=\mathcal{E} x t^{2}\left(\mathcal{O}_{C}, \omega_{X}\right)$ so $\omega_{C} \otimes \omega_{X}^{-1} \otimes L=\left(\mathcal{O}_{C}\right)_{L}^{D}$.

Geometric proof

Applying $\mathcal{H o m}(\cdot, L)$ to s.e.s above gives

$$
0 \longrightarrow L \rightarrow R^{*} \otimes L \rightarrow \mathcal{O}_{x} \xrightarrow{\xi} \mathcal{E} x t^{1}\left(I_{C}, L\right) \rightarrow \mathcal{E} x t^{1}(R, L) \rightarrow 0 .
$$

Notation: F codimension c sheaf, L line bundle define

$$
F_{L}^{D}:=\mathcal{E} x t^{c}(F, L) .
$$

Note $\omega_{C}=\mathcal{E} x t^{2}\left(\mathcal{O}_{C}, \omega_{X}\right)$ so $\omega_{C} \otimes \omega_{X}^{-1} \otimes L=\left(\mathcal{O}_{C}\right)_{L}^{D}$.

- $\mathcal{E} x t^{1}(R, L)$ is a 0 -dimensional sheaf supported on $\operatorname{Sing}(R)$.

Applying $\mathcal{H o m}(\cdot, L)$ to s.e.s above gives

$$
0 \longrightarrow L \rightarrow R^{*} \otimes L \rightarrow \mathcal{O}_{x} \xrightarrow{\xi} \mathcal{E} x t^{1}\left(I_{C}, L\right) \rightarrow \mathcal{E} x t^{1}(R, L) \rightarrow 0 .
$$

Notation: F codimension c sheaf, L line bundle define

$$
F_{L}^{D}:=\mathcal{E} x t^{c}(F, L) .
$$

Note $\omega_{C}=\mathcal{E} x t^{2}\left(\mathcal{O}_{C}, \omega_{X}\right)$ so $\omega_{C} \otimes \omega_{X}^{-1} \otimes L=\left(\mathcal{O}_{C}\right)_{L}^{D}$.

- $\mathcal{E} x t^{1}(R, L)$ is a 0 -dimensional sheaf supported on $\operatorname{Sing}(R)$.
- $\mathcal{E} x t^{1}\left(I_{C}, L\right) \cong \mathcal{E} x t^{2}\left(\mathcal{O}_{C}, L\right)=\left(\mathcal{O}_{C}\right)_{L}^{D}$.
- $\left(\mathcal{O}_{C}\right)_{L}^{D}$ is pure 1-dimensional sheaf (supported on C) and coker ξ is 0 -dimensional (i.e. PT stable pair!).

Applying $\mathcal{H o m}(\cdot, L)$ to s.e.s above gives

$$
0 \longrightarrow L \rightarrow R^{*} \otimes L \rightarrow \mathcal{O}_{x} \xrightarrow{\xi} \mathcal{E} x t^{1}\left(I_{C}, L\right) \rightarrow \mathcal{E} x t^{1}(R, L) \rightarrow 0 .
$$

Notation: F codimension c sheaf, L line bundle define

$$
F_{L}^{D}:=\mathcal{E} x t^{c}(F, L) .
$$

Note $\omega_{C}=\mathcal{E} x t^{2}\left(\mathcal{O}_{C}, \omega_{X}\right)$ so $\omega_{C} \otimes \omega_{X}^{-1} \otimes L=\left(\mathcal{O}_{C}\right)_{L}^{D}$.

- $\mathcal{E} x t^{1}(R, L)$ is a 0 -dimensional sheaf supported on $\operatorname{Sing}(R)$.
- $\mathcal{E} x t^{1}\left(I_{C}, L\right) \cong \mathcal{E} x t^{2}\left(\mathcal{O}_{C}, L\right)=\left(\mathcal{O}_{C}\right)_{L}^{D}$.
- $\left(\mathcal{O}_{C}\right)_{L}^{D}$ is pure 1-dimensional sheaf (supported on C) and coker ξ is 0 -dimensional (i.e. PT stable pair!).
- C is not lci exactly at $\operatorname{Sing}(R)$.

Applying $\mathcal{H o m}(\cdot, L)$ to s.e.s above gives

$$
0 \longrightarrow L \rightarrow R^{*} \otimes L \rightarrow \mathcal{O}_{x} \xrightarrow{\xi} \mathcal{E} x t^{1}\left(I_{C}, L\right) \rightarrow \mathcal{E} x t^{1}(R, L) \rightarrow 0 .
$$

Notation: F codimension c sheaf, L line bundle define

$$
F_{L}^{D}:=\mathcal{E} x t^{c}(F, L) .
$$

Note $\omega_{C}=\mathcal{E} x t^{2}\left(\mathcal{O}_{C}, \omega_{X}\right)$ so $\omega_{C} \otimes \omega_{X}^{-1} \otimes L=\left(\mathcal{O}_{C}\right)_{L}^{D}$.

- $\mathcal{E} x t^{1}(R, L)$ is a 0 -dimensional sheaf supported on $\operatorname{Sing}(R)$.
- $\mathcal{E} x t^{1}\left(I_{C}, L\right) \cong \mathcal{E} x t^{2}\left(\mathcal{O}_{C}, L\right)=\left(\mathcal{O}_{C}\right)_{L}^{D}$.
- $\left(\mathcal{O}_{C}\right)_{L}^{D}$ is pure 1-dimensional sheaf (supported on C) and coker ξ is 0 -dimensional (i.e. PT stable pair!).
- C is not lci exactly at $\operatorname{Sing}(R)$.

If $I_{C}($ resp. R) is the ideal sheaf of a CM curve (resp. rank 2 reflexive sheaf) and Q a 0 -dimensional sheaf, the only nonzero Ext groups are

$$
\operatorname{Hom}\left(I_{C}, Q\right), \operatorname{Ext}^{1}\left(I_{C}, Q\right) \quad \operatorname{Hom}(R, Q), \operatorname{Ext}^{1}(R, Q)
$$

and their Serre duals.

If I_{C} (resp. R) is the ideal sheaf of a CM curve (resp. rank 2 reflexive sheaf) and Q a 0 -dimensional sheaf, the only nonzero Ext groups are

$$
\operatorname{Hom}\left(I_{C}, Q\right), \operatorname{Ext}^{1}\left(I_{C}, Q\right) \quad \operatorname{Hom}(R, Q), \operatorname{Ext}^{1}(R, Q)
$$

and their Serre duals. More symmetrically we write, $\operatorname{Ext}^{1}\left(I_{C}, Q[-1]\right), \mathrm{Ext}^{1}\left(Q[-1], I_{C}\right) \quad \operatorname{Ext}^{1}(R, Q[-1]), \operatorname{Ext}^{1}(Q[-1], R)$.

If I_{C} (resp. R) is the ideal sheaf of a CM curve (resp. rank 2 reflexive sheaf) and Q a 0 -dimensional sheaf, the only nonzero Ext groups are

$$
\operatorname{Hom}\left(I_{C}, Q\right), \operatorname{Ext}^{1}\left(I_{C}, Q\right) \quad \operatorname{Hom}(R, Q), E x t^{1}(R, Q)
$$

and their Serre duals. More symmetrically we write,
$\mathrm{Ext}^{1}\left(I_{C}, Q[-1]\right), \mathrm{Ext}^{1}\left(Q[-1], I_{C}\right) \quad \mathrm{Ext}^{1}(R, Q[-1]), \mathrm{Ext}^{1}(Q[-1], R)$.

Furthermore,
$\operatorname{dim} E x{ }^{1}\left(I_{C}, Q[-1]\right)-\operatorname{dim} \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right)=\ell(Q)$,
$\operatorname{dim} \mathrm{Ext}^{1}(R, Q[-1])-\operatorname{dim} \mathrm{Ext}^{1}(Q[-1], R)=2 \ell(Q)$,
only depend on $\ell(Q):=$ length (Q).

Quot schemes

Let $\operatorname{Quot}(R):=\bigsqcup_{n=0}^{\infty} \operatorname{Quot}(R, n)$.

Quot schemes

Let $\operatorname{Quot}(R):=\bigsqcup_{n=0}^{\infty} \operatorname{Quot}(R, n)$.
Set theoretically

$$
\operatorname{Quot}(R)=\bigsqcup_{Q \in \mathcal{T}} \operatorname{Hom}(R, Q)^{\text {onto }},
$$

where \mathcal{T} denotes the stack of all 0 -dimensional sheaves on X and "onto" refers to the subset of surjective maps in

$$
\operatorname{Hom}(R, Q) \cong \operatorname{Ext}^{1}(R, Q[-1])
$$

Quot schemes

Let $\operatorname{Quot}(R):=\bigsqcup_{n=0}^{\infty} \operatorname{Quot}(R, n)$.
Set theoretically

$$
\operatorname{Quot}(R)=\bigsqcup_{Q \in \mathcal{T}} \operatorname{Hom}(R, Q)^{\text {onto }}
$$

where \mathcal{T} denotes the stack of all 0 -dimensional sheaves on X and "onto" refers to the subset of surjective maps in

$$
\operatorname{Hom}(R, Q) \cong \operatorname{Ext}^{1}(R, Q[-1])
$$

Conclusion the first nonzero Ext group Ext ${ }^{1}(R, Q[-1])$ governs the quot scheme Quot (R).

$$
F \in \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right) \cong \operatorname{Ext}^{2}\left(Q, I_{C}\right) \cong \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)
$$

corresponds to $0 \rightarrow \mathcal{O}_{C} \rightarrow F \rightarrow Q \rightarrow 0$.

$$
F \in \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right) \cong \operatorname{Ext}^{2}\left(Q, I_{C}\right) \cong \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)
$$

corresponds to $0 \rightarrow \mathcal{O}_{c} \rightarrow F \rightarrow Q \rightarrow 0$.
Let $\operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)^{\text {pure }}$ be the locus where F is pure (i.e. $\mathcal{O}_{C} \rightarrow F$ is PT stable pair).

$$
F \in \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right) \cong \operatorname{Ext}^{2}\left(Q, I_{C}\right) \cong \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)
$$

corresponds to $0 \rightarrow \mathcal{O}_{c} \rightarrow F \rightarrow Q \rightarrow 0$.
Let $\operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)^{\text {pure }}$ be the locus where F is pure (i.e. $\mathcal{O}_{C} \rightarrow F$ is PT stable pair).
Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, \exists natural injection

$$
\operatorname{Ext}^{2}(Q, R) \cong \operatorname{Ext}^{1}(Q[-1], R) \hookrightarrow \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right)
$$

$$
F \in \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right) \cong \operatorname{Ext}^{2}\left(Q, I_{C}\right) \cong \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)
$$

corresponds to $0 \rightarrow \mathcal{O}_{C} \rightarrow F \rightarrow Q \rightarrow 0$.
Let $\operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)^{\text {pure }}$ be the locus where F is pure (i.e. $\mathcal{O}_{C} \rightarrow F$ is PT stable pair).
Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, \exists natural injection

$$
\operatorname{Ext}^{2}(Q, R) \cong \operatorname{Ext}^{1}(Q[-1], R) \hookrightarrow \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right)
$$

Define $\operatorname{Ext}^{2}(Q, R)^{\text {pure }}:=\operatorname{Ext}^{2}(Q, R) \cap \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)^{\text {pure }}$.

$$
F \in \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right) \cong \operatorname{Ext}^{2}\left(Q, I_{C}\right) \cong \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)
$$

corresponds to $0 \rightarrow \mathcal{O}_{C} \rightarrow F \rightarrow Q \rightarrow 0$.
Let $\operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)^{\text {pure }}$ be the locus where F is pure (i.e. $\mathcal{O}_{C} \rightarrow F$ is PT stable pair).
Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, \exists natural injection

$$
\operatorname{Ext}^{2}(Q, R) \cong \operatorname{Ext}^{1}(Q[-1], R) \hookrightarrow \operatorname{Ext}^{1}\left(Q[-1], I_{C}\right)
$$

Define $\operatorname{Ext}^{2}(Q, R)^{\text {pure }}:=\operatorname{Ext}^{2}(Q, R) \cap \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{C}\right)^{\text {pure }}$. Conclusion the second nonzero Ext group Ext ${ }^{1}(Q[-1], R)$ governs the 'specific' sub-locus of PT stable pairs with support C denoted by $P(C)$.

Specific PT pairs and 1st main result

Define $P(R, \sigma):=\bigsqcup_{Q \in \mathcal{T}} \mathrm{Ext}^{2}(Q, R)^{\text {pure }} \subset P(C)$.

Define $P(R, \sigma):=\bigsqcup_{Q \in \mathcal{T}} \operatorname{Ext}^{2}(Q, R)^{\text {pure }} \subset P(C)$.

Theorem G-Kool

Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, \exists natural bijection

$$
P(R, \sigma) \leftrightarrow \operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right)\right)
$$

Define $P(R, \sigma):=\bigsqcup_{Q \in \mathcal{T}} \operatorname{Ext}^{2}(Q, R)^{\text {pure }} \subset P(C)$.

Theorem G-Kool

Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, \exists natural bijection

$$
P(R, \sigma) \leftrightarrow \operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right)\right)
$$

Recall $\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right)$ is a 0-dimensional sheaf supported on $\operatorname{Sing}(R)$.

Define $P(R, \sigma):=\bigsqcup_{Q \in \mathcal{T}} \operatorname{Ext}^{2}(Q, R)^{\text {pure }} \subset P(C)$.

Theorem G-Kool

Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, \exists natural bijection

$$
P(R, \sigma) \leftrightarrow \operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right)\right)
$$

Recall $\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right)$ is a 0-dimensional sheaf supported on $\operatorname{Sing}(R)$.

Hall Algebra

Let $H(\mathcal{T}):=K(\mathrm{St} / \mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T}.

Hall Algebra

Let $H(\mathcal{T}):=K(\mathrm{St} / \mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T}.
Let \mathcal{T}^{2} be the stack of short exact sequences
$0 \rightarrow Q_{1} \rightarrow Q \rightarrow Q_{2} \rightarrow 0$ in \mathcal{T} and let π_{i} be the map induced by sending this short exact sequence to Q_{i}.

Hall Algebra

Let $H(\mathcal{T}):=K(\mathrm{St} / \mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T}.
Let \mathcal{T}^{2} be the stack of short exact sequences
$0 \rightarrow Q_{1} \rightarrow Q \rightarrow Q_{2} \rightarrow 0$ in \mathcal{T} and let π_{i} be the map induced by sending this short exact sequence to Q_{i}.
For any two (\mathcal{T}-isomorphism classes of) \mathcal{T}-stacks [$U \rightarrow \mathcal{T}$] and [$V \rightarrow \mathcal{T}$], the product $[U * V \rightarrow \mathcal{T}$] is defined by the Cartesian diagram

Hall Algebra

Let $H(\mathcal{T}):=K(\mathrm{St} / \mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T}.
Let \mathcal{T}^{2} be the stack of short exact sequences
$0 \rightarrow Q_{1} \rightarrow Q \rightarrow Q_{2} \rightarrow 0$ in \mathcal{T} and let π_{i} be the map induced by sending this short exact sequence to Q_{i}.
For any two (\mathcal{T}-isomorphism classes of) \mathcal{T}-stacks $[U \rightarrow \mathcal{T}]$ and [$V \rightarrow \mathcal{T}$], the product $[U * V \rightarrow \mathcal{T}$] is defined by the Cartesian diagram

This makes $(H(\mathcal{T}), *)$ into an associative algebra, known as motivic Ringel-Hall algebra (Joyce, Bridgeland, Kontsevich-Soibelman, Stoppa-Thomas).

Hall Algebra

Let $H(\mathcal{T}):=K(\mathrm{St} / \mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T}.
Let \mathcal{T}^{2} be the stack of short exact sequences
$0 \rightarrow Q_{1} \rightarrow Q \rightarrow Q_{2} \rightarrow 0$ in \mathcal{T} and let π_{i} be the map induced by sending this short exact sequence to Q_{i}.
For any two (\mathcal{T}-isomorphism classes of) \mathcal{T}-stacks $[U \rightarrow \mathcal{T}]$ and [$V \rightarrow \mathcal{T}$], the product $[U * V \rightarrow \mathcal{T}$] is defined by the Cartesian diagram

This makes $(H(\mathcal{T}), *)$ into an associative algebra, known as motivic Ringel-Hall algebra (Joyce, Bridgeland, Kontsevich-Soibelman, Stoppa-Thomas).
1_{0} is the identity (the stack consisting of the zero sheaf with the inclusion into \mathcal{T}).

Some elements of Hall Algebra

Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, we define

Given $(R, \sigma) \leftrightarrow\left(\left(\mathcal{O}_{C}\right)_{L}^{D}, \xi\right)$ as in Serre correspondence, we define

- $1_{\mathcal{T}}$ is the identity map $\mathcal{T} \rightarrow \mathcal{T}$,
- $\operatorname{Hom}(R, \cdot)$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\operatorname{Hom}(R, Q)$,
- $\operatorname{Hom}(R, \cdot)^{\text {onto }}$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\operatorname{Hom}(R, Q)^{\text {onto }}$,
- $\operatorname{Ext}{ }^{2}(\cdot, R)$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\operatorname{Ext}^{2}(Q, R)$,
- $\operatorname{Ext}^{2}(\cdot, R)^{\text {pure }}$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\operatorname{Ext}^{2}(Q, R)^{\text {pure }}$.
- $\mathbb{C}^{r \ell(\cdot)}$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\mathbb{C}^{r \ell(Q)}$.

Using the inclusion-exclusion principle, we can write $\operatorname{Hom}(R, Q)^{\text {onto }}$ as

$$
\operatorname{Hom}(R, Q)-\bigsqcup_{Q_{1}<Q} \operatorname{Hom}\left(R, Q_{1}\right)+\bigsqcup_{Q_{1}<Q_{2}<Q} \operatorname{Hom}\left(R, Q_{1}\right)-\cdots,
$$

where $<$ denotes strict inclusion.

Using the inclusion-exclusion principle, we can write $\operatorname{Hom}(R, Q)^{\text {onto }}$ as

$$
\operatorname{Hom}(R, Q)-\bigsqcup_{Q_{1}<Q} \operatorname{Hom}\left(R, Q_{1}\right)+\bigsqcup_{Q_{1}<Q_{2}<Q} \operatorname{Hom}\left(R, Q_{1}\right)-\cdots,
$$

where $<$ denotes strict inclusion. Write $1_{\mathcal{T}}=1_{0}+1_{\mathcal{T}^{\prime}}$. Then $1_{\mathcal{T}}^{-1}=1_{0}-1_{\mathcal{T}^{\prime}}+1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}}-1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} *+\ldots$.

Using the inclusion-exclusion principle, we can write $\operatorname{Hom}(R, Q)^{\text {onto }}$ as

$$
\operatorname{Hom}(R, Q)-\bigsqcup_{Q_{1}<Q} \operatorname{Hom}\left(R, Q_{1}\right)+\bigsqcup_{Q_{1}<Q_{2}<Q} \operatorname{Hom}\left(R, Q_{1}\right)-\cdots,
$$

where $<$ denotes strict inclusion. Write $1_{\mathcal{T}}=1_{0}+1_{\mathcal{T}^{\prime}}$. Then $1_{\mathcal{T}}^{-1}=1_{0}-1_{\mathcal{T}^{\prime}}+1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}}-1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} *+\ldots$.

Using the inclusion-exclusion principle, we can write $\operatorname{Hom}(R, Q)^{\text {onto }}$ as

$$
\operatorname{Hom}(R, Q)-\bigsqcup_{Q_{1}<Q} \operatorname{Hom}\left(R, Q_{1}\right)+\bigsqcup_{Q_{1}<Q_{2}<Q} \operatorname{Hom}\left(R, Q_{1}\right)-\cdots,
$$

where $<$ denotes strict inclusion. Write $1_{\mathcal{T}}=1_{0}+1_{\mathcal{T}^{\prime}}$. Then $1_{\mathcal{T}}^{-1}=1_{0}-1_{\mathcal{T}^{\prime}}+1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}}-1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} *+\ldots$.
This leads to

$$
\operatorname{Hom}(R, \cdot)^{\text {onto }}=\operatorname{Hom}(R, \cdot) * 1_{\mathcal{T}}^{-1} .
$$

Using the inclusion-exclusion principle, we can write $\operatorname{Hom}(R, Q)^{\text {onto }}$ as

$$
\operatorname{Hom}(R, Q)-\bigsqcup_{Q_{1}<Q} \operatorname{Hom}\left(R, Q_{1}\right)+\bigsqcup_{Q_{1}<Q_{2}<Q} \operatorname{Hom}\left(R, Q_{1}\right)-\cdots,
$$

where $<$ denotes strict inclusion. Write $1_{\mathcal{T}}=1_{0}+1_{\mathcal{T}^{\prime}}$. Then $1_{\mathcal{T}}^{-1}=1_{0}-1_{\mathcal{T}^{\prime}}+1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}}-1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} * 1_{\mathcal{T}^{\prime}} *+\ldots$.
This leads to

$$
\operatorname{Hom}(R, \cdot)^{\text {onto }}=\operatorname{Hom}(R, \cdot) * 1_{\mathcal{T}}^{-1}
$$

Similarly,

$$
\operatorname{Ext}^{2}(\cdot, R)^{\text {pure }}=1_{\mathcal{T}}^{-1} * \operatorname{Ext}^{2}(\cdot, R)
$$

Virtual Poincaré polynomial

Now let

$$
P_{z}(\cdot): H(\mathcal{T}) \longrightarrow \mathbb{Q}(z) \llbracket q \rrbracket,
$$

denote the virtual Poincaré polynomial.

Now let

$$
P_{z}(\cdot): H(\mathcal{T}) \longrightarrow \mathbb{Q}(z) \llbracket q \rrbracket
$$

denote the virtual Poincaré polynomial. Here z is the formal variable of P_{z} and q keeps track of an additional grading as follows. Any element $[U \rightarrow \mathcal{T}] \in H(\mathcal{T})$ is locally of finite type so can have infinitely many components. Let $\mathcal{T}_{n} \subset \mathcal{T}$ be the substack of 0 -dimensional sheaves of length n and define

$$
P_{z}(U):=\sum_{n=0}^{\infty} P_{z}\left(U \times_{\mathcal{T}} \mathcal{T}_{n}\right) q^{n}
$$

Wall-crossing formula

By Serre duality and Rieman-Roch $P_{z}(\cdot)$ is a Lie algebra homomorphism to the abelian Lie algebra $\mathbb{Q}(z) \llbracket q \rrbracket$ (Joyce, Stoppa-Thomas):

Wall-crossing formula

By Serre duality and Rieman-Roch $P_{z}(\cdot)$ is a Lie algebra homomorphism to the abelian Lie algebra $\mathbb{Q}(z) \llbracket q \rrbracket$ (Joyce, Stoppa-Thomas): If $[U \rightarrow \mathcal{T}],[V \rightarrow \mathcal{T}] \in H(\mathcal{T})$ then

$$
P_{z}(U * V)=P_{z}(V * U)
$$

By Serre duality and Rieman-Roch $P_{z}(\cdot)$ is a Lie algebra homomorphism to the abelian Lie algebra $\mathbb{Q}(z) \llbracket q \rrbracket$ (Joyce, Stoppa-Thomas): If $[U \rightarrow \mathcal{T}],[V \rightarrow \mathcal{T}] \in H(\mathcal{T})$ then

$$
P_{z}(U * V)=P_{z}(V * U)
$$

Furthermore, if both $\lim _{z \rightarrow 1} P_{z}(U)$ and $\lim _{z \rightarrow 1} P_{z}(V)$ exist then

$$
\lim _{z \rightarrow 1} P_{z}(U * V)=\lim _{z \rightarrow 1} P_{z}(U) \lim _{z \rightarrow 1} P_{z}(V)
$$

Application to our setting

Define $U:=\operatorname{Hom}(R, \cdot) *\left(\mathbb{C}^{2 \ell(\cdot)}\right)^{-1}$ and $V:=\mathbb{C}^{2 \ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.

Application to our setting

Define $U:=\operatorname{Hom}(R, \cdot) *\left(\mathbb{C}^{2 \ell(\cdot)}\right)^{-1}$ and $V:=\mathbb{C}^{2 \ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.

$$
\lim _{z \rightarrow 1} P_{z}(V)(q)=\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Hom}\left(\mathcal{O}_{X}^{\oplus 2}, \cdot\right)^{\text {onto }}\right)(q)=M(q)^{2 e(X)},
$$

Application to our setting

Define $U:=\operatorname{Hom}(R, \cdot) *\left(\mathbb{C}^{2 \ell(\cdot)}\right)^{-1}$ and $V:=\mathbb{C}^{2 \ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.

$$
\lim _{z \rightarrow 1} P_{z}(V)(q)=\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Hom}\left(\mathcal{O}_{X}^{\oplus 2}, \cdot\right)^{\text {onto }}\right)(q)=M(q)^{2 e(X)},
$$

$$
\begin{aligned}
\lim _{z \rightarrow 1} P_{z}(U)(q) & =\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Ext}^{2}(\cdot, R)^{p u r e}\right)\left(z^{2} q\right) \\
& =\sum_{n=0}^{\infty} e\left(\operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{x}\right), n\right)\right) q^{n}
\end{aligned}
$$

Application to our setting

Define $U:=\operatorname{Hom}(R, \cdot) *\left(\mathbb{C}^{2 \ell(\cdot)}\right)^{-1}$ and $V:=\mathbb{C}^{2 \ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.

$$
\lim _{z \rightarrow 1} P_{z}(V)(q)=\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Hom}\left(\mathcal{O}_{X}^{\oplus 2}, \cdot\right)^{\text {onto }}\right)(q)=M(q)^{2 e(X)}
$$

$$
\begin{aligned}
\lim _{z \rightarrow 1} P_{z}(U)(q) & =\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Ext}^{2}(\cdot, R)^{p u r e}\right)\left(z^{2} q\right) \\
& =\sum_{n=0}^{\infty} e\left(\operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{x}\right), n\right)\right) q^{n}
\end{aligned}
$$

$\lim _{z \rightarrow 1} P_{z}(U * V)=\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Hom}(R, \cdot)^{\text {onto }}\right)(q)=\sum_{n=0}^{\infty} e(\operatorname{Quot}(R, n)) q^{n}$.

Application to our setting

Define $U:=\operatorname{Hom}(R, \cdot) *\left(\mathbb{C}^{2 \ell(\cdot)}\right)^{-1}$ and $V:=\mathbb{C}^{2 \ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.

$$
\lim _{z \rightarrow 1} P_{z}(V)(q)=\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Hom}\left(\mathcal{O}_{X}^{\oplus 2}, \cdot\right)^{\text {onto }}\right)(q)=M(q)^{2 e(X)}
$$

$$
\begin{aligned}
\lim _{z \rightarrow 1} P_{z}(U)(q) & =\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Ext}^{2}(\cdot, R)^{p u r e}\right)\left(z^{2} q\right) \\
& =\sum_{n=0}^{\infty} e\left(\operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{x}\right), n\right)\right) q^{n}
\end{aligned}
$$

$\lim _{z \rightarrow 1} P_{z}(U * V)=\lim _{z \rightarrow 1} P_{z}\left(\operatorname{Hom}(R, \cdot)^{\text {onto }}\right)(q)=\sum_{n=0}^{\infty} e(\operatorname{Quot}(R, n)) q^{n}$.

Theorem G-Kool

Let R be a rank 2 reflexive sheaf on a smooth projective 3-fold X. Suppose there exists a cosection $R \rightarrow \mathcal{O}_{X}$ cutting out a 1-dimensional closed subscheme. Then

$$
\sum_{n=0}^{\infty} e(\operatorname{Quot}(R, n)) q^{n}=M(q)^{2 e(X)} \sum_{n=0}^{\infty} e\left(\operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right), n\right)\right) q^{n}
$$

2nd main result

Theorem G-Kool

Let R be a rank 2 reflexive sheaf on a smooth projective 3-fold X. Suppose there exists a cosection $R \rightarrow \mathcal{O}_{X}$ cutting out a 1 -dimensional closed subscheme. Then

$$
\sum_{n=0}^{\infty} e(\operatorname{Quot}(R, n)) q^{n}=M(q)^{2 e(X)} \sum_{n=0}^{\infty} e\left(\operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right), n\right)\right) q^{n}
$$

Corollary

Let R be a singular rank $2 T$-equivariant reflexive sheaf on \mathbb{C}^{3} with homogeneous generators of weights
$\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}\right),\left(u_{1}+v_{1}, u_{2}, u_{3}+v_{3}\right),\left(u_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$. Then

$$
\sum_{n=0}^{\infty} e(\operatorname{Quot}(R, n)) q^{n}=M(q)^{2} \prod_{i=1}^{v_{1}} \prod_{j=1}^{v_{2}} \prod_{k=1}^{v_{3}} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

2nd main result

Theorem G-Kool

Let R be a rank 2 reflexive sheaf on a smooth projective 3-fold X. Suppose there exists a cosection $R \rightarrow \mathcal{O}_{X}$ cutting out a 1 -dimensional closed subscheme. Then

$$
\sum_{n=0}^{\infty} e(\operatorname{Quot}(R, n)) q^{n}=M(q)^{2 e(X)} \sum_{n=0}^{\infty} e\left(\operatorname{Quot}\left(\mathcal{E} x t^{1}\left(R, \mathcal{O}_{X}\right), n\right)\right) q^{n}
$$

Corollary

Let R be a singular rank $2 T$-equivariant reflexive sheaf on \mathbb{C}^{3} with homogeneous generators of weights
$\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}\right),\left(u_{1}+v_{1}, u_{2}, u_{3}+v_{3}\right),\left(u_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$. Then

$$
\sum_{n=0}^{\infty} e(\operatorname{Quot}(R, n)) q^{n}=M(q)^{2} \prod_{i=1}^{v_{1}} \prod_{j=1}^{v_{2}} \prod_{k=1}^{v_{3}} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

3D partition with legs

Fix the outgoing 2D partitions $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

3D partition with legs

Fix the outgoing 2D partitions $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
$|\pi|:=\#\left\{\pi \cap\left([0,1, \ldots, N]^{3}\right)\right\}-(N+1) \sum_{i=1}^{3}\left|\lambda_{i}\right| \quad N \gg 0$.

3D partition with legs

Fix the outgoing 2D partitions $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
$|\pi|:=\#\left\{\pi \cap\left([0,1, \ldots, N]^{3}\right)\right\}-(N+1) \sum_{i=1}^{3}\left|\lambda_{i}\right| \quad N \gg 0$.

- $\lambda_{1}=1^{3}$
- $\lambda_{2}=2^{3} 1$
- $\lambda_{3}=\emptyset$

Fix the outgoing 2D partitions $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
$|\pi|:=\#\left\{\pi \cap\left([0,1, \ldots, N]^{3}\right)\right\}-(N+1) \sum_{i=1}^{3}\left|\lambda_{i}\right| \quad N \gg 0$.

- $\lambda_{1}=1^{3}$
- $\lambda_{2}=2^{3} 1$
- $\lambda_{3}=\emptyset$
- $|\pi|=1$ (with $N=4$, $51-5 \cdot(3+7+0))$

Fix the outgoing 2D partitions $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
$|\pi|:=\#\left\{\pi \cap\left([0,1, \ldots, N]^{3}\right)\right\}-(N+1) \sum_{i=1}^{3}\left|\lambda_{i}\right| \quad N \gg 0$.

- $\lambda_{1}=1^{3}$
- $\lambda_{2}=2^{3} 1$
- $\lambda_{3}=\emptyset$
- $|\pi|=1$ (with $N=4$, $51-5 \cdot(3+7+0))$
$\sum_{\pi} q^{|\pi|}$ can be expressed in terms of $M(q)$ and the skewed Schur functions. (Okounkov-Reshetikhin-Vafa)

Infinite legs

Figure: All 3D partitions are allowed to have infinite legs. Two of the white components is labelled so $k=2$.

Example: $\left(v_{1}, v_{2}, v_{3}\right)=(2,2,1)$

(1)

(2)

(3)
(1) $M(q)^{2} \frac{1+q+q^{2}+q^{3}+q^{4}+q^{6}}{1-q}$.
(2) $M(q)^{2} \frac{1+q+q^{2}+q^{3}+q^{4}+q^{5}}{1-q}$.
(3) $M(q)^{2} \frac{1+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}}{1-q}$.

