Rank 2 stable sheaves on toric threefolds: classical and virtual counts

Amin Gholampour University of Maryland

4/21/2016

X smooth projective variety over \mathbb{C} of dimension *n*. Compactify "moduli space of holomorphic vector bundles on X":

 \mathcal{E} is torsion free if $\text{Supp}(\mathcal{F}) = X$ for all $0 \neq \mathcal{F} \subseteq \mathcal{E}$.

 \mathcal{E} is torsion free if $\text{Supp}(\mathcal{F}) = X$ for all $0 \neq \mathcal{F} \subseteq \mathcal{E}$.

Construct the moduli space of torsion free sheaves on X using GIT:

 \mathcal{E} is torsion free if $\text{Supp}(\mathcal{F}) = X$ for all $0 \neq \mathcal{F} \subseteq \mathcal{E}$.

Construct the moduli space of torsion free sheaves on X using GIT:

- Fix rank and Chern classes: $r, c_1, ..., c_n$.
- Fix a polarization H on X and consider H-stable sheaves.

 \mathcal{E} is torsion free if $\text{Supp}(\mathcal{F}) = X$ for all $0 \neq \mathcal{F} \subseteq \mathcal{E}$.

Construct the moduli space of torsion free sheaves on X using GIT:

- Fix rank and Chern classes: $r, c_1, ..., c_n$.
- Fix a polarization H on X and consider H-stable sheaves.

Get moduli space $\mathcal{M}_X^H(r, c_1, ..., c_n)$.

 \mathcal{E} is torsion free if $\text{Supp}(\mathcal{F}) = X$ for all $0 \neq \mathcal{F} \subseteq \mathcal{E}$.

Construct the moduli space of torsion free sheaves on X using GIT:

- Fix rank and Chern classes: $r, c_1, ..., c_n$.
- Fix a polarization H on X and consider H-stable sheaves.

Get moduli space $\mathcal{M}_X^H(r, c_1, ..., c_n)$. Assuming $gcd(r, c_1 \cdot H^{n-1}) = 1$, the moduli space is projective.

Consider generating function of Euler characteristics

$$G_{c_1,...,c_{n-1}}(q) = \sum_{c_n} e(\mathcal{M}_X^H(r,c_1,...,c_n))q^{c_n}$$

Consider generating function of Euler characteristics

$$G_{c_1,...,c_{n-1}}(q) = \sum_{c_n} e(\mathcal{M}^H_X(r,c_1,...,c_n))q^{c_n}$$

 $\dim X = 2$: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...).

Consider generating function of Euler characteristics

$$G_{c_1,...,c_{n-1}}(q) = \sum_{c_n} e(\mathcal{M}^H_X(r,c_1,...,c_n))q^{c_n}$$

<u>dim X = 2</u>: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...). E.g. X a surface, r = 1:

Consider generating function of Euler characteristics

$$G_{c_1,...,c_{n-1}}(q) = \sum_{c_n} e(\mathcal{M}^H_X(r,c_1,...,c_n))q^{c_n}$$

<u>dim X = 2</u>: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...). E.g. X a surface, r = 1: If $H^1(\mathcal{O}_X) = 0$ then $\mathcal{M}_X^H(1, c_1, c_2) = \text{Hilb}^k(X)$ for $k = k(c_1, c_2)$:

Consider generating function of Euler characteristics

$$G_{c_1,...,c_{n-1}}(q) = \sum_{c_n} e(\mathcal{M}^H_X(r,c_1,...,c_n))q^{c_n}$$

<u>dim X = 2</u>: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...). E.g. X a surface, r = 1: If $H^1(\mathcal{O}_X) = 0$ then $\mathcal{M}_X^H(1, c_1, c_2) = \text{Hilb}^k(X)$ for $k = k(c_1, c_2)$: Göttsche (1990)

$$G_0(q) = \prod_{k>0} \frac{1}{(1-q^k)^{e(X)}} = q^{e(X)/24} \eta(q)^{-e(X)}.$$

Consider generating function of Euler characteristics

$$G_{c_1,...,c_{n-1}}(q) = \sum_{c_n} e(\mathcal{M}^H_X(r,c_1,...,c_n))q^{c_n}$$

<u>dim X = 2</u>: we see relations to (quasi) modular forms/theta type series, S-duality conjecture from physics (Vafa-Witten, Manschot, Toda, G-Jiang-Kool,...). E.g. X a surface, r = 1: If $H^1(\mathcal{O}_X) = 0$ then $\mathcal{M}_X^H(1, c_1, c_2) = \text{Hilb}^k(X)$ for $k = k(c_1, c_2)$: Göttsche (1990)

$$G_0(q) = \prod_{k>0} \frac{1}{(1-q^k)^{e(X)}} = q^{e(X)/24} \eta(q)^{-e(X)}.$$

X 3-fold, r = 1,

X 3-fold, r = 1, If $H^1(\mathcal{O}_X) = 0$ then $\mathcal{M}_X^H(1, c_1, c_2, c_3) = \text{Hilb}_{\beta,k}(X)$ for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_2(X, \mathbb{Z})$ determined by c_1, c_2, c_3 .

X 3-fold,
$$r = 1$$
,
If $H^1(\mathcal{O}_X) = 0$ then $\mathcal{M}^H_X(1, c_1, c_2, c_3) = \text{Hilb}_{\beta,k}(X)$
for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_2(X, \mathbb{Z})$ determined by c_1, c_2, c_3 .
 $c_1 = c_2 = 0$: Cheah (1996)

$$G_{0,0}(q)=M(q)^{e(X)},$$

where

$$M(q) = \sum_{\pi} q^{|\pi|} = \prod_{k>0} rac{1}{(1-q^k)^k}$$
 McMahon function.

X 3-fold,
$$r = 1$$
,
If $H^1(\mathcal{O}_X) = 0$ then $\mathcal{M}^H_X(1, c_1, c_2, c_3) = \text{Hilb}_{\beta,k}(X)$
for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_2(X, \mathbb{Z})$ determined by c_1, c_2, c_3 .
 $c_1 = c_2 = 0$: Cheah (1996)

$$G_{0,0}(q)=M(q)^{e(X)},$$

where

$$M(q) = \sum_{\pi} q^{|\pi|} = \prod_{k>0} rac{1}{(1-q^k)^k}$$
 McMahon function.

When X is toric the problem is reduced to counting the number of e(X)-tuples of 3D partitions.

X 3-fold,
$$r = 1$$
,
If $H^1(\mathcal{O}_X) = 0$ then $\mathcal{M}^H_X(1, c_1, c_2, c_3) = \text{Hilb}_{\beta,k}(X)$
for $k \in \mathbb{Z}_{\geq 0}, \beta \in H_2(X, \mathbb{Z})$ determined by c_1, c_2, c_3 .
 $c_1 = c_2 = 0$: Cheah (1996)

$$G_{0,0}(q)=M(q)^{e(X)},$$

where

$$M(q) = \sum_{\pi} q^{|\pi|} = \prod_{k>0} rac{1}{(1-q^k)^k}$$
 McMahon function.

When X is toric the problem is reduced to counting the number of e(X)-tuples of 3D partitions.

Reflexive hulls

For torsion free sheaf \mathcal{E} define $\mathcal{E}^* = \mathcal{H}om(\mathcal{E}, \mathcal{O}_X)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ and \mathcal{E}^{**} is called <u>reflexive hull</u> of \mathcal{E} .

For torsion free sheaf \mathcal{E} define $\mathcal{E}^* = \mathcal{H}om(\mathcal{E}, \mathcal{O}_X)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ and \mathcal{E}^{**} is called <u>reflexive hull</u> of \mathcal{E} . Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ is an isomorphism are called <u>reflexive</u>. For torsion free sheaf \mathcal{E} define $\mathcal{E}^* = \mathcal{H}om(\mathcal{E}, \mathcal{O}_X)$. Then $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ and \mathcal{E}^{**} is called <u>reflexive hull</u> of \mathcal{E} . Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ is an isomorphism are called <u>reflexive</u>. Reflexive hulls are reflexive.

Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ is an isomorphism are called <u>reflexive</u>.

Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves.

Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ is an isomorphism are called $\underline{reflexive}.$

Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves. Reflexive sheaves are locally free outside finite number of points (singularities).

Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ is an isomorphism are called $\underline{reflexive}.$

Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves. Reflexive sheaves are locally free outside finite number of points (singularities).

Moduli of reflexive sheaves (non-compact!): $\mathcal{N}_X^H(r, c_1, c_2, c_3)$.

Torsion free sheaves for which $\mathcal{E} \hookrightarrow \mathcal{E}^{**}$ is an isomorphism are called $\underline{reflexive}.$

Reflexive hulls are reflexive. Reflexive sheaves are much easier than torsion free sheaves. Reflexive sheaves are locally free outside finite number of points (singularities).

Moduli of reflexive sheaves (non-compact!): $\mathcal{N}_X^H(r, c_1, c_2, c_3)$. There exists a constructible map

$$()^{**}: \mathcal{M}_X^H(r, c_1, c_2, c_3) \to \coprod_{c'_2, c'_3} \mathcal{N}_X^H(r, c_1, c'_2, c'_3).$$

fibre over R is

$$Quot(R, c_2'', c_3'') := \{R \to Q \to 0 \mid c_2(Q) = c_2'', \ c_3(Q) = c_3''\}.$$

<u>Idea</u>: When X toric with torus T compute $e(\mathcal{M}_X^H(r, c_1, c_2, c_3))$ from:

$$e(\mathcal{N}^{H}(r, c_{1}, c_{2}', c_{3}')^{T}), e(Quot(R, c_{2}'', c_{3}'')^{T}).$$

<u>Idea</u>: When X toric with torus T compute $e(\mathcal{M}_X^H(r, c_1, c_2, c_3))$ from:

$$e(\mathcal{N}^{H}(r, c_{1}, c_{2}', c_{3}')^{T}), e(Quot(R, c_{2}'', c_{3}'')^{T}).$$

G-Kool (2013) Rank 2

For X nonsingular toric threefold $\mathcal{N}_X^H(2, c_1, c'_2, c'_3)^T$ can be described explicitly. It is a union of configuration spaces of distinct points on \mathbb{P}^1 .

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1).

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1). Type 1 are configuration space of 4 distinct points on \mathbb{P}^1 modulo the action of $SL_2(\mathbb{C})$, whereas types 2 and 3 are isolated.

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1). Type 1 are configuration space of 4 distinct points on \mathbb{P}^1 modulo the action of $SL_2(\mathbb{C})$, whereas types 2 and 3 are isolated.

G-Kool (2013)

For any c_1, c_2 , there are explicit subsets $D_i(c_1, c_2) \subset \mathbb{Z}^4_{\geq 0}$, i = 1, 2, 3 defined by explicit polynomial equalities and inequalities, such that

$$G_{2,c_1,c_2}^{refl}(q) = \sum_{\mathbf{v} \in D_1(c_1,c_2)} -q^{C_1(\mathbf{v})} + \sum_{\mathbf{v} \in D_2(c_1,c_2)} 6q^{C_2(\mathbf{v})} + \sum_{\mathbf{v} \in D_3(c_1,c_2)} 4q^{C_3(\mathbf{v})}$$
$$C_1(\mathbf{v}) = \sum_{1 \le i < j < k \le 4} v_i v_j v_k, C_2(\mathbf{v}) = (v_1 + v_2)v_3v_4, C_3(\mathbf{v}) = v_1v_2v_3.$$

We distinguish three types of T-fixed components: type 1 (generic) and types 2 and 3 (degenerations of type 1). Type 1 are configuration space of 4 distinct points on \mathbb{P}^1 modulo the action of $SL_2(\mathbb{C})$, whereas types 2 and 3 are isolated.

G-Kool (2013)

For any c_1, c_2 , there are explicit subsets $D_i(c_1, c_2) \subset \mathbb{Z}^4_{\geq 0}$, i = 1, 2, 3 defined by explicit polynomial equalities and inequalities, such that

$$G_{2,c_1,c_2}^{refl}(q) = \sum_{\mathbf{v}\in D_1(c_1,c_2)} -q^{C_1(\mathbf{v})} + \sum_{\mathbf{v}\in D_2(c_1,c_2)} 6q^{C_2(\mathbf{v})} + \sum_{\mathbf{v}\in D_3(c_1,c_2)} 4q^{C_3(\mathbf{v})}$$
$$C_1(\mathbf{v}) = \sum_{1\leq i< j< k\leq 4} v_i v_j v_k, C_2(\mathbf{v}) = (v_1 + v_2)v_3v_4, C_3(\mathbf{v}) = v_1v_2v_3.$$

E.g. For $c_1 = -1$ and $c_2 = 1, 2, 3, \ldots$

$$G_{2,-1,c_2}^{\text{refl}}(q) = 4q, 24q^4, -4q^7 + 36q^9, \dots$$

Polynomiality and upper bound

 $G_{2,c_1,c_2}^{refl}(q)$ is a polynomial for any smooth projective 3-fold.

Polynomiality and upper bound

 $G_{2,c_1,c_2}^{refl}(q)$ is a polynomial for any smooth projective 3-fold. It can be seen that $c_3 \in H^6(X, \mathbb{Z}) \cong \mathbb{Z}$ for a rank 2 stable reflexive sheaf is bounded by 0 from below and a constant from above. Finding the constant is a hard problem in general.

Polynomiality and upper bound

 $G_{2,c_1,c_2}^{refl}(q)$ is a polynomial for any smooth projective 3-fold. It can be seen that $c_3 \in H^6(X, \mathbb{Z}) \cong \mathbb{Z}$ for a rank 2 stable reflexive sheaf is bounded by 0 from below and a constant from above. Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for *T*-equivariant)

R rank 2 stable reflexive sheaf on $X = \mathbb{P}^3$ with Chern classes c_1, c_2, c_3 .

()
$$c_3 = c_1 c_2 \mod 2$$
, if $c_1 \in \{-1, 0\}$, then $c_2 > 0$,

2 if
$$c_1 = -1$$
, then $0 \le c_3 \le c_2^2$, and if $c_1 = 0$, then $0 \le c_3 \le c_2^2 - c_2 + 2$. Both upper bounds are sharp.

 $G_{2,c_1,c_2}^{refl}(q)$ is a polynomial for any smooth projective 3-fold. It can be seen that $c_3 \in H^6(X, \mathbb{Z}) \cong \mathbb{Z}$ for a rank 2 stable reflexive sheaf is bounded by 0 from below and a constant from above. Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for *T*-equivariant)

R rank 2 stable reflexive sheaf on $X = \mathbb{P}^3$ with Chern classes c_1, c_2, c_3 .

1
$$c_3 = c_1 c_2 \mod 2$$
, if $c_1 \in \{-1, 0\}$, then $c_2 > 0$,

G-Kool

For
$$c_2 > 1$$
, $e(\mathcal{N}_{\mathbb{P}^3}(2, -1, c_2, c_2^2)) = 12c_2$.

Assumption for most of the talk

X toric 3-fold, H polarization, $r = 2, c_1$ s.t. $gcd(2, c_1 \cdot H) = 1$.
Assumption for most of the talk

X toric 3-fold, H polarization, $r = 2, c_1$ s.t. $gcd(2, c_1 \cdot H) = 1$. Assumption: c_2 is chosen such that:

- c₂ · H minimal for which there exist rank 2 stable sheaves on X with Chern classes c₁, c₂.
 (By Bogomolov's inequality 4c₂ · H ≥ c₁² · H)
- 2 All *T*-fixed rank 2 stable reflexive sheaves on *X* with Chern classes c_1, c_2 are isolated.

Assumption for most of the talk

X toric 3-fold, H polarization, $r = 2, c_1$ s.t. $gcd(2, c_1 \cdot H) = 1$. Assumption: c_2 is chosen such that:

- c₂ · H minimal for which there exist rank 2 stable sheaves on X with Chern classes c₁, c₂.
 (By Bogomolov's inequality 4c₂ · H ≥ c₁² · H)
- All *T*-fixed rank 2 stable reflexive sheaves on *X* with Chern classes c₁, c₂ are isolated.

Many examples for this <u>minimal</u> c_2 . Possibly $(1) \Rightarrow (2)$? E.g. $X = \mathbb{P}^3$, $c_1 = -1$, $c_2 = 1$.

Assumption for most of the talk

X toric 3-fold, H polarization, $r = 2, c_1$ s.t. $gcd(2, c_1 \cdot H) = 1$. Assumption: c_2 is chosen such that:

- c₂ · H minimal for which there exist rank 2 stable sheaves on X with Chern classes c₁, c₂.
 (By Bogomolov's inequality 4c₂ · H ≥ c₁² · H)
- All *T*-fixed rank 2 stable reflexive sheaves on *X* with Chern classes c₁, c₂ are isolated.

Many examples for this <u>minimal</u> c_2 . Possibly $(1) \Rightarrow (2)$? E.g. $X = \mathbb{P}^3$, $c_1 = -1$, $c_2 = 1$.

Consequences:

- If $\mathcal{E} \in \mathcal{M}_X^H(2, c_1, c_2, c_3)$ then the quotients $\mathcal{E}^{**}/\mathcal{E}$ are 0-dimensional.
- *M*^H_X(2, c₁, c₂, c₃)^T is a finite disjoint union of *Quot*(*R*, *s* − c₃)^T where *R* is reflexive and *s* is the length of singularity of *R* (i.e. c₂["] = 0, c₃["] = *s* − c₃).
- We have universal families.

<u>Idea</u>: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_X^H(2, c_1, c_2, c_3)^T$.

<u>Idea</u>: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_X^H(2, c_1, c_2, c_3)^T$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at <u>at most one</u> T-fixed point of X.

<u>Idea</u>: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_X^H(2, c_1, c_2, c_3)^T$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at <u>at most one</u> T-fixed point of X.

Suppose the length of the singularity of this R is s.

<u>Idea</u>: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_X^H(2, c_1, c_2, c_3)^T$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at <u>at most one</u> T-fixed point of X.

Suppose the length of the singularity of this *R* is *s*. Components of $Quot(R, s - c_3)^T$ are isomorphic to

 $\mathbb{P}^1\times \cdots \times \mathbb{P}^1$

and they are indexed by certain new configurations of 3D partitions.

<u>Idea</u>: Consider reflexive hulls of $\mathcal{E} \in \mathcal{M}_X^H(2, c_1, c_2, c_3)^T$. There are finitely many such reflexive hulls R, and they can be explicitly computed. They are singular at <u>at most one</u> T-fixed point of X.

Suppose the length of the singularity of this *R* is *s*. Components of $Quot(R, s - c_3)^T$ are isomorphic to

 $\mathbb{P}^1\times \cdots \times \mathbb{P}^1$

and they are indexed by certain new configurations of 3D partitions.

G-Kool-Young

If c_1, c_2 satisfy the assumption, then $G_{2,c_1,c_2}(q)$ is given by $M(q)^{2e(X)}$ times

$$\sum_{R \text{ locally free}} 1 + \sum_{R \text{ singular}} \prod_{i=1}^{v_1(R)} \prod_{j=1}^{v_2(R)} \prod_{k=1}^{v_3(R)} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}.$$

The integers $v_1(R)$, $v_2(R)$, $v_3(R) > 0$ measure the length of the singularity of R.

The integers $v_1(R)$, $v_2(R)$, $v_3(R) > 0$ measure the length of the singularity of R.

Corollary,
$$X = \mathbb{P}^3$$
, Rank 2
 $G_{-1,1}(q) = 4(q+q^{-1})M(q^{-2})^8.$
 $G_{-1,2}(q) = 12\left(\frac{2q^{-4}-q^{-2}+1-4q^2+3q^4+5q^8}{(1-q^2)^2}\right)M(q^{-2})^8.$

The integers $v_1(R)$, $v_2(R)$, $v_3(R) > 0$ measure the length of the singularity of R.

Corollary,
$$X = \mathbb{P}^3$$
, Rank 2
 $G_{-1,1}(q) = 4(q+q^{-1})M(q^{-2})^8$.
 $G_{-1,2}(q) = 12\left(\frac{2q^{-4}-q^{-2}+1-4q^2+3q^4+5q^8}{(1-q^2)^2}\right)M(q^{-2})^8$.

For $c_2 = 2$ the quotients are no longer 0-dimensional. For $c_2 = 3$ the *T*-fixed reflexive hulls are no longer isolated.

The moduli spaces such as $\mathcal{M} = \mathcal{M}(X, r, c_{\bullet})$ are usually highly singular and have no fundamental class.

The moduli spaces such as $\mathcal{M} = \mathcal{M}(X, r, c_{\bullet})$ are usually highly singular and have no fundamental class.

However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.

The moduli spaces such as $\mathcal{M} = \mathcal{M}(X, r, c_{\bullet})$ are usually highly singular and have no fundamental class.

However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.

For singular schemes \mathcal{M} , the cotangent bundle is replaced by the cotangent complex $\mathcal{L}^{\bullet}_{\mathcal{M}}$ with $h^0(\mathcal{L}^{\bullet}_{\mathcal{M}}) = \Omega_{\mathcal{M}}$ and $h^i(\mathcal{L}^{\bullet}_{\mathcal{M}}) = 0$ for i > 0.

A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet} = [E^{-1} \rightarrow E^0]$ of vector bundles on \mathcal{M}

The moduli spaces such as $\mathcal{M} = \mathcal{M}(X, r, c_{\bullet})$ are usually highly singular and have no fundamental class.

However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.

For singular schemes \mathcal{M} , the cotangent bundle is replaced by the cotangent complex $\mathcal{L}^{\bullet}_{\mathcal{M}}$ with $h^0(\mathcal{L}^{\bullet}_{\mathcal{M}}) = \Omega_{\mathcal{M}}$ and $h^i(\mathcal{L}^{\bullet}_{\mathcal{M}}) = 0$ for i > 0.

A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet} = [E^{-1} \rightarrow E^0]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi : E^{\bullet} \rightarrow L^{\bullet}\mathcal{M}$ such that

The moduli spaces such as $\mathcal{M} = \mathcal{M}(X, r, c_{\bullet})$ are usually highly singular and have no fundamental class.

However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.

For singular schemes \mathcal{M} , the cotangent bundle is replaced by the cotangent complex $\mathcal{L}^{\bullet}_{\mathcal{M}}$ with $h^0(\mathcal{L}^{\bullet}_{\mathcal{M}}) = \Omega_{\mathcal{M}}$ and $h^i(\mathcal{L}^{\bullet}_{\mathcal{M}}) = 0$ for i > 0.

A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet} = [E^{-1} \to E^0]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi : E^{\bullet} \to L^{\bullet}\mathcal{M}$ such that

 $h^0(\phi)$ isomorphism and $h^{-1}(\phi)$ surjective.

The moduli spaces such as $\mathcal{M} = \mathcal{M}(X, r, c_{\bullet})$ are usually highly singular and have no fundamental class.

However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.

For singular schemes \mathcal{M} , the cotangent bundle is replaced by the cotangent complex $\mathcal{L}^{\bullet}_{\mathcal{M}}$ with $h^0(\mathcal{L}^{\bullet}_{\mathcal{M}}) = \Omega_{\mathcal{M}}$ and $h^i(\mathcal{L}^{\bullet}_{\mathcal{M}}) = 0$ for i > 0.

A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet} = [E^{-1} \rightarrow E^0]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi : E^{\bullet} \rightarrow L^{\bullet}\mathcal{M}$ such that

 $h^0(\phi)$ isomorphism and $h^{-1}(\phi)$ surjective.

If \mathcal{M} is equipped with a perfect obstruction theory then one can define a cycle $[\mathcal{M}]^{vir} \in A_d(\mathcal{M})$ for $d = \mathrm{rk}E^0 - \mathrm{rk}E^{-1}$ called the <u>virtual fundamental class</u>.

The moduli spaces such as $\mathcal{M} = \mathcal{M}(X, r, c_{\bullet})$ are usually highly singular and have no fundamental class.

However, using deformation/obstruction theory of the moduli space one may be able to construct a well-behaved virtual fundamental class.

For singular schemes \mathcal{M} , the cotangent bundle is replaced by the cotangent complex $\mathcal{L}^{\bullet}_{\mathcal{M}}$ with $h^0(\mathcal{L}^{\bullet}_{\mathcal{M}}) = \Omega_{\mathcal{M}}$ and $h^i(\mathcal{L}^{\bullet}_{\mathcal{M}}) = 0$ for i > 0.

A perfect obstruction theory on \mathcal{M} consists of a 2-term complex $E^{\bullet} = [E^{-1} \rightarrow E^0]$ of vector bundles on \mathcal{M} together with a morphism (in the derived category) $\phi : E^{\bullet} \rightarrow L^{\bullet}\mathcal{M}$ such that

 $h^0(\phi)$ isomorphism and $h^{-1}(\phi)$ surjective.

If \mathcal{M} is equipped with a perfect obstruction theory then one can define a cycle $[\mathcal{M}]^{vir} \in A_d(\mathcal{M})$ for $d = \mathrm{rk}E^0 - \mathrm{rk}E^{-1}$ called the <u>virtual fundamental class</u>.

X nonsingular threefold $\beta \in H_2(X,\mathbb{Z})$.

X nonsingular threefold $\beta \in H_2(X, \mathbb{Z})$. Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against Hilb_{β,n}(X).

X nonsingular threefold $\beta \in H_2(X, \mathbb{Z})$. Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\operatorname{Hilb}_{\beta,n}(X)$. Determinant gives the natural morphism $\mathcal{M}^H_X(1, c_1, c_2, c_3) \to \operatorname{Pic}(X)$.

X nonsingular threefold $\beta \in H_2(X, \mathbb{Z})$. Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against Hilb_{β,n}(X).

Determinant gives the natural morphism

 $\mathcal{M}_X^H(1, c_1, c_2, c_3) \rightarrow \mathsf{Pic}(X).$

Fixing determinants to be \mathcal{O} gives the closed subscheme $\operatorname{Hilb}_{\beta,n} \subset \mathcal{M}_X^H(1,0,c_2,c_3).$

The perfect obstruction theory on $\operatorname{Hilb}_{\beta,n}$ is obtained by removing the ob. theory of $\operatorname{Pic}(X)$ (governed by $\operatorname{Ext}^i(\mathcal{O}, \mathcal{O}) = H^i(\mathcal{O}_X)$) from the ob. theory of \mathcal{M} (governed $\operatorname{Ext}^i(\mathcal{E}, \mathcal{E})$) i.e. resulting in trace-free Ext groups $\operatorname{Ext}^i(\mathcal{E}, \mathcal{E})_0$. X nonsingular threefold $\beta \in H_2(X, \mathbb{Z})$. Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\mathrm{Hilb}_{\beta,n}(X)$. Determinant gives the natural morphism

 $\mathcal{M}_X^H(1, c_1, c_2, c_3) \rightarrow \operatorname{Pic}(X).$

Fixing determinants to be \mathcal{O} gives the closed subscheme $\operatorname{Hilb}_{\beta,n} \subset \mathcal{M}_X^H(1,0,c_2,c_3).$

The perfect obstruction theory on $\operatorname{Hilb}_{\beta,n}$ is obtained by removing the ob. theory of $\operatorname{Pic}(X)$ (governed by $\operatorname{Ext}^{i}(\mathcal{O}, \mathcal{O}) = H^{i}(\mathcal{O}_{X})$) from the ob. theory of \mathcal{M} (governed $\operatorname{Ext}^{i}(\mathcal{E}, \mathcal{E})$) i.e. resulting in trace-free Ext groups $\operatorname{Ext}^{i}(\mathcal{E}, \mathcal{E})_{0}$.

K-group fiber of the MNOP ob. theory

$$\chi(\mathcal{E},\mathcal{E})_0 = \chi(\mathcal{E},\mathcal{E}) - \chi(\mathcal{O}_X)$$

at any moduli point $\mathcal{E} \in \mathcal{M}$.

X nonsingular threefold $\beta \in H_2(X, \mathbb{Z})$. Rank 1 Donaldson-Thomas invariant (MNOP) are defined by virtual integration against $\mathrm{Hilb}_{\beta,n}(X)$. Determinant gives the natural morphism

 $\mathcal{M}_X^H(1, c_1, c_2, c_3) \rightarrow \operatorname{Pic}(X).$

Fixing determinants to be \mathcal{O} gives the closed subscheme $\operatorname{Hilb}_{\beta,n} \subset \mathcal{M}_X^H(1,0,c_2,c_3).$

The perfect obstruction theory on $\operatorname{Hilb}_{\beta,n}$ is obtained by removing the ob. theory of $\operatorname{Pic}(X)$ (governed by $\operatorname{Ext}^{i}(\mathcal{O}, \mathcal{O}) = H^{i}(\mathcal{O}_{X})$) from the ob. theory of \mathcal{M} (governed $\operatorname{Ext}^{i}(\mathcal{E}, \mathcal{E})$) i.e. resulting in trace-free Ext groups $\operatorname{Ext}^{i}(\mathcal{E}, \mathcal{E})_{0}$.

K-group fiber of the MNOP ob. theory

$$\chi(\mathcal{E},\mathcal{E})_0 = \chi(\mathcal{E},\mathcal{E}) - \chi(\mathcal{O}_X)$$

at any moduli point $\mathcal{E} \in \mathcal{M}$.

Fixing reflexive hulls to be R, we identify a closed subscheme $Quot(R)_{\beta,n} \subset \mathcal{M}_X^H(2, c_1, c_2, c_3).$

Fixing reflexive hulls to be R, we identify a closed subscheme $Quot(R)_{\beta,n} \subset \mathcal{M}_X^H(2, c_1, c_2, c_3)$. R is always stable, so it belongs to a moduli space \mathcal{N} . Fixing reflexive hulls to be R, we identify a closed subscheme $Quot(R)_{\beta,n} \subset \mathcal{M}_X^H(2, c_1, c_2, c_3)$. R is always stable, so it belongs to a moduli space \mathcal{N} . <u>Question</u>: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on $Quot(R)_{\beta,n}$? Fixing reflexive hulls to be R, we identify a closed subscheme $Quot(R)_{\beta,n} \subset \mathcal{M}_X^H(2, c_1, c_2, c_3)$. R is always stable, so it belongs to a moduli space \mathcal{N} . <u>Question</u>: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on $Quot(R)_{\beta,n}$?

We do this in the level of T-fixed sets when X is a toric threefold.

Fixing reflexive hulls to be R, we identify a closed subscheme $Quot(R)_{\beta,n} \subset \mathcal{M}_X^H(2, c_1, c_2, c_3)$. R is always stable, so it belongs to a moduli space \mathcal{N} .

Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on $Quot(R)_{\beta,n}$?

We do this in the level of *T*-fixed sets when *X* is a toric threefold. If $\mathcal{E} \in Quot(R)_{\beta,n}^{T} \subset \mathcal{M}^{T}$, and $R \in \mathcal{N}^{T}$ then, we define a perfect obstruction theory on \mathcal{M}^{T} whose K-group fiber is given by $\chi(\mathcal{E}, \mathcal{E}) - \chi(R, R)$. Fixing reflexive hulls to be R, we identify a closed subscheme $Quot(R)_{\beta,n} \subset \mathcal{M}_X^H(2, c_1, c_2, c_3).$

R is always stable, so it belongs to a moduli space \mathcal{N} .

Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on $Quot(R)_{\beta,n}$?

We do this in the level of *T*-fixed sets when *X* is a toric threefold. If $\mathcal{E} \in Quot(R)_{\beta,n}^{T} \subset \mathcal{M}^{T}$, and $R \in \mathcal{N}^{T}$ then, we define a perfect obstruction theory on \mathcal{M}^{T} whose K-group fiber is given by $\chi(\mathcal{E}, \mathcal{E}) - \chi(R, R)$.

This is a symmetric obstruction theory on $\mathcal{M}^{\mathcal{T}}$ if X is a CY3.

Fixing reflexive hulls to be R, we identify a closed subscheme $Quot(R)_{\beta,n} \subset \mathcal{M}_X^H(2, c_1, c_2, c_3).$

R is always stable, so it belongs to a moduli space \mathcal{N} .

Question: Mimicking rank 1 case, can we remove the deformation obstruction of $R \in \mathcal{N}$ from \mathcal{M} to define perfect ob. theory on $Quot(R)_{\beta,n}$?

We do this in the level of *T*-fixed sets when *X* is a toric threefold. If $\mathcal{E} \in Quot(R)_{\beta,n}^{T} \subset \mathcal{M}^{T}$, and $R \in \mathcal{N}^{T}$ then, we define a perfect obstruction theory on \mathcal{M}^{T} whose K-group fiber is given by $\chi(\mathcal{E}, \mathcal{E}) - \chi(R, R)$.

This is a symmetric obstruction theory on \mathcal{M}^T if X is a CY3. Under the assumption, we have $\beta = 0$, and the obstruction theory is symmetric for any X. If X is equipped with a torus action (e.g. if X toric)

If X is equipped with a torus action (e.g. if X toric) Virtual localization formula (Graber-Pandharipande):

$$[\mathcal{M}]^{\textit{vir}} = \iota_* \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}}} \frac{[\mathcal{C}]^{\textit{vir}}}{e(\mathcal{N}_{\mathcal{C}}^{\textit{vir}})} \in A_*^{\mathsf{T}}(\mathcal{M})_{\textit{loc}}.$$

If X is equipped with a torus action (e.g. if X toric) Virtual localization formula (Graber-Pandharipande):

$$[\mathcal{M}]^{\textit{vir}} = \iota_* \sum_{\mathcal{C} \subset \mathcal{M}^T} \frac{[\mathcal{C}]^{\textit{vir}}}{e(\mathcal{N}_{\mathcal{C}}^{\textit{vir}})} \in \mathcal{A}_*^T(\mathcal{M})_{\textit{loc}}.$$

Topological vertex is an algorithm for evaluating GW/DT/PT invariants of toric threefolds.

If X is equipped with a torus action (e.g. if X toric) Virtual localization formula (Graber-Pandharipande):

$$[\mathcal{M}]^{\textit{vir}} = \iota_* \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}}} \frac{[\mathcal{C}]^{\textit{vir}}}{e(\mathcal{N}_{\mathcal{C}}^{\textit{vir}})} \in \mathcal{A}^{\mathsf{T}}_*(\mathcal{M})_{\textit{loc}}.$$

Topological vertex is an algorithm for evaluating ${\rm GW}/{\rm DT}/{\rm PT}$ invariants of toric threefolds.

The vertex theory of Rank 1 DT invariants and the stable pair invariants were developed by MNOP and PT.

If X is equipped with a torus action (e.g. if X toric) Virtual localization formula (Graber-Pandharipande):

$$[\mathcal{M}]^{\textit{vir}} = \iota_* \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}}} \frac{[\mathcal{C}]^{\textit{vir}}}{e(\mathcal{N}_{\mathcal{C}}^{\textit{vir}})} \in \mathcal{A}^{\mathsf{T}}_*(\mathcal{M})_{\textit{loc}}.$$

Topological vertex is an algorithm for evaluating GW/DT/PT invariants of toric threefolds.

The vertex theory of Rank 1 DT invariants and the stable pair invariants were developed by MNOP and PT.

These vertex theories were used to prove the GW/MNOP/PT correspondence in the case of toric varieties.
If X is equipped with a torus action (e.g. if X toric) Virtual localization formula (Graber-Pandharipande):

$$[\mathcal{M}]^{\textit{vir}} = \iota_* \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}}} \frac{[\mathcal{C}]^{\textit{vir}}}{e(\mathcal{N}_{\mathcal{C}}^{\textit{vir}})} \in \mathcal{A}_*^{\mathsf{T}}(\mathcal{M})_{\textit{loc}}.$$

Topological vertex is an algorithm for evaluating GW/DT/PT invariants of toric threefolds.

The vertex theory of Rank 1 DT invariants and the stable pair invariants were developed by MNOP and PT.

These vertex theories were used to prove the GW/MNOP/PT correspondence in the case of toric varieties.

Rank 2 Donaldson-Thomas vertex

X toric 3-fold, $H^0(K_X^*) \neq 0$, and $H, r = 2, c_1, c_2$ satisfying assumption.

Rank 2 Donaldson-Thomas vertex

X toric 3-fold, $H^0(K_X^*) \neq 0$, and $H, r = 2, c_1, c_2$ satisfying assumption. $\mathcal{M}_X^H(2, c_1, c_2, c_3)$ carries a perfect obstruction theory E^{\bullet} .

$$h^i(\mathcal{E}^{\bulletee})_{\mathcal{E}}=\mathit{Ext}^{i+1}(\mathcal{E},\mathcal{E}) \quad i=0,1.$$

$$h^i(\mathcal{E}^{\bullet\vee})_{\mathcal{E}} = Ext^{i+1}(\mathcal{E},\mathcal{E}) \quad i=0,1.$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$[\mathcal{M}]^{vir} = \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}} \text{ components}} \iota_* \frac{e(\mathcal{T}_{\mathcal{C}})}{e(E^{\bullet \vee}|_{\mathcal{C}})} \cap [\mathcal{C}].$$

$$h^i(E^{\bullet\vee})_{\mathcal{E}} = Ext^{i+1}(\mathcal{E},\mathcal{E}) \quad i=0,1.$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$[\mathcal{M}]^{vir} = \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}} \text{ components}} \iota_* \frac{e(\mathcal{T}_{\mathcal{C}})}{e(\mathcal{E}^{\bullet \vee}|_{\mathcal{C}})} \cap [\mathcal{C}].$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha} = \mathcal{E}|_{U_{\alpha}}, R_{\alpha} = R|_{U_{\alpha}}$ where $R = \mathcal{E}^{**}$.

$$h^i(\mathcal{E}^{\bullet\vee})_{\mathcal{E}} = Ext^{i+1}(\mathcal{E},\mathcal{E}) \quad i=0,1.$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$[\mathcal{M}]^{vir} = \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}} \text{ components}} \iota_* \frac{e(\mathcal{T}_{\mathcal{C}})}{e(\mathcal{E}^{\bullet \vee}|_{\mathcal{C}})} \cap [\mathcal{C}].$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha} = \mathcal{E}|_{U_{\alpha}}, R_{\alpha} = R|_{U_{\alpha}}$ where $R = \mathcal{E}^{**}$. For $n \in \mathbb{Z}_{\geq 0}$, let $C_{\alpha} \subset \text{Quot}(R_{\alpha}, n)^{T}$ containing \mathcal{E}_{α} .

$$h^i(\mathcal{E}^{\bullet\vee})_{\mathcal{E}} = Ext^{i+1}(\mathcal{E},\mathcal{E}) \quad i=0,1.$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$[\mathcal{M}]^{vir} = \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}} \text{ components}} \iota_* \frac{e(\mathcal{T}_{\mathcal{C}})}{e(\mathcal{E}^{\bullet \vee}|_{\mathcal{C}})} \cap [\mathcal{C}].$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha} = \mathcal{E}|_{U_{\alpha}}, R_{\alpha} = R|_{U_{\alpha}}$ where $R = \mathcal{E}^{**}$. For $n \in \mathbb{Z}_{\geq 0}$, let $C_{\alpha} \subset \text{Quot}(R_{\alpha}, n)^T$ containing \mathcal{E}_{α} . For any polynomial P let $\overline{P}(t_1, t_2, t_3) := P(t_1^{-1}, t_2^{-1}, t_3^{-1})$.

$$h^i(\mathcal{E}^{\bullet\vee})_{\mathcal{E}} = Ext^{i+1}(\mathcal{E},\mathcal{E}) \quad i=0,1.$$

Analogous to MNOP and PT we set up a vertex/leg formalism for the localized virtual cycle

$$[\mathcal{M}]^{vir} = \sum_{\mathcal{C} \subset \mathcal{M}^{\mathsf{T}} \text{ components}} \iota_* \frac{e(\mathcal{T}_{\mathcal{C}})}{e(\mathcal{E}^{\bullet \vee}|_{\mathcal{C}})} \cap [\mathcal{C}].$$

For each fixed point $\alpha \in U_{\alpha} \subset X$ let $\mathcal{E}_{\alpha} = \mathcal{E}|_{U_{\alpha}}, R_{\alpha} = R|_{U_{\alpha}}$ where $R = \mathcal{E}^{**}$. For $n \in \mathbb{Z}_{\geq 0}$, let $C_{\alpha} \subset \text{Quot}(R_{\alpha}, n)^T$ containing \mathcal{E}_{α} . For any polynomial P let $\overline{P}(t_1, t_2, t_3) := P(t_1^{-1}, t_2^{-1}, t_3^{-1})$.

Define

$$V_{\alpha} := \operatorname{tr}_{\chi(R_{\alpha},R_{\alpha})-\chi(\mathcal{E}_{\alpha},\mathcal{E}_{\alpha})} = \frac{P(R_{\alpha})\overline{P}(R_{\alpha}) - P(\mathcal{E}_{\alpha})\overline{P}(\mathcal{E}_{\alpha})}{(1-t_{1})(1-t_{2})(1-t_{3})}$$

where P is the Poincaré polynomial.

Define

$$V_{\alpha} := \operatorname{tr}_{\chi(R_{\alpha},R_{\alpha})-\chi(\mathcal{E}_{\alpha},\mathcal{E}_{\alpha})} = \frac{P(R_{\alpha})\overline{P}(R_{\alpha}) - P(\mathcal{E}_{\alpha})\overline{P}(\mathcal{E}_{\alpha})}{(1-t_{1})(1-t_{2})(1-t_{3})}$$

where P is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_1, t_2, t_3 with coefficients in $K(C_{\alpha})$.

Define

$$V_{\alpha} := \operatorname{tr}_{\chi(R_{\alpha},R_{\alpha})-\chi(\mathcal{E}_{\alpha},\mathcal{E}_{\alpha})} = \frac{P(R_{\alpha})\overline{P}(R_{\alpha}) - P(\mathcal{E}_{\alpha})\overline{P}(\mathcal{E}_{\alpha})}{(1-t_{1})(1-t_{2})(1-t_{3})}$$

where *P* is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_1, t_2, t_3 with coefficients in $K(C_{\alpha})$. Define

$$w(C_{\alpha}) = \int_{C_{\alpha}} e(T_{C_{\alpha}}) \cdot e(-V_{\alpha}) \in \mathbb{Q}(s_1, s_2, s_3).$$

 s_i is the first Chern class of the line bundle over BT associated to the character t_i .

Define

$$V_{\alpha} := \operatorname{tr}_{\chi(R_{\alpha},R_{\alpha})-\chi(\mathcal{E}_{\alpha},\mathcal{E}_{\alpha})} = \frac{P(R_{\alpha})\overline{P}(R_{\alpha}) - P(\mathcal{E}_{\alpha})\overline{P}(\mathcal{E}_{\alpha})}{(1-t_{1})(1-t_{2})(1-t_{3})}$$

where *P* is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_1, t_2, t_3 with coefficients in $K(C_{\alpha})$. Define

$$w(C_{\alpha}) = \int_{C_{\alpha}} e(T_{C_{\alpha}}) \cdot e(-V_{\alpha}) \in \mathbb{Q}(s_1, s_2, s_3).$$

 s_i is the first Chern class of the line bundle over BT associated to the character t_i .

We define <u>rank 2 DT vertex</u> $W_{R_{\alpha}}(q) \in \mathbb{Q}[[q]](s_1, s_2, s_3)$,

Define

$$V_{\alpha} := \operatorname{tr}_{\chi(R_{\alpha},R_{\alpha})-\chi(\mathcal{E}_{\alpha},\mathcal{E}_{\alpha})} = \frac{P(R_{\alpha})\overline{P}(R_{\alpha}) - P(\mathcal{E}_{\alpha})\overline{P}(\mathcal{E}_{\alpha})}{(1-t_{1})(1-t_{2})(1-t_{3})}$$

where *P* is the Poincaré polynomial. V_{α} is a Laurent polynomial in the torus characters t_1, t_2, t_3 with coefficients in $K(C_{\alpha})$. Define

$$w(C_{\alpha}) = \int_{C_{\alpha}} e(T_{C_{\alpha}}) \cdot e(-V_{\alpha}) \in \mathbb{Q}(s_1, s_2, s_3).$$

 s_i is the first Chern class of the line bundle over BT associated to the character t_i .

We define <u>rank 2 DT vertex</u> $W_{R_{\alpha}}(q) \in \mathbb{Q}[[q]](s_1, s_2, s_3)$,

$$W_{\mathcal{R}_{\alpha}}(q) = 1 + \sum_{n} \sum_{C_{\alpha}} w(C_{\alpha})q^{n}.$$

CY3 specialization

Conjecture (G-Kool-Young)

 $W_{R_{lpha},\emptyset,\emptyset,\emptyset}(q)|_{s_{1}+s_{2}+s_{3}=0}$ is equal to $M(q)^{2}$ times

$$\begin{cases} 1 & R \text{ locally free} \\ \prod_{i=1}^{v_1(R)} \prod_{j=1}^{v_2(R)} \prod_{k=1}^{v_3(R)} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} & R \text{ singular} \end{cases}$$

Conjecture (G-Kool-Young)

 $W_{\mathcal{R}_{lpha},\emptyset,\emptyset}(q)|_{s_{1}+s_{2}+s_{3}=0}$ is equal to $M(q)^{2}$ times

$$\begin{cases} 1 & R \text{ locally free} \\ \prod_{i=1}^{v_1(R)} \prod_{j=1}^{v_2(R)} \prod_{k=1}^{v_3(R)} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} & R \text{ singular} \end{cases}$$

Evidence 1: Some direct calculations.

<u>Evidence 2</u>: Conjecture follows from analogs of two conjectures of PT by T_0 -localization,

$$T_0 = \{t \in T | t_1 t_2 t_3 = 1\}.$$

Conjecture (G-Kool-Young)

 $W_{R_lpha,\emptyset,\emptyset,\emptyset}(q)|_{s_1+s_2+s_3=0}$ is equal to $M(q)^2$ times

$$\begin{cases} 1 & R \text{ locally free} \\ \prod_{i=1}^{v_1(R)} \prod_{j=1}^{v_2(R)} \prod_{k=1}^{v_3(R)} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} & R \text{ singular} \end{cases}$$

Evidence 1: Some direct calculations.

<u>Evidence 2</u>: Conjecture follows from analogs of two conjectures of PT by T_0 -localization,

$$T_0 = \{t \in T | t_1 t_2 t_3 = 1\}.$$

One is about the smoothness of the T_0 -fixed locus, and the other is about the parity of the constant terms after the specialization $t_1t_2t_3 = 1$. Consider $\mathbb{C}^3 = \text{Spec } \mathbb{C}[x, y, z]$ with standard action $T = \mathbb{C}^{*3}$.

Localization

Consider $\mathbb{C}^3 = \operatorname{Spec} \mathbb{C}[x, y, z]$ with standard action $T = \mathbb{C}^{*3}$. Quasi-coherent sheaf \mathcal{F} on $\mathbb{C}^3 \leftrightarrow \mathbb{C}[x, y, z]$ -module $H^0(\mathcal{F})$.

Localization

Consider $\mathbb{C}^3 = \operatorname{Spec} \mathbb{C}[x, y, z]$ with standard action $T = \mathbb{C}^{*3}$. Quasi-coherent sheaf \mathcal{F} on $\mathbb{C}^3 \leftrightarrow \mathbb{C}[x, y, z]$ -module $H^0(\mathcal{F})$. T-equivariant $\mathcal{F} \leftrightarrow H^0(\mathcal{F}) = \bigoplus_{(k_1, k_2, k_3) \in \mathbb{Z}^3} F(k_1, k_2, k_3)$.

Localization

Consider $\mathbb{C}^3 = \text{Spec } \mathbb{C}[x, y, z]$ with standard action $T = \mathbb{C}^{*3}$. Quasi-coherent sheaf \mathcal{F} on $\mathbb{C}^3 \leftrightarrow \mathbb{C}[x, y, z]$ -module $H^0(\mathcal{F})$. *T*-equivariant $\mathcal{F} \leftrightarrow H^0(\mathcal{F}) = \bigoplus_{(k_1, k_2, k_3) \in \mathbb{Z}^3} F(k_1, k_2, k_3).$ Equivalent data: collection of vector spaces $\{F(k_1, k_2, k_3)\}_{(k_1, k_2, k_3) \in \mathbb{Z}^3}$ and linear maps $\chi_1(k_1, k_2, k_3) : F(k_1, k_2, k_3) \to F(k_1 + 1, k_2, k_3),$ $\chi_2(k_1, k_2, k_3) : F(k_1, k_2, k_3) \to F(k_1, k_2 + 1, k_3),$ $\chi_3(k_1, k_2, k_3) : F(k_1, k_2, k_3) \to F(k_1, k_2, k_3 + 1),$ such that $\chi_i \circ \chi_i = \chi_i \circ \chi_i$ for all $i, j, (k_1, k_2, k_3)$.

 $\mathcal{F} \ \underline{\mathsf{coherent}} \Leftrightarrow \exists \ \mathsf{finitely} \ \mathsf{many} \ \mathsf{homogeneous} \ \mathsf{generators}.$

 \mathcal{F} <u>coherent</u> $\Leftrightarrow \exists$ finitely many homogeneous generators.

 \mathcal{F} torsion free \Leftrightarrow all maps are inclusions:

$$egin{aligned} &F(k_1,k_2,k_3)\subset F(k_1+1,k_2,k_3),\ &F(k_1,k_2,k_3)\subset F(k_1,k_2+1,k_3),\ &F(k_1,k_2,k_3)\subset F(k_1,k_2,k_3+1). \end{aligned}$$

 \mathcal{F} <u>coherent</u> $\Leftrightarrow \exists$ finitely many homogeneous generators.

 \mathcal{F} torsion free \Leftrightarrow all maps are inclusions:

$$egin{aligned} &F(k_1,k_2,k_3)\subset F(k_1+1,k_2,k_3),\ &F(k_1,k_2,k_3)\subset F(k_1,k_2+1,k_3),\ &F(k_1,k_2,k_3)\subset F(k_1,k_2,k_3+1). \end{aligned}$$

 \Rightarrow When rank(\mathcal{F}) = r then get a multi-filtration of \mathbb{C}^{r} .

 \mathcal{F} <u>coherent</u> $\Leftrightarrow \exists$ finitely many homogeneous generators.

 \mathcal{F} torsion free \Leftrightarrow all maps are inclusions:

$$egin{aligned} & F(k_1,k_2,k_3) \subset F(k_1+1,k_2,k_3), \ & F(k_1,k_2,k_3) \subset F(k_1,k_2+1,k_3), \ & F(k_1,k_2,k_3) \subset F(k_1,k_2,k_3+1). \end{aligned}$$

 \Rightarrow When rank(\mathcal{F}) = r then get a multi-filtration of \mathbb{C}^r .

 \mathcal{F} <u>reflexive</u> $\Leftrightarrow \exists$ filtrations

 $F(k,\infty,\infty), F(\infty,k,\infty), F(\infty,\infty,k)$

s.t. $F(k_1, k_2, k_3) = F(k_1, \infty, \infty) \cap F(\infty, k_2, \infty) \cap F(\infty, \infty, k_3).$

- **1** three integers $u_i \in \mathbb{Z}$ where flag *i* jumps from 0 to $p_i \in \mathbb{P}^1$,
- 2 three integers $u'_i \ge u_i$ where flag *i* jumps from p_i to \mathbb{C}^2 .

three integers u_i ∈ Z where flag i jumps from 0 to p_i ∈ P¹,
three integers u'_i ≥ u_i where flag i jumps from p_i to C².
Define v_i = u'_i - u_i ≥ 0.

three integers u_i ∈ Z where flag i jumps from 0 to p_i ∈ P¹,
three integers u'_i ≥ u_i where flag i jumps from p_i to C².
Define v_i = u'_i - u_i ≥ 0.

R is singular \Leftrightarrow all $v_i > 0$ and all $p_i \in \mathbb{P}^1$ are mutually distinct.

three integers u_i ∈ Z where flag i jumps from 0 to p_i ∈ P¹,
three integers u'_i ≥ u_i where flag i jumps from p_i to C².
Define v_i = u'_i - u_i ≥ 0.

R is singular \Leftrightarrow all $v_i > 0$ and all $p_i \in \mathbb{P}^1$ are mutually distinct.

Globally on toric 3-fold X: combine such a description for each chart with gluing conditions.

three integers u_i ∈ Z where flag i jumps from 0 to p_i ∈ P¹,
three integers u'_i ≥ u_i where flag i jumps from p_i to C².
Define v_i = u'_i - u_i ≥ 0.

R is singular \Leftrightarrow all $v_i > 0$ and all $p_i \in \mathbb{P}^1$ are mutually distinct.

Globally on toric 3-fold X: combine such a description for each chart with gluing conditions.

Explicit formula for ch(R) can be obtained in terms of $u_i, v_i, dim(p_i \cap p_j)$ (*T*-equivariant dévissage).

Explicit formula for ch(R) can be obtained in terms of $u_i, v_i, \dim(p_i \cap p_j)$ (*T*-equivariant dévissage). Consequence: R is stable $\Leftrightarrow \forall q \in \mathbb{P}^1$

$$\sum_{i=1}^4 \dim(p_i \cap q)v_i < rac{1}{2}\sum_{i=1}^4 v_i.$$

Explicit formula for ch(R) can be obtained in terms of $u_i, v_i, \dim(p_i \cap p_j)$ (*T*-equivariant dévissage). Consequence: R is stable $\Leftrightarrow \forall q \in \mathbb{P}^1$

$$\sum_{i=1}^4 \dim(p_i\cap q)v_i < rac{1}{2}\sum_{i=1}^4 v_i.$$

Classification of stable reflexive sheaves (G-Kool)

- Type I: $0 < v_i < v_j + v_k + v_l \ \forall \{i, j, k, l\} = \{1, 2, 3, 4\}$ and all p_i are mutually distinct,
- ② Type II: $v_1, v_2, v_3, v_4 > 0$, $\exists \{i, j, k, l\} = \{1, 2, 3, 4\}$ such that $v_i + v_j < v_k + v_l, v_k < v_i + v_j + v_l, v_l < v_i + v_j + v_k, p_i = p_j$, and p_j, p_k, p_l are mutually distinct,
- **○** Type III: $\exists \{i, j, k, l\} = \{1, 2, 3, 4\}$ such that $v_i = 0, v_j, v_k, v_l > 0, v_j < v_k + v_l, v_k < v_j + v_l, v_l < v_j + v_k,$ and p_j, p_k, p_l are mutually distinct.

 $\frac{\text{Consequences: Get scheme theoretic description of }}{\mathcal{N}_{\mathbb{P}^3}(2, c_1, c_2, c_3)^T}.$

Get a combinatorial proof for Hartshorne's inequalities.

Consequences: Get scheme theoretic description of $\overline{\mathcal{N}_{\mathbb{P}^3}(2, c_1, c_2, c_3)^T}$.

Get a combinatorial proof for Hartshorne's inequalities.

 $\begin{array}{l} O := (u_1, u_2, u_3), \ S := (u_1 + v_1, u_2 + v_2, u_3 + v_3), \\ P_1 := (u_1, u_2 + v_2, u_3 + v_3), \ P_2 := (u_1 + v_1, u_2, u_3 + v_3), \\ P_3 := (u_1 + v_1, u_2 + v_2, u_3). \ B \ \text{is the box with sizes } v_1, v_2, v_3 \ \text{and} \\ \text{opposite vertices } O \ \text{and } S. \ \text{The S-region is the shift of the first} \\ \text{quadrant to S.} \end{array}$

$Quot(R, n)^T$

R is *T*-equivariant rank 2 reflexive sheaf on \mathbb{C}^3 and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \to Q \to 0$ such that $\ell(Q) = n$.
R is *T*-equivariant rank 2 reflexive sheaf on \mathbb{C}^3 and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \to Q \to 0$ such that $\ell(Q) = n$. Let $\pi = (\pi_1, \pi_2, \pi_3)$ be a triple of 3D partitions where π_i is placed at P_i , satisfying:

R is *T*-equivariant rank 2 reflexive sheaf on \mathbb{C}^3 and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \to Q \to 0$ such that $\ell(Q) = n$.

Let $\pi = (\pi_1, \pi_2, \pi_3)$ be a triple of 3D partitions where π_i is placed at P_i , satisfying:

Any box in the S-region must be in the intersection of at least 2 of $\pi_i s$.

R is *T*-equivariant rank 2 reflexive sheaf on \mathbb{C}^3 and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \to Q \to 0$ such that $\ell(Q) = n$. Let $\pi = (\pi_1, \pi_2, \pi_3)$ be a triple of 3D partitions where π_i is placed at P_i , satisfying: Any box in the *S*-region must be in the intersection of at least 2 of π_i s.

We say $oldsymbol{\pi} \sim oldsymbol{\pi}'$ if

$$\cup \pi_i = \cup \pi'_i, \quad \cap \pi_i = \cap \pi'_i.$$

R is *T*-equivariant rank 2 reflexive sheaf on \mathbb{C}^3 and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \to Q \to 0$ such that $\ell(Q) = n$. Let $\pi = (\pi_1, \pi_2, \pi_3)$ be a triple of 3D partitions where π_i is placed at P_i , satisfying: Any box in the *S*-region must be in the intersection of at least 2 of π_i s. We say $\pi \sim \pi'$ if

$$\cup \pi_i = \cup \pi'_i, \quad \cap \pi_i = \cap \pi'_i.$$

Define $#(\boldsymbol{\pi}) := #(\cup \pi_i) - #((\cup \pi_i) \cap (S\text{-region})).$

R is *T*-equivariant rank 2 reflexive sheaf on \mathbb{C}^3 and $n \in \mathbb{Z}_{\geq 0}$. We would like to describe 0-dimensional quotients $R \to Q \to 0$ such that $\ell(Q) = n$. Let $\pi = (\pi_1, \pi_2, \pi_3)$ be a triple of 3D partitions where π_i is placed at P_i , satisfying: Any box in the *S*-region must be in the intersection of at least 2 of π_i s. We say $\pi \sim \pi'$ if

$$\cup \pi_i = \cup \pi'_i, \quad \cap \pi_i = \cap \pi'_i.$$

Define $#(\boldsymbol{\pi}) := #(\cup \pi_i) - #((\cup \pi_i) \cap (S\text{-region})).$

We say a box at (x_1, x_2, x_3) in the *S*-region *supported* if there is a box at all the three points:

$$(x_1 - i_1, x_2, x_3), (x_1, x_2 - i_2, x_3), (x_1, x_2, x_3 - i_3)$$

where i_j is minimal with the property that the above points are no longer in *S*-region.

We say a box at (x_1, x_2, x_3) in the *S*-region *supported* if there is a box at all the three points:

$$(x_1 - i_1, x_2, x_3), (x_1, x_2 - i_2, x_3), (x_1, x_2, x_3 - i_3)$$

where i_j is minimal with the property that the above points are no longer in *S*-region.

<u>Red boxes</u>: Any box in the intersection of 3 partitions is colored red.

We say a box at (x_1, x_2, x_3) in the *S*-region *supported* if there is a box at all the three points:

$$(x_1 - i_1, x_2, x_3), (x_1, x_2 - i_2, x_3), (x_1, x_2, x_3 - i_3)$$

where i_j is minimal with the property that the above points are no longer in *S*-region.

<u>Red boxes</u>: Any box in the intersection of 3 partitions is colored red.

White boxes: Any box in the intersection of 2 partitions is colored white.

We say a box at (x_1, x_2, x_3) in the *S*-region *supported* if there is a box at all the three points:

 $(x_1 - i_1, x_2, x_3), (x_1, x_2 - i_2, x_3), (x_1, x_2, x_3 - i_3)$

where i_j is minimal with the property that the above points are no longer in *S*-region.

<u>Red boxes</u>: Any box in the intersection of 3 partitions is colored red.

White boxes: Any box in the intersection of 2 partitions is colored white.

Let C be a connected components of white boxes. We say C is *supported* if all boxes in C are supported.

We say a box at (x_1, x_2, x_3) in the *S*-region *supported* if there is a box at all the three points:

 $(x_1 - i_1, x_2, x_3), (x_1, x_2 - i_2, x_3), (x_1, x_2, x_3 - i_3)$

where i_j is minimal with the property that the above points are no longer in *S*-region.

<u>Red boxes</u>: Any box in the intersection of 3 partitions is colored red.

White boxes: Any box in the intersection of 2 partitions is colored white.

Let C be a connected components of white boxes. We say C is *supported* if all boxes in C are supported.

Each supported component C is labeled by a point in \mathbb{P}^1 .

We say a box at (x_1, x_2, x_3) in the *S*-region *supported* if there is a box at all the three points:

 $(x_1 - i_1, x_2, x_3), (x_1, x_2 - i_2, x_3), (x_1, x_2, x_3 - i_3)$

where i_j is minimal with the property that the above points are no longer in *S*-region.

<u>Red boxes</u>: Any box in the intersection of 3 partitions is colored red.

White boxes: Any box in the intersection of 2 partitions is colored white.

Let C be a connected components of white boxes. We say C is *supported* if all boxes in C are supported.

Each supported component C is labeled by a point in \mathbb{P}^1 .

Theorem G-Kool

 $\operatorname{Quot}(R,n)^T \leftrightarrow \{[\pi]_{\mathsf{labeled}} \mid \#\pi = n\}.$

We say a box at (x_1, x_2, x_3) in the *S*-region *supported* if there is a box at all the three points:

 $(x_1 - i_1, x_2, x_3), (x_1, x_2 - i_2, x_3), (x_1, x_2, x_3 - i_3)$

where i_j is minimal with the property that the above points are no longer in *S*-region.

<u>Red boxes</u>: Any box in the intersection of 3 partitions is colored red.

White boxes: Any box in the intersection of 2 partitions is colored white.

Let C be a connected components of white boxes. We say C is *supported* if all boxes in C are supported.

Each supported component C is labeled by a point in \mathbb{P}^1 .

Theorem G-Kool

 $\operatorname{Quot}(R,n)^T \leftrightarrow \{[\pi]_{\mathsf{labeled}} \mid \#\pi = n\}.$

Triple of 3D partitions

Triple of 3D partitions

Three components of white boxes: Two are unsupported (hence unlabeled), and one is supported (labeled with $s \in \mathbb{P}^1$).

Consequence: Components of $Quot(R, n)^T$ are isomorphic to $(\mathbb{P}^1)^k$ where

k = # of labeled white components.

Consequence: Components of $Quot(R, n)^T$ are isomorphic to $\overline{(\mathbb{P}^1)^k}$ where

k = # of labeled white components.

E.g. In picture above k = 1.

Consequence: Components of $Quot(R, n)^T$ are isomorphic to $\overline{(\mathbb{P}^1)^k}$ where

k = # of labeled white components.

E.g. In picture above k = 1. Define

$$G_{u,v}(q) = \sum_{[\pi]} 2^{k(\pi)} q^{\#(\pi)}$$

sum over equivalence classes of triple partitions.

For any integers u_1, u_2, u_3 and $v_1, v_2, v_3 > 0$ we have

$$G_{\mathbf{u},\mathbf{v}}(q) = M(q)^2 \prod_{i=1}^{v_1} \prod_{j=1}^{v_2} \prod_{k=1}^{v_3} rac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}.$$

where M(q) denotes the MacMahon function.

For any integers u_1, u_2, u_3 and $v_1, v_2, v_3 > 0$ we have

$$G_{\mathbf{u},\mathbf{v}}(q) = M(q)^2 \prod_{i=1}^{v_1} \prod_{j=1}^{v_2} \prod_{k=1}^{v_3} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}.$$

where M(q) denotes the MacMahon function.

<u>Remark</u>: $\frac{G_{u,v}(q)}{M(q)^2}$ is the generating function of the number of 3D partitions embedded in the box *B*.

For any integers u_1 , u_2 , u_3 and v_1 , v_2 , $v_3 > 0$ we have

$$G_{\mathbf{u},\mathbf{v}}(q) = M(q)^2 \prod_{i=1}^{v_1} \prod_{j=1}^{v_2} \prod_{k=1}^{v_3} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}.$$

where M(q) denotes the MacMahon function.

<u>Remark</u>: $\frac{G_{\mathbf{u},\mathbf{v}}(q)}{M(q)^2}$ is the generating function of the number of 3D partitions embedded in the box *B*. But the box configurations leading to $G_{\mathbf{u},\mathbf{v}}(q)$ all have empty intersections with *B*!!

For any integers u_1, u_2, u_3 and $v_1, v_2, v_3 > 0$ we have

$$G_{\mathbf{u},\mathbf{v}}(q) = M(q)^2 \prod_{i=1}^{v_1} \prod_{j=1}^{v_2} \prod_{k=1}^{v_3} rac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}.$$

where M(q) denotes the MacMahon function.

<u>Remark</u>: $\frac{G_{\mathbf{u},\mathbf{v}}(q)}{M(q)^2}$ is the generating function of the number of 3D partitions embedded in the box *B*. But the box configurations leading to $G_{\mathbf{u},\mathbf{v}}(q)$ all have empty intersections with *B*!! In the combinatorial proof the role of *B* is not clear, but *B* plays a big role in geometric proof we found later.

Dimer model

The combinatorial proof is via double dimer models:

Dimer model

The combinatorial proof is via double dimer models:

Labeled boxes correspond to loops in the dimer model.

Dimer model

The combinatorial proof is via double dimer models:

Labeled boxes correspond to loops in the dimer model. There is no bijection between the triple of partitions and double dimer models. However, their generating functions match.

Theorem (Hartshorne-Serre correspondence)

Theorem (Hartshorne-Serre correspondence)

Let X be a smooth projective 3-fold and L a line bundle on X satisfying $H^1(L) = H^2(L) = 0$. Then there exists a bijection between:

Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with det(R) ≅ L and σ : R → O_X a cosection cutting out a 1-dimensional closed subscheme.

Theorem (Hartshorne-Serre correspondence)

- Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with det(R) ≅ L and σ : R → O_X a cosection cutting out a 1-dimensional closed subscheme.
- Pairs (C, ξ), where C ⊂ X is a Cohen-Macaulay curve which is generically lci and ξ : O_X → ω_C ⊗ ω_X⁻¹ ⊗ L has 0-dimensional cokernel.

Theorem (Hartshorne-Serre correspondence)

- Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with det(R) ≅ L and σ : R → O_X a cosection cutting out a 1-dimensional closed subscheme.
- Pairs (C, ξ), where C ⊂ X is a Cohen-Macaulay curve which is generically lci and ξ : O_X → ω_C ⊗ ω_X⁻¹ ⊗ L has 0-dimensional cokernel.
- in theorem gives $0 \rightarrow L \rightarrow R \rightarrow I_C \rightarrow 0$.

Theorem (Hartshorne-Serre correspondence)

- Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with det(R) ≅ L and σ : R → O_X a cosection cutting out a 1-dimensional closed subscheme.
- Pairs (C, ξ), where C ⊂ X is a Cohen-Macaulay curve which is generically lci and ξ : O_X → ω_C ⊗ ω_X⁻¹ ⊗ L has 0-dimensional cokernel.

• in theorem gives
$$0 \to L \to R \to I_C \to 0$$
. So
 $R \in \operatorname{Ext}^1(I_C, L) \cong \operatorname{Ext}^2(\mathcal{O}_C, L)$
 $\cong \operatorname{Ext}^1(L, \mathcal{O}_C \otimes \omega_X)^*$
 $\cong H^1(C, \omega_X \otimes L^{-1}|_C)^*$
 $\cong H^0(C, \omega_C \otimes \omega_Y^{-1} \otimes L)$

Applying $\mathcal{H}om(\cdot, L)$ to s.e.s above gives

$$0 \longrightarrow L \rightarrow R^* \otimes L \rightarrow \mathcal{O}_X \xrightarrow{\xi} \mathcal{E}xt^1(I_C, L) \rightarrow \mathcal{E}xt^1(R, L) \rightarrow 0.$$

Applying $\mathcal{H}om(\cdot, L)$ to s.e.s above gives

$$0 \longrightarrow L \to R^* \otimes L \to \mathcal{O}_X \xrightarrow{\xi} \mathcal{E}xt^1(I_C, L) \to \mathcal{E}xt^1(R, L) \to 0.$$

<u>Notation</u>: F codimension c sheaf, L line bundle define

$$F_L^D := \mathcal{E}xt^c(F,L).$$

Applying $\mathcal{H}om(\cdot, L)$ to s.e.s above gives

$$0 \longrightarrow L \to R^* \otimes L \to \mathcal{O}_X \stackrel{\xi}{\longrightarrow} \mathcal{E}xt^1(I_C, L) \to \mathcal{E}xt^1(R, L) \to 0.$$

Notation: F codimension c sheaf, L line bundle define

$$F_L^D := \mathcal{E}xt^c(F,L).$$

Note $\omega_{\mathcal{C}} = \mathcal{E}xt^2(\mathcal{O}_{\mathcal{C}}, \omega_X)$ so $\omega_{\mathcal{C}} \otimes \omega_X^{-1} \otimes L = (\mathcal{O}_{\mathcal{C}})_L^D$.

Applying $\mathcal{H}om(\cdot, L)$ to s.e.s above gives

$$0 \longrightarrow L \to R^* \otimes L \to \mathcal{O}_X \stackrel{\xi}{\longrightarrow} \mathcal{E}xt^1(I_C, L) \to \mathcal{E}xt^1(R, L) \to 0.$$

<u>Notation</u>: F codimension c sheaf, L line bundle define

$$F_L^D := \mathcal{E}xt^c(F,L).$$

Note $\omega_{\mathcal{C}} = \mathcal{E}xt^2(\mathcal{O}_{\mathcal{C}}, \omega_X)$ so $\omega_{\mathcal{C}} \otimes \omega_X^{-1} \otimes L = (\mathcal{O}_{\mathcal{C}})_L^D$.

• $\mathcal{E}xt^1(R,L)$ is a 0-dimensional sheaf supported on Sing(R).

Applying $\mathcal{H}om(\cdot, L)$ to s.e.s above gives

$$0 \longrightarrow L \to R^* \otimes L \to \mathcal{O}_X \xrightarrow{\xi} \mathcal{E}xt^1(I_C, L) \to \mathcal{E}xt^1(R, L) \to 0.$$

<u>Notation</u>: F codimension c sheaf, L line bundle define

$$F_L^D := \mathcal{E}xt^c(F,L).$$

Note $\omega_{\mathcal{C}} = \mathcal{E}xt^2(\mathcal{O}_{\mathcal{C}}, \omega_X)$ so $\omega_{\mathcal{C}} \otimes \omega_X^{-1} \otimes L = (\mathcal{O}_{\mathcal{C}})_L^D$.

- $\mathcal{E} \times t^1(R, L)$ is a 0-dimensional sheaf supported on Sing(R).
- $\mathcal{E}xt^1(I_C, L) \cong \mathcal{E}xt^2(\mathcal{O}_C, L) = (\mathcal{O}_C)^D_L.$
- (*O_C*)^D_L is pure 1-dimensional sheaf (supported on C) and coker ξ is 0-dimensional (i.e. PT stable pair!).

Applying $\mathcal{H}om(\cdot, L)$ to s.e.s above gives

$$0 \longrightarrow L \to R^* \otimes L \to \mathcal{O}_X \xrightarrow{\xi} \mathcal{E}xt^1(I_C, L) \to \mathcal{E}xt^1(R, L) \to 0.$$

<u>Notation</u>: F codimension c sheaf, L line bundle define

$$F_L^D := \mathcal{E}xt^c(F,L).$$

Note $\omega_C = \mathcal{E}xt^2(\mathcal{O}_C, \omega_X)$ so $\omega_C \otimes \omega_X^{-1} \otimes L = (\mathcal{O}_C)_L^D$.

- $\mathcal{E} \times t^1(R, L)$ is a 0-dimensional sheaf supported on Sing(R).
- $\mathcal{E}xt^1(I_C, L) \cong \mathcal{E}xt^2(\mathcal{O}_C, L) = (\mathcal{O}_C)_L^D$.
- (*O_C*)^D_L is pure 1-dimensional sheaf (supported on C) and coker ξ is 0-dimensional (i.e. PT stable pair!).
- C is not lci exactly at Sing(R).

Applying $\mathcal{H}om(\cdot, L)$ to s.e.s above gives

$$0 \longrightarrow L \to R^* \otimes L \to \mathcal{O}_X \xrightarrow{\xi} \mathcal{E}xt^1(I_C, L) \to \mathcal{E}xt^1(R, L) \to 0.$$

<u>Notation</u>: F codimension c sheaf, L line bundle define

$$F_L^D := \mathcal{E}xt^c(F,L).$$

Note $\omega_C = \mathcal{E}xt^2(\mathcal{O}_C, \omega_X)$ so $\omega_C \otimes \omega_X^{-1} \otimes L = (\mathcal{O}_C)_L^D$.

- $\mathcal{E} \times t^1(R, L)$ is a 0-dimensional sheaf supported on Sing(R).
- $\mathcal{E}xt^1(I_C, L) \cong \mathcal{E}xt^2(\mathcal{O}_C, L) = (\mathcal{O}_C)_L^D$.
- (*O_C*)^D_L is pure 1-dimensional sheaf (supported on C) and coker ξ is 0-dimensional (i.e. PT stable pair!).
- C is not lci exactly at Sing(R).
Ext groups

If I_C (resp. R) is the ideal sheaf of a CM curve (resp. rank 2 reflexive sheaf) and Q a 0-dimensional sheaf, the only nonzero Ext groups are

 $\operatorname{Hom}(I_C, Q), \operatorname{Ext}^1(I_C, Q) \quad \operatorname{Hom}(R, Q), \operatorname{Ext}^1(R, Q)$

and their Serre duals.

Ext groups

If I_C (resp. R) is the ideal sheaf of a CM curve (resp. rank 2 reflexive sheaf) and Q a 0-dimensional sheaf, the only nonzero Ext groups are

 $\operatorname{Hom}(I_C, Q), \operatorname{Ext}^1(I_C, Q) \quad \operatorname{Hom}(R, Q), \operatorname{Ext}^1(R, Q)$

and their Serre duals. More symmetrically we write,

 $\mathsf{Ext}^1(I_C, Q[-1]), \mathsf{Ext}^1(Q[-1], I_C) \quad \mathsf{Ext}^1(R, Q[-1]), \mathsf{Ext}^1(Q[-1], R).$

Ext groups

If I_C (resp. R) is the ideal sheaf of a CM curve (resp. rank 2 reflexive sheaf) and Q a 0-dimensional sheaf, the only nonzero Ext groups are

$$\operatorname{Hom}(I_C, Q), \operatorname{Ext}^1(I_C, Q) \quad \operatorname{Hom}(R, Q), \operatorname{Ext}^1(R, Q)$$

and their Serre duals. More symmetrically we write,

 $\mathsf{Ext}^1(I_C, Q[-1]), \mathsf{Ext}^1(Q[-1], I_C) \quad \mathsf{Ext}^1(R, Q[-1]), \mathsf{Ext}^1(Q[-1], R).$

Furthermore,

$$\begin{split} \dim \operatorname{Ext}^1(I_C,Q[-1]) - \dim \operatorname{Ext}^1(Q[-1],I_C) &= \ell(Q),\\ \dim \operatorname{Ext}^1(R,Q[-1]) - \dim \operatorname{Ext}^1(Q[-1],R) &= 2\ell(Q),\\ \end{split}$$
only depend on $\ell(Q) := \operatorname{length}(Q). \end{split}$

Quot schemes

Let $\operatorname{Quot}(R) := \bigsqcup_{n=0}^{\infty} \operatorname{Quot}(R, n)$.

Let $\operatorname{Quot}(R) := \bigsqcup_{n=0}^{\infty} \operatorname{Quot}(R, n)$. Set theoretically

$$\operatorname{Quot}(R) = \bigsqcup_{Q \in \mathcal{T}} \operatorname{Hom}(R, Q)^{onto},$$

where \mathcal{T} denotes the stack of all 0-dimensional sheaves on X and "onto" refers to the subset of surjective maps in

$$\operatorname{Hom}(R,Q)\cong\operatorname{Ext}^1(R,Q[-1]).$$

Let $\operatorname{Quot}(R) := \bigsqcup_{n=0}^{\infty} \operatorname{Quot}(R, n)$. Set theoretically

$$\operatorname{Quot}(R) = \bigsqcup_{Q \in \mathcal{T}} \operatorname{Hom}(R, Q)^{onto},$$

where \mathcal{T} denotes the stack of all 0-dimensional sheaves on X and "onto" refers to the subset of surjective maps in

$$\operatorname{Hom}(R,Q)\cong\operatorname{Ext}^1(R,Q[-1]).$$

<u>Conclusion</u> the first nonzero Ext group $Ext^{1}(R, Q[-1])$ governs the quot scheme Quot(R).

$F \in \operatorname{Ext}^1(Q[-1], I_C) \cong \operatorname{Ext}^2(Q, I_C) \cong \operatorname{Ext}^1(Q, \mathcal{O}_C)$ corresponds to $0 \to \mathcal{O}_C \to F \to Q \to 0$.

$$F \in \operatorname{Ext}^{1}(Q[-1], I_{C}) \cong \operatorname{Ext}^{2}(Q, I_{C}) \cong \operatorname{Ext}^{1}(Q, \mathcal{O}_{C})$$

corresponds to $0 \to \mathcal{O}_{C} \to F \to Q \to 0$.
Let $\operatorname{Ext}^{1}(Q, \mathcal{O}_{C})^{pure}$ be the locus where F is pure (i.e. $\mathcal{O}_{C} \to F$ is PT stable pair).

$$F \in \operatorname{Ext}^1(Q[-1], I_C) \cong \operatorname{Ext}^2(Q, I_C) \cong \operatorname{Ext}^1(Q, \mathcal{O}_C)$$

corresponds to $0
ightarrow {\cal O}_{C}
ightarrow F
ightarrow Q
ightarrow 0.$

Let $\operatorname{Ext}^1(Q, \mathcal{O}_C)^{pure}$ be the locus where F is pure (i.e. $\mathcal{O}_C \to F$ is PT stable pair).

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)^D_L, \xi)$ as in Serre correspondence, \exists natural injection

$$\operatorname{Ext}^2(Q, R) \cong \operatorname{Ext}^1(Q[-1], R) \hookrightarrow \operatorname{Ext}^1(Q[-1], I_C).$$

$$F \in \operatorname{Ext}^1(Q[-1], I_C) \cong \operatorname{Ext}^2(Q, I_C) \cong \operatorname{Ext}^1(Q, \mathcal{O}_C)$$

corresponds to $0
ightarrow {\cal O}_{C}
ightarrow F
ightarrow Q
ightarrow 0.$

Let $\operatorname{Ext}^1(Q, \mathcal{O}_C)^{pure}$ be the locus where F is pure (i.e. $\mathcal{O}_C \to F$ is PT stable pair).

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)^D_L, \xi)$ as in Serre correspondence, \exists natural injection

$$\operatorname{Ext}^2(Q, R) \cong \operatorname{Ext}^1(Q[-1], R) \hookrightarrow \operatorname{Ext}^1(Q[-1], I_C).$$

Define $\operatorname{Ext}^2(Q, R)^{pure} := \operatorname{Ext}^2(Q, R) \cap \operatorname{Ext}^1(Q, \mathcal{O}_C)^{pure}$.

$$F \in \operatorname{Ext}^1(Q[-1], I_C) \cong \operatorname{Ext}^2(Q, I_C) \cong \operatorname{Ext}^1(Q, \mathcal{O}_C)$$

corresponds to $0
ightarrow {\cal O}_{C}
ightarrow F
ightarrow Q
ightarrow 0.$

Let $\operatorname{Ext}^1(Q, \mathcal{O}_C)^{pure}$ be the locus where F is pure (i.e. $\mathcal{O}_C \to F$ is PT stable pair).

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)^D_L, \xi)$ as in Serre correspondence, \exists natural injection

$$\operatorname{Ext}^2(Q, R) \cong \operatorname{Ext}^1(Q[-1], R) \hookrightarrow \operatorname{Ext}^1(Q[-1], I_C).$$

Define $\operatorname{Ext}^2(Q, R)^{pure} := \operatorname{Ext}^2(Q, R) \cap \operatorname{Ext}^1(Q, \mathcal{O}_C)^{pure}$. <u>Conclusion</u> the second nonzero Ext group $\operatorname{Ext}^1(Q[-1], R)$ governs the 'specific' sub-locus of PT stable pairs with support C denoted by P(C). Define $P(R, \sigma) := \bigsqcup_{Q \in \mathcal{T}} \operatorname{Ext}^2(Q, R)^{pure} \subset P(C)$.

Define
$$P(R, \sigma) := \bigsqcup_{Q \in \mathcal{T}} \operatorname{Ext}^2(Q, R)^{pure} \subset P(C)$$
.

Theorem G-Kool

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)^D_L, \xi)$ as in Serre correspondence, \exists natural bijection

$$P(R,\sigma) \leftrightarrow \operatorname{Quot}(\mathcal{E}xt^1(R,\mathcal{O}_X)).$$

Define
$$P(R, \sigma) := \bigsqcup_{Q \in \mathcal{T}} \operatorname{Ext}^2(Q, R)^{pure} \subset P(C)$$
.

Theorem G-Kool

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)_L^D, \xi)$ as in Serre correspondence, \exists natural bijection

 $P(R,\sigma) \leftrightarrow \operatorname{Quot}(\mathcal{E}xt^1(R,\mathcal{O}_X)).$

Recall $\mathcal{E}xt^1(R, \mathcal{O}_X)$ is a 0-dimensional sheaf supported on Sing(R).

Define
$$P(R, \sigma) := \bigsqcup_{Q \in \mathcal{T}} \operatorname{Ext}^2(Q, R)^{pure} \subset P(C)$$
.

Theorem G-Kool

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)_L^D, \xi)$ as in Serre correspondence, \exists natural bijection

 $P(R,\sigma) \leftrightarrow \operatorname{Quot}(\mathcal{E}xt^1(R,\mathcal{O}_X)).$

Recall $\mathcal{E}xt^1(R, \mathcal{O}_X)$ is a 0-dimensional sheaf supported on Sing(R).

Let $H(\mathcal{T}) := K(\operatorname{St}/\mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T} .

Let $H(\mathcal{T}) := \mathcal{K}(\operatorname{St}/\mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T} . Let \mathcal{T}^2 be the stack of short exact sequences $0 \to Q_1 \to Q \to Q_2 \to 0$ in \mathcal{T} and let π_i be the map induced by sending this short exact sequence to Q_i .

Let $H(\mathcal{T}) := K(\operatorname{St}/\mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T} . Let \mathcal{T}^2 be the stack of short exact sequences $0 \to Q_1 \to Q \to Q_2 \to 0$ in \mathcal{T} and let π_i be the map induced by sending this short exact sequence to Q_i . For any two (\mathcal{T} -isomorphism classes of) \mathcal{T} -stacks $[U \to \mathcal{T}]$ and $[V \to \mathcal{T}]$, the product $[U * V \to \mathcal{T}]$ is defined by the Cartesian diagram

Let $H(\mathcal{T}) := K(\operatorname{St}/\mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T} . Let \mathcal{T}^2 be the stack of short exact sequences $0 \to Q_1 \to Q \to Q_2 \to 0$ in \mathcal{T} and let π_i be the map induced by sending this short exact sequence to Q_i . For any two (\mathcal{T} -isomorphism classes of) \mathcal{T} -stacks $[U \to \mathcal{T}]$ and $[V \to \mathcal{T}]$, the product $[U * V \to \mathcal{T}]$ is defined by the Cartesian diagram

This makes $(H(\mathcal{T}), *)$ into an associative algebra, known as motivic Ringel-Hall algebra (Joyce, Bridgeland, Kontsevich-Soibelman, Stoppa-Thomas).

Let $H(\mathcal{T}) := K(\operatorname{St}/\mathcal{T})$ the Grothendieck group of stacks (locally of finite type and with affine geometric stabilizers) over \mathcal{T} . Let \mathcal{T}^2 be the stack of short exact sequences $0 \to Q_1 \to Q \to Q_2 \to 0$ in \mathcal{T} and let π_i be the map induced by sending this short exact sequence to Q_i . For any two (\mathcal{T} -isomorphism classes of) \mathcal{T} -stacks $[U \to \mathcal{T}]$ and $[V \to \mathcal{T}]$, the product $[U * V \to \mathcal{T}]$ is defined by the Cartesian diagram

This makes $(H(\mathcal{T}), *)$ into an associative algebra, known as motivic Ringel-Hall algebra (Joyce, Bridgeland, Kontsevich-Soibelman, Stoppa-Thomas).

 $\mathbf{1}_0$ is the identity (the stack consisting of the zero sheaf with the inclusion into $\mathcal{T}).$

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)^D_L, \xi)$ as in Serre correspondence, we define

Given $(R, \sigma) \leftrightarrow ((\mathcal{O}_C)_L^D, \xi)$ as in Serre correspondence, we define

- $1_{\mathcal{T}}$ is the identity map $\mathcal{T}
 ightarrow \mathcal{T}$,
- Hom (R, \cdot) is the stack whose fibre over $Q \in \mathcal{T}$ is Hom(R, Q),
- Hom $(R,\cdot)^{onto}$ is the stack whose fibre over $Q\in\mathcal{T}$ is Hom $(R,Q)^{onto}$,
- $\mathsf{Ext}^2(\cdot, R)$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\mathsf{Ext}^2(Q, R)$,
- $\operatorname{Ext}^2(\cdot, R)^{pure}$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\operatorname{Ext}^2(Q, R)^{pure}$.
- $\mathbb{C}^{r\ell(\cdot)}$ is the stack whose fibre over $Q \in \mathcal{T}$ is $\mathbb{C}^{r\ell(Q)}$.

$$\operatorname{Hom}(R,Q) - \bigsqcup_{Q_1 < Q} \operatorname{Hom}(R,Q_1) + \bigsqcup_{Q_1 < Q_2 < Q} \operatorname{Hom}(R,Q_1) - \cdots,$$

where < denotes *strict* inclusion.

$$\operatorname{Hom}(R,Q) - \bigsqcup_{Q_1 < Q} \operatorname{Hom}(R,Q_1) + \bigsqcup_{Q_1 < Q_2 < Q} \operatorname{Hom}(R,Q_1) - \cdots,$$

where < denotes *strict* inclusion. Write $1_{\mathcal{T}} = 1_0 + 1_{\mathcal{T}'}$. Then $1_{\mathcal{T}}^{-1} = 1_0 - 1_{\mathcal{T}'} + 1_{\mathcal{T}'} * 1_{\mathcal{T}'} - 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * \dots$

$$\operatorname{Hom}(R,Q) - \bigsqcup_{Q_1 < Q} \operatorname{Hom}(R,Q_1) + \bigsqcup_{Q_1 < Q_2 < Q} \operatorname{Hom}(R,Q_1) - \cdots,$$

where < denotes *strict* inclusion. Write $1_{\mathcal{T}} = 1_0 + 1_{\mathcal{T}'}$. Then $1_{\mathcal{T}}^{-1} = 1_0 - 1_{\mathcal{T}'} + 1_{\mathcal{T}'} * 1_{\mathcal{T}'} - 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * \dots$

$$\operatorname{Hom}(R,Q) - \bigsqcup_{Q_1 < Q} \operatorname{Hom}(R,Q_1) + \bigsqcup_{Q_1 < Q_2 < Q} \operatorname{Hom}(R,Q_1) - \cdots,$$

where < denotes *strict* inclusion. Write $1_{\mathcal{T}} = 1_0 + 1_{\mathcal{T}'}$. Then $1_{\mathcal{T}}^{-1} = 1_0 - 1_{\mathcal{T}'} + 1_{\mathcal{T}'} * 1_{\mathcal{T}'} - 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * \dots$. This leads to

$$\operatorname{Hom}(R,\cdot)^{onto} = \operatorname{Hom}(R,\cdot) * 1_{\mathcal{T}}^{-1}.$$

$$\operatorname{Hom}(R,Q) - \bigsqcup_{Q_1 < Q} \operatorname{Hom}(R,Q_1) + \bigsqcup_{Q_1 < Q_2 < Q} \operatorname{Hom}(R,Q_1) - \cdots,$$

where < denotes *strict* inclusion. Write $1_{\mathcal{T}} = 1_0 + 1_{\mathcal{T}'}$. Then $1_{\mathcal{T}}^{-1} = 1_0 - 1_{\mathcal{T}'} + 1_{\mathcal{T}'} * 1_{\mathcal{T}'} - 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * 1_{\mathcal{T}'} * \dots$. This leads to

$$\operatorname{Hom}(R,\cdot)^{onto} = \operatorname{Hom}(R,\cdot) * 1_{\mathcal{T}}^{-1}.$$

Similarly,

$$\operatorname{Ext}^{2}(\cdot, R)^{pure} = 1_{\mathcal{T}}^{-1} * \operatorname{Ext}^{2}(\cdot, R).$$

Now let

$$P_z(\cdot): H(\mathcal{T}) \longrightarrow \mathbb{Q}(z)\llbracket q \rrbracket,$$

denote the virtual Poincaré polynomial.

Now let

$$P_z(\cdot): H(\mathcal{T}) \longrightarrow \mathbb{Q}(z)\llbracket q \rrbracket,$$

denote the virtual Poincaré polynomial. Here z is the formal variable of P_z and q keeps track of an additional grading as follows. Any element $[U \rightarrow \mathcal{T}] \in H(\mathcal{T})$ is locally of finite type so can have infinitely many components. Let $\mathcal{T}_n \subset \mathcal{T}$ be the substack of 0-dimensional sheaves of length n and define

$$P_z(U) := \sum_{n=0}^{\infty} P_z(U \times_{\mathcal{T}} \mathcal{T}_n) q^n.$$

By Serre duality and Rieman-Roch $P_z(\cdot)$ is a *Lie algebra* homomorphism to the abelian Lie algebra $\mathbb{Q}(z)[\![q]\!]$ (Joyce, Stoppa-Thomas):

By Serre duality and Rieman-Roch $P_z(\cdot)$ is a *Lie algebra* homomorphism to the abelian Lie algebra $\mathbb{Q}(z)\llbracket q \rrbracket$ (Joyce, Stoppa-Thomas): If $[U \to \mathcal{T}], [V \to \mathcal{T}] \in H(\mathcal{T})$ then

$$P_z(U*V)=P_z(V*U).$$

By Serre duality and Rieman-Roch $P_z(\cdot)$ is a *Lie algebra* homomorphism to the abelian Lie algebra $\mathbb{Q}(z)\llbracket q \rrbracket$ (Joyce, Stoppa-Thomas): If $[U \to \mathcal{T}], [V \to \mathcal{T}] \in H(\mathcal{T})$ then

$$P_z(U*V)=P_z(V*U).$$

Furthermore, if both $\lim_{z\to 1} P_z(U)$ and $\lim_{z\to 1} P_z(V)$ exist then

$$\lim_{z\to 1} P_z(U*V) = \lim_{z\to 1} P_z(U) \lim_{z\to 1} P_z(V).$$

Define $U := \operatorname{Hom}(R, \cdot) * (\mathbb{C}^{2\ell(\cdot)})^{-1}$ and $V := \mathbb{C}^{2\ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.

Application to our setting

Define
$$U := \operatorname{Hom}(R, \cdot) * (\mathbb{C}^{2\ell(\cdot)})^{-1}$$
 and $V := \mathbb{C}^{2\ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.
$$\lim_{z \to 1} P_z(V)(q) = \lim_{z \to 1} P_z(\operatorname{Hom}(\mathcal{O}_X^{\oplus 2}, \cdot)^{onto})(q) = M(q)^{2e(X)},$$

Application to our setting

Define
$$U := \operatorname{Hom}(R, \cdot) * (\mathbb{C}^{2\ell(\cdot)})^{-1}$$
 and $V := \mathbb{C}^{2\ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.
$$\lim_{z \to 1} P_z(V)(q) = \lim_{z \to 1} P_z(\operatorname{Hom}(\mathcal{O}_X^{\oplus 2}, \cdot)^{onto})(q) = M(q)^{2e(X)},$$

$$\lim_{z \to 1} P_z(U)(q) = \lim_{z \to 1} P_z(\operatorname{Ext}^2(\cdot, R)^{pure})(z^2 q)$$
$$= \sum_{n=0}^{\infty} e(\operatorname{Quot}(\mathcal{E}xt^1(R, \mathcal{O}_X), n))q^n,$$

Application to our setting

Define
$$U := \operatorname{Hom}(R, \cdot) * (\mathbb{C}^{2\ell(\cdot)})^{-1}$$
 and $V := \mathbb{C}^{2\ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.
$$\lim_{z \to 1} P_z(V)(q) = \lim_{z \to 1} P_z(\operatorname{Hom}(\mathcal{O}_X^{\oplus 2}, \cdot)^{onto})(q) = M(q)^{2e(X)},$$

$$\lim_{z \to 1} P_z(U)(q) = \lim_{z \to 1} P_z(\operatorname{Ext}^2(\cdot, R)^{pure})(z^2 q)$$
$$= \sum_{n=0}^{\infty} e(\operatorname{Quot}(\operatorname{Ext}^1(R, \mathcal{O}_X), n))q^n,$$

$$\lim_{z\to 1} P_z(U*V) = \lim_{z\to 1} P_z(\operatorname{Hom}(R,\cdot)^{onto})(q) = \sum_{n=0}^{\infty} e(\operatorname{Quot}(R,n))q^n.$$
Application to our setting

Define
$$U := \operatorname{Hom}(R, \cdot) * (\mathbb{C}^{2\ell(\cdot)})^{-1}$$
 and $V := \mathbb{C}^{2\ell(\cdot)} * 1_{\mathcal{T}}^{-1}$.
$$\lim_{z \to 1} P_z(V)(q) = \lim_{z \to 1} P_z(\operatorname{Hom}(\mathcal{O}_X^{\oplus 2}, \cdot)^{onto})(q) = M(q)^{2e(X)},$$

$$\lim_{z \to 1} P_z(U)(q) = \lim_{z \to 1} P_z(\operatorname{Ext}^2(\cdot, R)^{pure})(z^2 q)$$
$$= \sum_{n=0}^{\infty} e(\operatorname{Quot}(\operatorname{Ext}^1(R, \mathcal{O}_X), n))q^n,$$

$$\lim_{z\to 1} P_z(U*V) = \lim_{z\to 1} P_z(\operatorname{Hom}(R,\cdot)^{onto})(q) = \sum_{n=0}^{\infty} e(\operatorname{Quot}(R,n))q^n.$$

Theorem G-Kool

Let R be a rank 2 reflexive sheaf on a smooth projective 3-fold X. Suppose there exists a cosection $R \to \mathcal{O}_X$ cutting out a 1-dimensional closed subscheme. Then

$$\sum_{n=0}^{\infty} e\big(\operatorname{Quot}(R,n)\big)q^n = M(q)^{2e(X)} \sum_{n=0}^{\infty} e\big(\operatorname{Quot}(\mathcal{E}xt^1(R,\mathcal{O}_X),n)\big)q^n.$$

Theorem G-Kool

Let R be a rank 2 reflexive sheaf on a smooth projective 3-fold X. Suppose there exists a cosection $R \to \mathcal{O}_X$ cutting out a 1-dimensional closed subscheme. Then

$$\sum_{n=0}^{\infty} e\big(\operatorname{Quot}(R,n)\big)q^n = M(q)^{2e(X)} \sum_{n=0}^{\infty} e\big(\operatorname{Quot}(\mathcal{E}xt^1(R,\mathcal{O}_X),n)\big)q^n.$$

Corollary

Let *R* be a singular rank 2 *T*-equivariant reflexive sheaf on \mathbb{C}^3 with homogeneous generators of weights $(u_1 + v_1, u_2 + v_2, u_3), (u_1 + v_1, u_2, u_3 + v_3), (u_1, u_2 + v_2, u_3 + v_3)$. Then

$$\sum_{n=0}^{\infty} e \big(\operatorname{Quot}(R,n) \big) q^n = M(q)^2 \prod_{i=1}^{v_1} \prod_{j=1}^{v_2} \prod_{k=1}^{v_3} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}.$$

Theorem G-Kool

Let R be a rank 2 reflexive sheaf on a smooth projective 3-fold X. Suppose there exists a cosection $R \to \mathcal{O}_X$ cutting out a 1-dimensional closed subscheme. Then

$$\sum_{n=0}^{\infty} e\big(\operatorname{Quot}(R,n)\big)q^n = M(q)^{2e(X)} \sum_{n=0}^{\infty} e\big(\operatorname{Quot}(\mathcal{E}xt^1(R,\mathcal{O}_X),n)\big)q^n.$$

Corollary

Let *R* be a singular rank 2 *T*-equivariant reflexive sheaf on \mathbb{C}^3 with homogeneous generators of weights $(u_1 + v_1, u_2 + v_2, u_3), (u_1 + v_1, u_2, u_3 + v_3), (u_1, u_2 + v_2, u_3 + v_3)$. Then

$$\sum_{n=0}^{\infty} e \big(\operatorname{Quot}(R,n) \big) q^n = M(q)^2 \prod_{i=1}^{v_1} \prod_{j=1}^{v_2} \prod_{k=1}^{v_3} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}.$$

Fix the outgoing 2D partitions $\lambda_1, \lambda_2, \lambda_3$.

Fix the outgoing 2D partitions $\lambda_1, \lambda_2, \lambda_3$. $|\pi| := \#\{\pi \cap ([0, 1, \dots, N]^3)\} - (N+1)\sum_{i=1}^3 |\lambda_i| \qquad N \gg 0.$

Fix the outgoing 2D partitions $\lambda_1, \lambda_2, \lambda_3$. $|\pi| := \#\{\pi \cap ([0, 1, \dots, N]^3)\} - (N+1) \sum_{i=1}^3 |\lambda_i| \qquad N \gg 0.$ • $\lambda_1 = 1^3$ • $\lambda_2 = 2^3 1$ • $\lambda_3 = \emptyset$

Fix the outgoing 2D partitions $\lambda_1, \lambda_2, \lambda_3$. $|\pi| := \#\{\pi \cap ([0, 1, \dots, N]^3)\} - (N+1) \sum_{i=1}^3 |\lambda_i|$ $N \gg 0.$ • $\lambda_1 = 1^3$ • $\lambda_2 = 2^3 1$ • $\lambda_3 = \emptyset$ • $|\pi| = 1$ (with N = 4, $51 - 5 \cdot (3 + 7 + 0))$

 $\sum_{\pi} q^{|\pi|}$ can be expressed in terms of M(q) and the skewed Schur functions. (Okounkov-Reshetikhin-Vafa)

Figure: All 3D partitions are allowed to have infinite legs. Two of the white components is labelled so k = 2.

Example: $(v_1, v_2, v_3) = (2, 2, 1)$

(1)

(1)
$$M(q)^2 \frac{1+q+q^2+q^3+q^4+q^6}{1-q}$$
.
(2) $M(q)^2 \frac{1+q+q^2+q^3+q^4+q^5}{1-q}$.
(3) $M(q)^2 \frac{1+q^2+q^3+q^4+q^5+q^6}{1-q}$.