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Abstract. We consider generalized (T, T−1) transformations such that the base map
satisfies a multiple mixing local limit theorem and anticoncentration large deviation
bounds and in the fiber we have Rd actions with d = 1 or 2 which are exponentially
mixing of all orders. If the skewing cocycle has zero drift, we show that the ergodic
sums satisfy the same limit theorems as the random walks in random scenery studied
by Kesten and Spitzer (1979) and Bolthausen (1989). The proofs rely on the quenched
CLT for the fiber action and the control of the quenched variance. This paper com-
plements our previous work where the classical central limit theorem is obtained for
a large class of generalized (T, T−1) transformations.

1. Introduction

This work is a continuation of our study on generalized T, T−1 transformations, fol-
lowing previous work [11, 12, 13]. Our main innovation in this paper is to provide
several limit theorems in the low dimensional setting, complementing to the higher
dimensional case in [12].

1.1. Results. Let f be a smooth map of a manifold X preserving a measure µ, and
Gt be an Rd action on a manifold Y preserving a measure ν.

Definition 1.1. Gt enjoys multiple exponential mixing of all orders if there is α > 0
such that for each r there are constants C, c > 0 such that for all zero mean Cα functions
A1, . . . , Ar, for all t1, . . . tr ∈ Rd

(1.1)

∣∣∣∣∣ν
(

r∏
j=1

A(Gtjy)

)∣∣∣∣∣ ≤ C

[
r∏
j=1

‖A‖Cα
]
e−cl

where l is the gap l = max
i 6=j
‖ti − tj‖.

Remark 1.2. A simple interpolation shows that if (1.1) holds for some α then it also
holds for all α (see e.g. [14, Appendix A]).
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In case d = 1, there are plenty of examples of multiply exponentially mixing systems
see e.g. the discussion in [11]. In the case d = 2 our main example is the following:
Y = SL3(R)/Γ, where Γ is a cocompact lattice, Gt : Y → Y is the Cartan action on
Y , and ν is the Haar measure. More generally one can consider subactions of Cartan
actions on G/Γ where G is a semisimple Lie group with compact factors and Γ is a
cocompact lattice. In particular, we can take Y = SLd(R)/Γ, and let Gt be an action
by a two dimensional subgroup of the group of diagonal matrices.

Let τ : X → Rd be a smooth map. We study the map F : (X ×Y )→ (X ×Y ) given
by

(1.2) F (x, y) = (f(x), Gτ(x)y).

Note that F preserves the measure ζ = µ× ν and that

FN(x, y) = (fNx,GτN (x)y) where τN(x) =
N−1∑
n=0

τ(fnx).

Let H : X × Y → R be a sufficiently smooth function with ζ(H) = 0 and

SN =
N−1∑
n=0

H(F n(x, y)).

We want to study the distribution of SN when the initial condition (x, y) is distributed
according to ζ.

We shall assume that f is ergodic and satisfies the CLT for Hölder functions.

Definition 1.3. We say that τ satisfies the mixing local limit theorem (MLLT) if for
any sequences (δn)n∈N ∈ R, with lim

n→∞
δn = 0 and (zn)n∈N ∈ Rd such that | zn√

n
− z| < δn

for any cube C ⊂ Rd and any continuous functions A0, A1 : X → R

lim
n→∞

nd/2µ
(
A0(·)A1(fn·)1C(τn − zn)

)
= g(z)µ(A0)µ(A1)Vol(C)

where g(z) is a non-degenerate Gaussian density and the convergence is uniform once
(δn)n∈N is fixed and A0, A1, z range over compact subsets of C(X), C(X) and Rd.

Definition 1.4. τ satisfies multiple mixing local limit theorem (MMLLT) if for each
m ∈ N for any sequence (δn)n∈N ∈ R, with lim

n→∞
δn = 0, for any family of sequences

(z
(1)
n , . . . , z

(m)
n )n∈N with | z

(j)
n√
n
−z(j)| < δn for any cubes {Cj}j≤m ⊂ Rd and any continuous

functions A0, A1, . . . Am : X → R for any sequences n1 . . . nm ∈ N such that nj+1−nj →
∞ (with n0 = 0),

lim
min |nj−nj′ |→∞

(
m∏
j=1

(nj − nj−1)d/2
)
µ

(
m∏
j=0

Aj(f
nj ·)

m∏
j=1

1Cj

(
τnj − z(j)

nj

))

=
m∏
j=0

µ(Aj)
m∏
j=1

g
(
z(j) − z(j−1)

) m∏
j=1

Vol(Cj),
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where z(0) = 0.Moreover, the convergence is uniform once (δn)n∈N is fixed, A0, A1, . . . , Am
range over compact subsets of C(X) and z(j) range over a compact subset of Rd for
every j ≤ m.

Definition 1.5. τ satisfies the anticoncentration large deviation bound of order s if

there exist a constant K and a decreasing function Θ such that

∫ ∞
1

Θ(r)rddr <∞ and

for any numbers n1, n2, . . . , ns, for any unit cubes C1, C2, . . . , Cs centered at c1, c2, . . . , cs

(1.3) µ
(
x : τnj ∈ Cj for j = 1, . . . , s

)
≤

K

(
s∏
j=1

(nj − nj−1)−d/2
)

Θ

(
max
j

‖cj − cj−1‖√
nj − nj−1

)
.

The class of maps satisfying the MMLLT and the large deviation anticoncentration
bounds includes in particular the maps which admit Young towers with exponential
tails, see [21, 19].

Theorem 1.6. Suppose that d = 2, Gt enjoys multiple exponential mixing of all
orders, f satisfies the CLT for smooth observables and τ satisfies the MMLLT and

the anticoncentration large deviation bound. Then there is Σ2 such that
SN√
N lnN

converges as N →∞ to the normal distribution with zero mean and variance Σ2.

Theorem 1.7. Suppose that d = 1, Gt enjoys multiple exponential mixing of all
orders, f satisfies the CLT for smooth observables and τ satisfies the MMLLT and the
anticoncentration large deviation bound. Then there is a constant Σ such that

(1.4)
SN
N3/4

converges as N →∞ to a product ΣLN ,

where L and N are independent, N has standard normal distribution and

(1.5) L =

√∫ ∞
−∞

`2
xdx

where `x is the local time of the standard Brownian Motion at time 1 and spatial
location x.

Remark 1.8. If d = 1 then the exponential mixing condition can be weakened to
sufficiently fast polynomial mixing, see Theorem 5.1 in Section 5. It seems more difficult
to weaken the mixing assumption in two dimension. We do not pursue this topic since
we do not know examples of smooth R2 actions which are mixing at a fast polynomial
(rather than exponential) speed.

Remark 1.9. The asymptotic variance Σ2 in Theorems 1.6 and 1.7 has similar form

(see (3.10) and (4.5)). Namely let H̃(y) =

∫
X

H(x, y)dµ(x). Then

Σ2 = cd

∫
Rd

∫
Y

H̃(y)H̃(Gty)dν(y)dt.
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In dimension 1 if Σ2 = 0 then there is an L2 function J(y) such that∫ t

0

H̃(Gsy)ds = J(Gty)− J(y).

This was shown in the discrete case by Rudolph, [20] (Proposition 2 and Lemma 7),
but the proof applies with no changes in the continuous case.

It is shown in [12, Theorem 6.4] that for R1 volume preserving exponentially mixing
flows, the quadratic form H 7→ Σ2(H) is not identically zero. Therefore the set of
functions of vanishing asymptotic variance is a proper linear subspace. The proof of
Theorem 6.4 in [12] works also for higher dimensional (not necessarily volume preserving
actions) provided that
(i) there are constants K1, β1, K2, β2 such that for all y and r, K1r

β1≤ν(B(y, r))≤K2r
β2

and
(ii) there exists a slowly recurrent point, that is, a point y ∈ Y such that for all positive
constants K and A there exists r0(K,A) so that for all r < r0 and for all t with |t| < K,

ν(B(y, r)G−tB(y, r)) ≤ ν(B(y, r))

| ln r|A
, where B(y, r) is the ball of radius r centered at y.

(We note that for exponentially mixing volume preserving R actions, almost all points
are slowly recurrent, see [14].)

We believe that in many cases the vanishing of the asymptotic variance entails that
the ergodic sums of H satisfy the classical CLT but this will be a subject of a future
work.

Remark 1.10. Results analogous to the above theorems can be proved in case G is
an action of Zd (d = 1, 2) and τ : X → Zd is a piecewise smooth map satisfying
the appropriate assumptions such as the CLT, MMLLT, and anticoncentration large
deviations bounds. Since the results as well as the proofs are virtually the same, we
omit the case of discrete actions. One can also take X to be a subshift of finite type,
see the discussion below.

1.2. Discussion. Here, we discuss previous results related to Theorems 1.6, 1.7.
The first results about T, T−1 transformations pertain to so called random walks

in random scenery. In this model we are given a sequence {ξz}z∈Zd of i.i.d. random
variables. Let τn be a simple random walk on Zd independent of ξs. We are interested

in SN =
N∑
n=1

ξτn . This model could be put in the present framework as follows. Let X

be a set of sequences {vn}n∈Z, where vn ∈ {±e1,±e2, · · ·±ed} where ej are basis vectors
in Zd, µ is the Bernoulli measure with P(v = ±ej) = 1

2d
for all j ∈ 1, . . . , d, Y is the

space of sequences {ξz}z∈Zd , ν is the product of distribution functions of ξ, f and Gt

are shifts and τ({v}) = v0. For random walks in random scenery, Theorem 1.7 is due to
[15], and Theorem 1.6 are due to [4]. The results of [15] and [4] are extended to more
general actions in the fiber (still assuming the random walk in the base) in [7, 8].

In the context of dynamical systems, Theorem 1.7 was proven in [17] under the
assumption that we have a good rate of convergence in the Central Limit Theorem for
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f . In the present paper we follow a method of [4] which seems more flexible and allows
a larger class of base systems.

We also note that if d ≥ 3 or τ has a drift, one has a classical CLT (that is,
SN − E(SN)√

N
converges to a Gaussian distributions). These results are proven in [11, 12].

The paper [11] also studies mixing properties of (T, T−1) transformation defined by
(1.2). In particular [11] shows that in many cases the mixing of the whole product F is
exponential. We observe that in the case where F enjoys multiple exponential mixing,
one can obtain the classical CLT by applying the results of [3]. The CLT of Björklund
and Gorodnik [3] also plays a key role in our proof and we review it in Section 2.

In the case where the base map f is uniformly hyperbolic the skew product map F is
partially hyperbolic. It is possible that generic partially hyperbolic maps enjoy strong
statistical properties including the multiple exponential mixing and the Central Limit
Thereom. However, such a result seems currently beyond reach (some special cases
are considered in [1, 6]). In present (T, T−1) setting the exotic limit theorems such as
our Theorems 1.7 and 1.6 require the zero drift assumption, which is a codimension d
condition.

2. Björklund - Gorodnik CLT

In order to prove our results we use the strategy of [4] replacing the Feller Lindenberg
CLT for iid random variables by a CLT for exponentially mixing systems due to [3].
More precisely we need the following fact.

Proposition 2.1. Let mN , N ∈ N be a sequence of measures on Rd and let {At,N}t∈Rd,N∈N
be a family of real valued functions on Y so that ‖At,N‖C1(Y ) is uniformly bounded and
ν(At,N) ≡ 0. Set SN :=

∫
Rd At,N(Gty)dmN(t). Suppose that

(a) lim
N→∞

‖mN‖ =∞ where ‖m‖ = m(Rd).

(b) For each r ∈ N, r ≥ 3 for each K∫
mr−1
N [B(t,K ln ‖mN‖)]dmN(t) = 0,

where B(t, R) ⊂ Rd is the ball of radius R around t ∈ Rd.
(c) lim

N→∞
VN = σ2 where

VN :=

∫
S2
N(y)dν(y) =

∫∫∫
At1,N(Gt1y)At2,N(Gt2y)dmN(t1)dmN(t2)dν(y).

Then, as N → ∞, SN converges weakly to the normal distribution with zero mean
and variance σ2.

This proposition is proven in [3] in case At,T does not depend on t and T , however
the proof easily extends to the case of t, T -dependent A, see [13].



6 D. DOLGOPYAT, C. DONG, A. KANIGOWSKI, P. NÁNDORI.

3. Dimension two

3.1. Reduction to quenched CLT. Here we prove Theorem 1.6.
Consider a function H̃ satisfying

(3.1)

∫
H̃(x, y)dν(y) = 0

for all x ∈ X.
Given x ∈ X define the measures mN on R2 by

(3.2) mN(x) =
1√

N lnN

N−1∑
n=0

δτn(x)

and functions At,N,x(y) by

(3.3) At,N,x(y) =
1

Card(n ≤ N : τn(x) = t)

∑
n≤N :τn(x)=t

H̃(fnx, y).

Proposition 3.1. Under the assumptions of Theorem 1.6, there exists σ2 and subsets
XN ⊂ X such that lim

N→∞
µ(XN) = 1 and for any sequence xN ∈ XN the measures

{mN(xN)} satisfy the conditions of Proposition 2.1.

The proposition will be proven later. Now we shall show how to obtain Theorem 1.6
from the proposition.

Proof of Theorem 1.6 assuming Proposition 3.1. Split

(3.4) H(x, y) = H̃(x, y) + H̄(x) where H̄(x) =

∫
H(x, y)dν(y).

Denote

SN(x, y) =
1√

N lnN

N−1∑
n=0

H̃(F n(x, y)).

Note that H̃ satisfies (3.1) and hence, by Proposition 3.1, SN(x, y) is asymptotically
normal and is asymptotically independent from x. Finally the contribution of H̄ is

negligible. Indeed, the CLT for smooth observables gives
1√

N lnN

N−1∑
n=0

H̄(fn(x))⇒ 0.

This completes the proof of the theorem (modulo Proposition 3.1). �

The remaining part of this section is devoted to the proof of Proposition 3.1. It
suffices to verify the conditions of Proposition 2.1.

Property (a) is clear, since ‖mN(x)‖ =
√
N/ lnN.

Verifying properties (b) and (c) requires longer computations that are presented in
§3.2 and §3.3.
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3.2. Property (b). Let

(3.5) XK,N =
{
x : Card(n : |n| < N and ‖τn(x)‖ ≤ K lnN) ≥ N1/5

}
.

Lemma 3.2. If for each K, lim
N→∞

Nµ(XK,N) = 0, then there are sets X̂N such that for

all xN ∈ X̂N the measures mN(xN) satisfy property (b) and µ(X̂N)→ 1

Proof. Given K let X̂N = {x : fnx 6∈ XK,N for n < N}. By the assumption of the

lemma, µ(X̂N)→ 1. On the other hand, for x ∈ X̂N ,∫
mr−1
N (x)[B(t,K lnN)]dmN(x) =

1

(N lnN)r/2

N−1∑
n=0

Cardr−1(j < N : ‖τj−τn‖ ≤ K lnN)

≤ N−
r
2

+1+ r−1
5 ≤ N−1/10,

where the first inequality holds since x ∈ X̂N and the second one holds because r ≥ 3.
Since K is arbitrary, the result follows. �

Let

(3.6) `(x, t,N) = Card(n ≤ N : |τn(x)− t| ≤ 1).

Lemma 3.3. For each p there is a constant Cp such that for each t ∈ Rd and N ∈ N,

(3.7) µ (`p(·, t, N)) ≤ Cp lnpN.

Proof. Since `(x, t,N) =
∑
n<N

1B(t,1)(τn(x)) we have

µ (`p(·, t, n)) =
∑
n1,...np

µ
(
x : |τnj(x)− t| ≤ 1 for j = 1, . . . p

)

≤
∑
n1,...np

Kp
1

n1

p∏
j=2

(
1

nj − nj−1 + 1

)
,

where the last step uses the anticoncentration large deviation bound. �

Lemma 3.3 and Markov inequality imply that for each ε, t, p we have

µ

(
x : `(x, t,N) ≥ N1/5

(K lnN)2

)
≤ Cp(K lnN)2p

Np/5

for N large enough. It follows that

µ

(
x : ∃t : ‖t‖ ≤ K lnN and `(x, t,N) ≥ N1/5

(K lnN)2

)
≤ Cp(K lnN)2p+2

Np/5
.

Taking p = 6 we verify the conditions of Lemma 3.2.
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3.3. Property (c). Theorem 4.7 in [11] implies that

(3.8)

∫
H̃(x, y)H̃(F k(x, y))dµ(x)dν(y) =

g(0)

k
ς2
2 + o

(
1

k

)
,

where

(3.9) ς2
2 =

∫∫∫ ∞
−∞

∫
H̃(x1, y)H̃(x2, Gt(y))dν(y)dtdµ(x1)dµ(x2)

and g is the limit Gaussian density of τ (that is, τN/
√
N converges as N → ∞ to the

normal distribution with density g). We note that the integral (3.9) converges by the
exponential mixing of G and (3.1). Furthermore, ς2

2 ≥ 0, which can be seen from the
following formula (whose proof is standard and so is omitted)

ς2
2 = lim

T→∞

1

T

∫ [∫ ∫ T

0

H̃(x,Gt(y))dtdµ

]2

dν.

Defining

VN =
1

N lnN

∫ [N−1∑
n=0

H̃(F n(x, y))

]2

dν(y) ,

we compute

VN =
1

N lnN

N−1∑
n1=0

N−1∑
n2=0

∫
H̃(F n1(x, y))H̃(F n2(x, y))dν(y)

=
1

N lnN

N−1∑
k=0

(N − k)(1 + 1k 6=0)

∫
H̃(x, y)H̃(F k(x, y))dν(y) ,

whence from (3.8) we obtain

(3.10) Σ2 := lim
N→∞

µ (VN(x)) = 2g(0)

∫∫∫∫
H̃(x, y)H̃(x̄, Gty)dµ(x)dµ(x̄)dν(y)dt.

By Chebyshev’s inequality, to establish property (c), it suffices to show that

(3.11) lim
N→∞

µ(V 2
N) = Σ4.

Note that

µ(V 2
N) =

1

N2 ln2N

∑
n1,n2,n3,n4

µ(σn1,n2σn3,n4),

where

σn1,n2(x) =

∫
H(fn1x,Gτn1x

y)H(fn2x,Gτn2 (x)y)dν(y).

Fix a large L and let k = k(n1, n2, n3, n4) be the number of indices j such that |ni−nj| ≥
L for all i 6= j. The number of terms where k ≤ 1 is O(L2N2). Using the trivial bound
|µ(σn1,n2σn3,n4)| ≤ ‖H̃‖2

∞, we see that the contribution of terms with k ≤ 1 is O(N2L2)
which is negligible.
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Next, we consider the contribution of the terms with k = 4. Without loss of gener-
ality, we will assume that

(3.12) n1 < n2, n3 < n4, n1 < n3.

We distniguish 3 cases based on the relative position of n2 with respect to n3 and n4.

Case 1. We claim that for each ε > 0 there is L such that if

(3.13) n1 < n1 + L ≤ n2 < n2 + L ≤ n3 < n3 + L ≤ n4,

then

(3.14)

∣∣∣∣µ (σn1,n2σn3,n4)− Σ4

4|n2 − n1||n4 − n3|

∣∣∣∣ ≤ ε

|n2 − n1||n4 − n3|
.

The proof of (3.14) is based on [11]. First, by [11, Lemma 3.3], we can assume that
H̃(x, y) = A(x)B(y) and without loss of generality we assume ν(B) = 0. Then we have

µ (σn1,n2σn3,n4) =

∫ [ 4∏
i=1

A(fnix)

]
ρ(τn2−n1(fn1x))ρ(τn3−n4(fn4x))dµ(x),

where ρ(t) =
∫
B(y)B(Gty)dν(y). Note that for H̃ as above (3.11) simplifies to

(3.15) Σ2 = 2g(0)µ(A)2

∫
ρ(t)dt.

The remaining part of the proof of (3.14) closely follows the lines of [11, Theorems 4.6,
4.7] and so we only give a sketch. Decompose R2 into a countable disjoint family of
small squares Ci. Let zi be the center of square Ci. Then

µ (σn1,n2σn3,n4) ≈
∑
i,j

Si,j,

where

Si,j = ρ(zi)ρ(zj)

∫ 4∏
k=1

A(fnkx)1Ci(τn2−n1(fn1x))1Cj(τn3−n4(fn4x))dµ(x).

Fixing i, j, letting L→∞ and using the MMLLT and (3.13), we find

Si,j ≈
1

|n2 − n1|
1

|n4 − n3|

∫
Ci
ρ(t)dt

∫
Cj
ρ(t)dtg(0)2[µ(A)]4.

Summing over i, j and using (3.15), we obtain (3.14).

Case 2. We claim that

(3.16)
∑

(n1,...,n4):n1<n3<n4<n2

µ (σn1,n2σn3,n4) ≤ CN2 lnN.

To prove (3.16) take (n1, ..., n4) as in (3.16) and write

m0 = 0, m1 = n3 − n1, m2 = n4 − n1, m3 = n2 − n1.
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Then we have

µ (σn1,n2σn3,n4) =

∫ [ 3∏
i=0

A(fmi(x))

]
ρ(τm3(x))ρ(τm2−m1(fm1x))dµ(x).

Decompose R2 into unit boxes Ci with center zi. Then, we find

|µ (σn1,n2σn3,n4)| ≤ C
∑
i1,i2,i3

ρ̃(zi3)ρ̃(zi2 − zi1)

∫ 3∏
j=1

1τmj∈Cijdµ(x),

where ρ̃(t) = sup
t′:‖t′−t‖≤1

|ρ(t)| . Applying (1.3), we find

|µ (σn1,n2σn3,n4)| ≤C
∑
i1,i2,i3

ρ̃(zi3)ρ̃(zi2 − zi1)

m1(m2 −m1)(m3 −m2)
Θ

(
max
1≤j≤3

‖zij − zij−1
‖

√
mj −mj−1

)
(3.17)

=:
∑
i1,i2,i3

Si1,i2,i3(m1,m2,m3).

Let us consider the special case when i2 = i1 and zi3 = 0 (without loss of generality we
say that in this case i3 = 0). Then we have

(3.18)
∑
i1

Si1,i1,0(m1,m2,m3) ≤

C
∑
i1

1

m1

1

m2 −m1

1

m3 −m2

Θ

(
‖zi1‖

min{√m1,
√
m3 −m2}

)
.

Note that the last expression is symmetric in m1 = n3−n1 and m3−m2 = n2−n4. Thus
without loss of generality we can assume n3−n1 ≤ n2−n4 (indeed, the multiplier 2 can
be incorporated into the constant C). Denoting a = n3 − n1, b = n4 − n3, c = n2 − n4,
we obtain ∑

(n1,...,n4):n1<n3<n4<n2<N

∑
i1

Si1,i1,0(m1,m2,m3) ≤ CN
∑
i

N∑
a=1

N∑
b=1

N∑
c=a

1

abc
Θ

(
‖zi‖√
a

)
.

Note that the multiplier N accounts for all choices of n1. Thus∑
(n1,...,n4):n1<n3<n4<n2<N

∑
i1

Si1,i1,0(m1,m2,m3) ≤ CN lnN
∑
i

N∑
a=1

N∑
c=a

1

ac
Θ

(
‖zi‖√
a

)

≤ CN lnN

∫
R2

∫ N

1

∫ N

a

1

ac
Θ

(
‖z‖√
a

)
dcdadz ≤ CN lnN

∫ N

1

∫ N

a

1

c
dcda ≤ CN2 lnN

where in the third inequality we used that

∫ ∞
1

Θ(r)rdr < ∞ and the last inequality

follows from direct integration. Thus we have verified that the terms corresponding to
i1 = i2 and i3 = 0 are in O(N2 lnN).
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To complete the proof of (3.16), we need to estimate the contribution of the sum
corresponding to all i2 and i3. To this end, we will distinguish two cases based on
whether the following assumption holds or not:

(3.19) ‖zi2 − zi1‖ <
1

4
‖zi1‖, and ‖zi3 − zi2‖ <

1

4
‖zi1‖.

For any given fixed i1, let
∑̂

i2,i3
denote the sum over i2, i3 that do not satisfy (3.19)

and let
∑̃

i2,i3
denote the sum for i2, i3 satisfying (3.19).

First, we assume that (3.19) fails. Then, we have∑
i1

∑̂
i2,i3

Si1,i2,i3(m1,m2,m3) ≤ C
∑
i1

∑̂
i2,i3

ρ̃(zi2 − zi1)ρ̃(zi3)
1

m1

1

m2 −m1

1

m3 −m2

×
[
Θ

(
‖zi1‖

4 min{√m1,
√
m2 −m1}

)
+ Θ

(
‖zi1‖

4 min{√m1,
√
m3 −m2}

)]
.

Now we can perform the summation with respect to i2, i3 first. Denote a = m1, b =
m2 −m1, c = m3 −m2. By the exponential decay of ρ̃ we get∑

i1

∑̂
i2,i3

Si1,i2,i3(m1,m2,m3) ≤ C
∑
i1

1

abc

[
Θ

(
‖zi1‖

4 min{
√
a,
√
b}

)
+Θ

(
‖zi1‖

4 min{
√
a,
√
c}

)]
.

Summing the last displayed formula for n1, n2, n3, n4, we obtain a term O(N2 lnN)
exactly as in the estimate of (3.18).

Now we assume that (3.19) holds. Then observing that ‖zi3‖ ≥ ‖zi1‖/2, and using
the exponential decay of ρ̃, we find that

ρ̃(zi2 − zi1)ρ̃(zi3) ≤ Ce−c‖zi1‖

with a fixed constant c. Thus we conclude∑
m1≤m2≤m3≤N

∑
i1

∑̃
i2,i3

Si1,i2,i3

≤ C
∑

m1≤m2≤m3≤N

1

m1

1

m2 −m1

1

m3 −m2

∑
i1

∑̃
i2,i3

e−c‖zi1‖ ≤ C ln3N.

Summing over all choices of n1, we obtain a term in O(N ln3N). This completes the
proof of (3.16).

Case 3. We claim that

(3.20)
∑

(n1,...,n4):n1<n3<n2<n4

µ (σn1,n2σn3,n4) ≤ CN2 lnN.

The proof of (3.20) is similar to that of (3.16). Indeed, the right hand side of (3.17)
is now replaced by

C
∑
i1,i2,i3

ρ̃(zi2)ρ̃(zi3 − zi1)

m1(m2 −m1)(m3 −m2)
Θ

(
max
j

‖zij − zij−1
‖

√
mj −mj−1

)
.
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We consider the special case i2 = 0, i3 = i1 first. Then (3.18) is replaced by

(3.21)
∑
i1

Si1,0,i1(m1,m2,m3)

≤ C
∑
i1

1

m1

1

m2 −m1

1

m3 −m2

Θ

(
‖zi1‖

min{√m1,
√
m2 −m1,

√
m3 −m2}

)
.

which is bounded by the right hand side of (3.18) (perhaps with a different constant
C) and hence is in O(N2 lnN). The contribution of general i2, i3 can be bounded as
before. (3.20) follows.

The upshot of the above three cases is that the leading term only comes from indices
n1, ..., n4 satisfying (3.13). Summing µ(σn1,n2σn3,n4) for all indices n1, ..., n4 satisfying
(3.13), we obtain N2 ln2N [Σ4/8 + oL→∞(1)] where we have used (3.14) and the fact

that
∑

n1<n3<N

ln(n3 − n1) ln(N − n3) =
N2 ln2N

2
(1 + oN→∞(1)).

Next we claim that

(3.22)
∑

n1,...,n4:k=4

µ(σn1,n2σn3,n4) = [Σ2 + oL→∞(1)]N2 ln2N.

Indeed similarly to the case of (3.13) considered above we see that the main contri-
bution to our sums comes from the terms where the pairs (n1, n2) and (n3, n4) are not
intertwined. Note that if we choose a random permutation of (n1, n2, n3, n4) then the
probability of non intertwining is 1/3 (since the second element should come from the
same pair as the first one). Therefore there are 24/3=8 permutations 1 contributing to
our sum which explains the additional factor of 8 in (3.22).

To complete the proof of property (c), it remains to verify that the contribution of
terms with k = 2, 3 is negligible. First note that k = 3 is impossible by the definition
of k. Finally, if k = 2, the we can repeat a simplified version of the proof for k = 4
using the MLLT instead of the MMLLT. For example, let us consider the case n1 ≤
n2 ≤ n3 ≤ n4. Since k = 2, we must have |n2 − n1| ≥ L or |n4 − n3| ≥ L. Without loss
of generality assume |n4 − n3| ≥ L. Then, using the fact that due to the exponential
mixing of G, σn3,n4 ≤ Ce−c` on the set ‖τn4−τn3‖ ∈ [`, `+1], we obtain from the MLLT
that

µ (σn1,n2σn3,n4) = O

(
1

|n4 − n3|

)
.

Hence the total contribution terms with k = 2 is in O (LN2 lnN). This completes the
proof of property (c). We have finished the proof of Proposition 3.1 and hence the proof
of Theorem 1.6.

1These eight permutations corresponds to all possible choices of signs (∗ ∈ {≤,≥}) in the inequalities

n1 ∗ n2, n3 ∗ n4, min(n1, n2) ∗min(n3, n4)
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4. Dimension one

4.1. Reduction to the limit theorem for the variance. Here we prove Theo-
rem 1.7.

We use the decomposition (3.4). Since f satisfies the CLT for smooth observables,

1√
N

N∑
n=1

H̄(fn(x)) converges weakly, and so this sum is negligible after rescaling by

N3/4. It remains to study the ergodic sum of H̃.
Following the ideas of the previous section, we let

(4.1) mN(x) =
1√
VN(x)

N−1∑
n=0

δτn(x),

At,N,x(y) =
1

Card(n ≤ N : τn(x) = t)

∑
n≤N :τn(x)=t

H̃(fn(x), y),

where

VN(x) =

∫
S2
N(x, y)dν(y), SN(x, y) =

N−1∑
n=0

H̃ ◦ F n(x, y).

Thus in the notation of Proposition 2.1, we have SN =
SN√
VN(x)

.

In contrast with Theorem 1.6, VN(x) does not satisfy a weak law of large numbers.
Instead we have

Proposition 4.1. There is a constant Λ so that VN
ΛN3/2 converges in law as N →∞ to

the random variable L2 given by (1.5).

Before proving Proposition 4.1, let us use it to derive Theorem 1.7. We start with
the following analogue of Proposition 3.1:

Lemma 4.2. Under the assumptions of Theorems 1.7, there are subsets XN ⊂ X such
that lim

N→∞
µ(XN) = 1 and for any sequence xN ∈ XN the measures {mN(xN)} satisfy

the conditions of Proposition 2.1 with σ = 1.

Proof of Lemma 4.2 assuming Proposition 4.1. Clearly, ‖mN‖ → ∞ for a large set of

x’s and so (a) holds. Recalling that SN(x, y) = SN(x, y)/
√
VN(x), property (c) holds

trivially for all x ∈ X. It remains to show property (b).
Note that L2 is non-negative and non-atomic at zero, i.e. for any ε > 0 there is ε′ > 0

so that P(L2 < ε′) < ε and so by Proposition 4.1,

lim
N→∞

µ(x : N1.49 < VN(x) < N1.51) = 1.

Thus we can assume that x is such that N1.49 < VN(x) < N1.51. Next, we define

˜̀(x, t,N) =
Card(n ≤ N : |τn(x)− t| < 1)√

N
.

As in the proof of Lemma 3.3, we find that for every p ∈ Z+, every t ∈ R, and every
N ∈ N we have µ(˜̀p(., t, N)) < Cp. Then choosing p = 1000, the Markov inequality



14 D. DOLGOPYAT, C. DONG, A. KANIGOWSKI, P. NÁNDORI.

gives µ(x : ˜̀(x, t,N) > N1/100) < CN−10. Thus we can assume that for all t ∈ Z with

|t| < N0.6, ˜̀(x, t,N) < N1/100 holds. By the anticoncentration large deviation bounds,
we can also assume that max

n≤N
|τn(x)| ≤ N0.6 since the set of points where this condition

fails has negligible measure. In summary, the measure of the set of x’s satisfying that

N1.49 < VN(x) < N1.51 and ˜̀(x, t,N) ≤

{
N0.01 |t| ≤ N0.6,

0 |t| ≥ N0.6.

tends to 1 as N →∞. For any such x, we have∫
mr−1
N (x)(t,K lnN)dmN(x) =

1

(VN(x))r/2

N−1∑
n=0

Cardr−1(j < N : |τj−τn| ≤ K ln ‖mN‖)

≤ 1

(N1.49)r/2

∑
t∈Z:|t|≤N0.6

`r(x, t,N) ≤ 2N0.51r+0.6−0.745r = o(1).

if r ≥ 3. Property (b) and the lemma follow. �

Proof of Theorem 1.7 assuming Proposition 4.1. Recall that SN(x, y) =
SN(x, y)√
VN(x)

. By

Lemma 4.2 and Proposition 2.1, there is a sequence of subsets XN ⊂ X with µ(XN)→ 1
such that for every sequence xN ∈ XN , the distribution of SN(x, y) w.r.t. ν(y) converges
to the standard normal (note that this time properties (a) and (c) are immediate).

In fact, we have the stronger statement that

(4.2)

(
VN

ΛN3/2
,SN

)
⇒ (L2,N ) as N →∞,

where L is given by (1.5), N is standard normal and L2 and N are independent. This
follows from Proposition 4.1, Lemma 4.2 and the asymptotic independence of SN and
VN which comes from the fact that VN depends only on x while SN is asymptotically
independent of x. More precisely, let φ and ψ be two continuous compactly supported
test functions. Then

lim
N→∞

ζ

(
φ

(
VN

ΛN3/2

)
ψ(SN)

)
= lim

N→∞
ζ

(
φ

(
VN

ΛN3/2

)
ψ(SN)1XN

)
= lim

N→∞

∫
XN

[
φ

(
VN

ΛN3/2

)∫
Y

ψ(SN)dν

]
dµ = E(ψ(N )) lim

N→∞

∫
XN

φ

(
VN

ΛN3/2

)
dµ

= E(ψ(N )) lim
N→∞

∫
X

φ

(
VN

ΛN3/2

)
dµ = E(ψ(N ))E(φ(L2)),

where the first and the fourth equalities hold since µ(XN) → 1, the third inequality
holds by Proposition 2.1, and the last equality holds by Proposition 4.1. This proves
(4.2).

Denote Σ =
√

Λ. By (4.2) and the continuous mapping theorem,

SN
ΣN3/4

=

√
VN√

ΛN3/2
× SN√

VN
⇒ LN
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completing the proof of the Theorem 1.7. �

4.2. Proof of Proposition 4.1. We are going to use the following well known fact
(see e.g. [2] Chapter 1.7, Problem 4). If Xn is a sequence of random variables so that
for every k ∈ Z+

(4.3) Jk = lim
n→∞

E(X k
n )

exists and

(4.4) lim sup
k→∞

(
Jk
k!

)1/k

<∞,

then Xn converges weakly to a random variable X . Furthermore, E(X k) = Jk for every
k ∈ Z+ and X is uniquely characterized by its moments.

Now we explain our strategy of proof of Proposition 4.1 (a similar strategy was used in
[18]). We prove that there is a constant Λ depending on the (T, T−1) transformation F
and the observable H so that XN = VN/(ΛN

3/2) satisfies (4.3) (with E meaning integral
w.r.t. µ) and (4.4) with constants Jk that do not depend on F and H. Consequently,
there is a random variable X so that XN = VN/(ΛN

3/2) converges weakly to X for any
(T, T−1) transformation satisfying the assumptions of Theorem 1.7. Recall from §1.2
that one such example is the one dimensional random walk in random scenery, in which
case by the result of [15], XN = VN/(ΛN

3/2) converges weakly to L2. Thus X = L2

and it has to be the limit for all (T, T−1) transformation satisfying the assumptions of
Theorem 1.7. It remains to check (4.3) and (4.4).

Recall that τ satisfies the MMLLT with a Gaussian density g. Let ς1 be the standard
deviation of this Gaussian random variable, that is g(z) = ϕ(z/ς1)/ς1, where ϕ is the
standard Gaussian density.

Define

(4.5) Λ =

√
πς2

2

ς1
=
√

2πς2
2g(0)

where ς2
2 is given by (3.9).

Lemma 4.3. For k = 1, (4.3) holds with

(4.6) J1 =
2√
π

∫
w∈R

∫
0<t1<t2<1

1√
t1

1√
t2 − t1

ϕ

(
w√
t1

)
ϕ(0)dt1dt2dw.

We note that the above integral can be performed explicitly. Namely J1 =
4
√

2

3
√
π

.

This shows that Λ was chosen correctly. Indeed, in case of the simple random walk in

random scenery, formula (1.2) in [15] shows that J1 = 4
√

2
3
√
π

while by the main result of

[15], the conclusion of Proposition 4.1 holds for simple random walk in random scenery.

Proof of Lemma 4.3. Fix some ε > 0. We need to show that for N large enough,∣∣∣∣∣∣N−3/2Λ−1

∫∫ [ N∑
n=1

H̃ ◦ F n(x, y)

]2

dµdν − J1

∣∣∣∣∣∣ < ε.
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In the following proof, we will choose a small η = η(ε), a large L = L(ε) a small
η′=η′(ε, η, L)<η and finally N = N(ε, η, L, η′). There will be finitely many restrictions
on these parameters, we can choose the most strict one.

Choose a partition of X into sets Xi, i ∈ I of diameter < η and fix some elements
xi ∈ Xi. We have ∫∫ [ N∑

n=1

H̃ ◦ F n(x, y)

]2

dµdν =

(4.7)
N∑

n1,n2=1

∑
i1,i2∈I

∑
z1,z2∈Z

∫
p(x)

∫
H̃(fn1(x), Gτn1 (x)(y))H̃(fn2(x), Gτn2 (x)(y))dνdµ,

where

p(x) = pη,n1,n2,i1,i2,z1,z2(x) = 1fn1x∈Xi11f
n2x∈Xi21τn1 (x)∈[z1,z1+1]η1τn2 (x)∈[z2,z2+1]η.

Split the sum in (4.7) as T1 + T2, where T1 corresponds to the terms satisfying

(A1) η′N < min{n1, n2} < min{n1, n2}+ η′N < max{n1, n2}
(A2) |z1| < L

√
N/η

(A3) |z1 − z2| < L/η.

and T2 stands for the terms where at least one of the conditions (A1)–(A3) is violated.

Write T1 =
∑̃

(...).
We start by estimating T1. Let us write aN ≈ bN if there are constants η, L and η′

so that for N large enough, |aN − bN | < εΛN3/2/10. We claim that

(4.8) T1 ≈
∑̃∫

p(x)dµ

∫
H̃(xi1 , Gz1η(y))H̃(xi2 , Gz2η(y))dν.

Indeed, by the continuity of H we can choose η so small that the difference between
the LHS and the RHS of (4.8) does not exceed

εΛ

1000

∑̃∫
pη,n1,n2,i1,i2,z1,z2(x)dµ(x),

so (4.8) follows from the anticoncentration large deviation bound.
Next, writing m1 = min{n1, n2}, m2 = max{n1, n2} and using the MMLLT, we find

(4.9) T1 ≈
1

ς2
1

∑̃
η2 1
√
m1

ϕ

(
z1η

ς1
√
m1

)
1√

m2 −m1

ϕ

(
(z2 − z1)η

ς1
√
m2 −m1

)
µ(Xi1)µ(Xi2)×

∫
H̃(xi1 , Gz1η(y))H̃(xi2 , Gz2η(y))dν.

Noting that by (A1) and (A3), (z2 − z1)η/[ς1
√
m2 −m1] = O(N−1/2), we see that

ϕ

(
(z2 − z1)η

ς1
√
m2 −m1

)
can be replaced by ϕ(0) in (4.9) without invalidating ≈. Then the
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only term depending on z2 is under the integral with respect to ν. We can approximate
the sum over z2 by a Riemann integral:

(4.10) η

z1+L/η∑
z2=z1−L/η

∫
H̃(xi1 , Gz1η(y))H̃(xi2 , Gz2η(y))dν = Ii1,i2 + oη→0,L→∞,N→∞(1)

where

Ii1,i2 =

∫
R

∫
H̃(xi1 , y)H̃(xi2 , Gt(y))dνdt.

Combining (4.9) and (4.10), we conclude

T1 ≈
2

ς2
1

[∑
i1,i2

µ(Xi1)µ(Xi2)Ii1,i2

]
×

×

 ∑
η′N<m1<m1+η′N<m2<N

∑
|z1|<L

√
N/η

η
1
√
m1

ϕ

(
z1η

ς1
√
m1

)
1√

m2 −m1

ϕ(0)

 ,
where the factor 2 comes from taking into account both n1 < n2 and n2 < n1. Further
decreasing η and increasing L if necessary and recalling (3.9), we can replace the first
sum by ς2

2 .
Now replacing two Riemann sums with the corresponding Riemann integrals, we

obtain

T1 ≈
2ς2

2

ς2
1

N3/2

∫
|w|<L

∫
η′<t1<t1+η′<t2<1

1√
t1

1√
t2 − t1

ϕ

(
w

ς1
√
t1

)
ϕ(0)dtdw ≈ ς2

2

ς1

√
πN3/2J1.

In order to complete the proof of (4.6), it suffices to show that for L large and for η, η′

small

(4.11) |T2| < εN3/2/10.

We will estimate the contribution of the terms where exactly one of the assumptions
(A1)–(A3) fail (the cases when more than one fail are similar and easier).

Suppose that (A1) fails and, moreover, m1 < η′N (the other cases are similar). Using
the anticoncentration large deviation bounds instead of the MMLLT, we obtain that
the corresponding sum is bounded by

η′N∑
m1=1

N∑
m2=0

1
√
m1

1√
m2 + 1

∑
|z1|<L

√
N/η

C(η, L) ≤
√
η′NC ′(η, L)

√
N < εN3/2/10

if η′ is small enough.
Let us assume that (A2) fails. Then again using the anticoncentration large deviation

bounds instead of the MMLLT, we obtain that the corresponding sum is bounded by

N∑
m1=η′N

N∑
m2=m1+η′N

1
√
m1

1√
m2 −m1

∑
|z1|≥L

√
N/η

CηΘ(|z1|η/
√
m1)
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≤ CN
∑

|z1|≥L
√
N/η

ηΘ(|z1|η/
√
N) ≤ CN3/2

∫ ∞
L−1

Θ(r)dr < εN3/2/10

for L large.
Finally assume that (A3) fails. Then we use the exponential mixing of G to derive

η
∑

z2:|z2−z1|>L/η

∫
H̃(xi1 , Gz1η(y))H̃(xi2 , Gz2η(y))dν

≤ 2

∫ ∞
L

∫
H̃(xi1 , y)H̃(xi2 , Gt(y))dνdt ≤ Ce−cL.

Proceeding as in the case of T1 we obtain that the sum corresponding to indices when
(A3) is violated is bounded by CN3/2e−cL < εN3/2/10. This completes the proof of the
lemma. �

Lemma 4.4. For any k ≥ 2, (4.3) holds with
(4.12)

Jk =

[
2√
π

]k ∫
w1,...,wk∈R

∫
0<t1<...<t2k<1

2k∏
j=1

1
√
tj − tj−1

∑
v∈V

2k∏
j=1

ϕ

(
wv(j) − wv(j−1)√

tj − tj−1

)
dtdw,

where V is the set of all two-to-one mappings from {1, 2, ..., 2k} to {1, 2, ..., k} (that is,
|v−1(l)| = 2 for all l = 1, ..., k).

Proof of Lemma 4.4. We follow the strategy of the proof of Lemma 4.3.
Fix some ε > 0. We need to show that for N large enough,∣∣∣∣∣∣∣N−3k/2Λ−k

∫ ∫ [ N∑
n=1

H̃ ◦ F n(x, y)

]2

dν

k

dµ− Jk

∣∣∣∣∣∣∣ < ε.

Now we have∫ ∫ [ N∑
n=1

H̃ ◦ F n(x, y)

]2

dν

k

dµ

=
N∑

n1,n2,...,n2k=1

∑
i1,i2...,i2k∈I

∑
z1,z2,...,z2k∈Z

(4.13)

∫
p(x)

[
k∏
j=1

∫
H̃(fn2j−1(x), Gτn2j−1 (x)(y))H̃(fn2j(x), Gτn2j (x)(y))dν

]
dµ

where

p(x) = pη,n,i,z(x) =

[
2k∏
j=1

1fnjx∈Xij

][
2k∏
j=1

1τnj (x)∈[zj ,zj+1]η

]
.

Let us order the numbers n1, ..., n2k as m1 ≤ m2 ≤ ... ≤ m2k and denote m0 = 0.
As before, we write the sum in (4.13) as T1 + T2, where T1 corresponds to the terms
satisfying
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(A1’) for every j = 1, ..., 2k, mj −mj−1 > η′N

(A2’) |z2j−1| < L
√
N/η for all j = 1, ..., k

(A3’) |z2j−1 − z2j| < L/η for all j = 1, ..., k

and write T1 =
∑̃

(...). As in (4.8),

(4.14) T1 ≈
∑̃∫

p(x)dµ
k∏
j=1

∫
H̃(xi2j−1

, Gz2j−1η(y))H̃(xi2j , Gz2jη(y))dν,

where ≈ now means that the difference between the LHS and the RHS an be made
smaller than εΛkN3k/2/10 provided that η and η′ are small enough and L and N are
large enough. To compute

∫
p(x)dµ, we use the MMLLT for times m1 < m2 < ... <

m2k. Note however that the range of summation for different zj’s are different and
so it is important to keep track of the index i so that ni = mj. To this end, define
to permutation ρ (uniquely defined by the tuple (n1, ..., n2k) if (A1’) holds) so that
mj = nρ(j). Writing ρ(0) = 0 and z0 = 0 and using the MMLLT we obtain

T1 ≈
1

ς2k
1

∑̃
η2k

[
2k∏
j=1

1
√
mj −mj−1

ϕ

(
(zρ(j) − zρ(j−1))η

ς1
√
mj −mj−1

)]
×(4.15) [

2k∏
j=1

µ(Xij)

][
k∏
j=1

∫
H̃(xi2j−1

, Gz2j−1
(y))H̃(xi2j , Gz2j(y))dν

]
.(4.16)

By (A1’) and (A3’), ρ(l) can be replaced by 2dρ(l)/2e − 1 (the biggest odd integer not
bigger than ρ(j)) for l = j− 1, j in the subscripts of z in (4.15). Consequently, z2j only
appears in (4.16). As before, we compute∑

i1,...,i2k

[
2k∏
j=1

µ(Xij)

]
ηk

∑
z2,z4,...,z2k:

|z2j−z2j−1|<L/η

[
k∏
j=1

∫
H̃(xi2j−1

, Gz2j−1
(y))H̃(xi2j , Gz2j(y))dν

]

= ς2k
2 + o(1).

Thus we arrive at

T1 ≈
ς2k
2

ς2k
1

∑̂
ηk

[
2k∏
j=1

1
√
mj −mj−1

ϕ

(
(z2dρ(j)/2e−1 − z2dρ(j−1)/2e−1)η

ς1
√
mj −mj−1

)]
,

where Σ̂ refers to the sum for n1, ..., n2k, z1, z3, ..., z2k−1, satisfying (A1’), (A3’). Next,
observe that u : {1, ..., 2k} → {1, 3..., 2k−1} defined by u(j) = 2dρ(j)/2e−1 is a two-to-
one mapping. Let U be the set of all such mappings. The summand in the last displayed
formula only depends on (n1, ..., n2k) through (m1, ...,m2k) and u. Furthermore, for any
given (m1, ...,m2k) and u, there are exactly 2k corresponding tuples (n1, ..., n2k). Thus

T1 ≈ 2k
ς2k
2

ς2k
1

∑
u∈U

∑
m1,...m2k

satisfying (A1’)

∑
z1,..,z2k−1

satisfying (A3’)

ηk

[
2k∏
j=1

1
√
mj −mj−1

ϕ

(
(zu(j) − zu(j−1))η

ς1
√
mj −mj−1

)]
.
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Now we are ready to replace the last two sums (Riemann sums) by the corresponding

Riemann integral with tj ∼ mj/N and wl ∼ z2l−1η/
√
N . To simplify the notation a

little, we denote v(j) = (u(j) + 1)/2, thus v is a 2-to-1 mapping from {1, 2, ..., 2k} to
{1, 2, ..., k} (the set of all such mapping is denoted by V ). We obtain

T1 ≈ 2k
ς2k
2

ς2k
1

N3k/2
∑
v∈V∫

|w1|,...,|wk|<L

∫
0=t0<t1<...<t2k<1:

tj−tj−1<η
′

2k∏
j=1

1
√
tj − tj−1

2k∏
j=1

ϕ

(
wv(j) − wv(j−1)

ς1
√
tj − tj−1

)
dtdw.

Substituting w to w/ς1 in the above integrals, we obtain

T1 ≈
ς2k
2

ςk1
πk/2N3k/2Jk.

As in Lemma 4.3, T2 is negligible. This completes the proof of Lemma 4.4. �

To finish the proof of Proposition 4.1, it remains to verify (4.4). To this end, first
note that since ϕ decays quickly, there is a constant M so that for every v ∈ V and
every t1, ..., t2k ∈ (0, 1], ∫

Rk

2k∏
j=1

ϕ

(
wv(j) − wv(j−1)

ς1
√
tj − tj−1

)
dw < Mk.

Noting that |V | = (2k)!/2k, we have

|Jk| ≤ Ck(2k)!

∫
0<t1<...<t2k<1

2k∏
j=1

1
√
tj − tj−1

dt.

The above integral can be computed explicitly and is equal to
Γ(1/2)2k

Γ(k + 1)
=
πk

k!
. Noting

that (2k)!/(k!) < Ckk!, we find that |Jk| ≤ Ckk! whence (4.4) follows. This completes
the proof of Proposition 4.1.

5. Polynomially mixing flows in dimension one.

In this section, we extend the result of Theorem 1.7 to some flows with polynomial
mixing rates. We use the setting of [10]. Recall that a flow Gt is called partially
hyperbolic if there is a Gt invariant splitting TY = Eu ⊕ Ecs and positive constants
C1, C2, λ1, λ2 such that for each t ≥ 0

(i) ‖dG−t|Eu‖ ≤ C1e
−λ1t;

(ii) For any unit vectors vu ∈ Eu, vcs ∈ Ecs we have ‖dGt|vcs‖ ≤ C2e
−λ2t‖dGtvu‖.

For partially hyperbolic flows the leaves of Eu are tangent to the leaves of an abso-
lutely continuous foliation W u.

Fix constants R, v̄, C̄1, α1. Let A(R, v̄, C̄1, α1) denote the collection of sets D which
belong to one leaf of W u and satisfy

diam(D) ≤ R, mes(D) ≥ v̄, mes(∂εD) ≤ C̄1ε
α1



LIMIT THEOREMS FOR LOW DIMENSIONAL GENERALIZED T, T−1 TRANSFORMATIONS 21

for all ε > 0, where ∂εD is the ε neighborhood of the boundary of D. We say that the
sets from A(R, v̄, C̄1, α1) have bounded geometry.

Fix C̄2, α2 > 0. Let M(R, v̄, C̄1, α1, C̄2, α2) denote the set of linear functionals of the
form

E`D,ρ(A) =

∫
D

A(y)ρ(y)dy,

where D ∈ A(R, v̄, C̄1, α1), ρ is a probability density on D, ln ρ ∈ Cα2(D), ‖ ln ρ‖Cr ≤
C̄2. We shall often use the existence of almost Markov decomposition established in [10,
Section 2]: if R, C̄1, and C̄2 are large enough and α1, α2 and v̄ are small enough, then
given ` ∈M(R, v̄, C̄1, α1, C̄2, α2) and t > 0 we can decompose

(5.1) E`(A ◦Gt) =
∑
s

csE`s(A) +O
(
‖A‖C0θt

)
with `s ∈M(R, v̄, C̄1, α1, C̄2, α2) and

∑
s

cs = 1 +O(θt) for some θ < 1.

We say that a measure is u-Gibbs if its conditional measures on unstable leaves have
smooth densities. The existence of almost Markov decomposition implies that u-Gibbs
measures belong to the convex hull of M(R, v̄, C̄1, α1, C̄2, α2) for appropriate choice of
R, v̄, C̄1, α1, C̄2, α2 (see [5, §11.2]).

From now on we shall fix constants involved in the definition of M(R, v̄, C̄1, α1, C̄2, α2)
which satisfies (5.1) and whose convex hull contains u-Gibbs measures. For the sake of
simplicity, we will write M instead of M(R, v̄, C̄1, α1, C̄2, α2).

We say that the unstable leaves become equidistributed at rate a(t) if there is r > 0
such that for all ` ∈M we have

(5.2) |E`(A ◦Gt)− ν(A)| ≤ a(t)‖A‖Cr

where ν is the reference invariant measure for Gt. We note that if (5.2) holds with
a(t) → 0, then ν belongs to the convex hull of M, whence it is a u-Gibbs measure (in
fact, it is the unique SRB measure for Gt, see [10, Corollary 2]).

Theorem 5.1. Theorem 1.7 remains valid if the assumption that G enjoys exponential
mixing of all orders is replaced by the assumption that G is partially hyperbolic and
unstable leaves become equidistributed with rate Kt−γ for some γ > 1 and K > 0.

Corollary 5.2. Suppose that τ satisfies the assumption of Theorem 1.7, Gt is a topo-
logically transitive Anosov flow whose stable and unstable foliations are not jointly
integrable, and ν is the SRB measure. Then (1.4) holds for sufficiently smooth func-
tions.

Indeed, according to [9, Theorem 3], for Anosov flows, unstable leaves are equidis-
tributed on Cr at rate Kt−γ(r) where γ(r)→∞ as r →∞.

The proof of Theorem 5.1 requires a modification of Proposition 2.1. We shall use
the same notation as in that proposition.
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Proposition 5.3. Suppose that Gt is partially hyperbolic with unstable leaves equidis-
tributed at rate Kt−γ for some γ > 1. Suppose that for some 0 < δ < 1/20 such that

(5.3) γ − 1 >
16δ

1− 20δ

and κ > 0 we have

(a) mN(t ∈ R : |t| ≤ N (1/2)+δ) ≤ N1/4+δ and mN(t : |t| > N (1/2)+δ) = 0;
(b) for every t ∈ R, mN([t, t+ 1]) ≤ N δ−(1/4);

(c)

∫∫
|t1−t2|>

√
lnN

dmN(t1)dmN(t2)

|t1 − t2|γ
≤ ln−κN ;

(d) lim
N→∞

ν(S2
N) = 1.

Then SN ⇒ N (0, 1) as N →∞.

Lemma 5.4. Under the assumptions of Theorems 5.1, there are subsets XN ⊂ X such
that lim

N→∞
µ(XN) = 1 and for any sequence xN ∈ XN the measures {mN(xN)}, defined

by (4.1), satisfy the conditions of Proposition 5.3.

Proof. The fact that conditions (a) and (b) hold for arbitrary δ > 0 are verified as before.
Condition (d) is immediate from the definition of mN . In order to verify condition (c)
we note that by Proposition 4.1, for any κ > 0, µ(x : VN(x) < N3/2 ln−κN) → 0 as
N →∞. Therefore it is enough to check that if δ and κ are sufficiently small, then

µ(x : RN(x) < N3/2 ln−2κN)

is close to 1, where

RN(x) :=
∑

n1,n2∈Z:|n1−n2|>
√

lnN

`(x, n1, N)`(x, n2, N)

|n1 − n2|γ

and `(x, t,N) is the local time defined by (3.6). Note that

µ (`(n1, N)`(n2, N)) =
∑

1≤j1,j2≤N

µ(x : |τj1(x)− n1| ≤ 1, |τj2(x)− n2| ≤ 1).

Therefore, using the anticoncentration large deviation bound, we conclude that

µ(RN) ≤ C
∑

1≤j1≤j2≤N

∑
|n1−n2|≥

√
lnN

1√
j1

√
j2 − j1 + 1

Θ

(
n1√
j1

)
1

|n2 − n1|γ

≤ C

√
N

ln(γ−1)/2N

∑
j1

∑
n1

1√
j1

Θ

(
n1√
j1

)
≤ C

√
N

ln(γ−1)/2N

∑
j1

∫ ∞
0

Θ (r) dr ≤ C
N3/2

ln(γ−1)/2N
.

Now the result follows by the Markov inequality provided that γ − 1 > 4κ. �

Thus in order to prove Theorem 5.1 it suffices to establish Proposition 5.3.

Proof of Proposition 5.3. We divide the interval [−N1/2+δ, N1/2+δ] into big blocks of
size Nβ1 > 0 separated by small blocks of size Nβ2 where the parameters β2 < β1 will
be chosen later. Let Jj denote the j-th big block and L be the union of the small blocks.
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Let S ′N =
∫
t∈LAt(Gty)dmN(y). Note that ν(S ′N) = 0. We claim that ν((S ′N)2) → 0 as

N →∞ provided that

(5.4) β1 > β2 + 3δ.

Indeed

(5.5) ν
(

(S ′N)
2
)
≤
∫∫

L×L
ν(At1(At2 ◦Gt2−t1))dmN(t1)dmN(t2).

According to [10, Theorem 2], ν(At1(At2◦Gt2−t1)) = O
(
|t2 − t1|−γ

)
. Therefore property

(b) shows that the integral of the RHS of (5.5) with respect to t2 is O
(
N−(1/4)+δ

)
. To

integrate with respect to t1 we divide L into unit intervals. Noting that the mass of each
interval is O

(
N δ−(1/4)

)
and the number of intervals is O

(
N (1/2)+δ−β1+β2

)
, we conclude

that ν
(

(S ′N)
2
)

= O
(
Nβ2+3δ−β1

)
which tends to zero under (5.4).

Thus the main contribution to the variance comes from the big blocks. Let

τ = N1/2+δ, Tj = Tj(y) =

∫
Jj

At(Gτ+ty)dmN(t), SN,j =

j∑
k=1

Tk.

Fix any ξ ∈ R. We will show that there is a sequence εN → 0, depending only |ξ| so
that for each ` ∈M we have

|E`
(
eiξSN,N̄

)
− e−ξ2/2| ≤ εN

where N̄ is the number of big blocks. Let Φj(ξ) = E`
(
eiξSN,j

)
with Φ0(ξ) = 1.

Lemma 5.5. If

(5.6) β1 < 1/4− 2δ,

then

Φj(ξ) = Φj−1(ξ)

[
1− ξ2

2
vj

]
+O

(
vjN

−δ + wj + ε̂N
)
,

where

vj =ν(T 2
j ), wj =

∫∫
(t1,t2)∈Jj

|t1−t2|≥
√

lnN

dmN(t1)dmN(t2)

|t1 − t2|γ
, ε̂N =N δ−1/4−β2(γ−1).

Note that by property (b) and (5.6), we have Tj=O(N−δ). Hence vj=O(N−2δ) and
so the estimate of Lemma 5.5 can be rewritten as

Φj(ξ) = Φj−1(ξ)e−ξ
2vj/2 +O

(
vjN

−δ + wj + ε̂N
)
.

Repeating this process, we obtain

(5.7) E`
(
eiξSN,N̄

)
= ΦN̄(ξ) = exp

[
−ξ

2

2

N∑
j=1

vj

]
+O

(∑
j

[
vjN

−δ + wj
]

+ N̄ ε̂N

)
.

Next we claim that

(5.8)
N̄∑
j=1

vj = 1 + oN→∞(1)



24 D. DOLGOPYAT, C. DONG, A. KANIGOWSKI, P. NÁNDORI.

provided that

(5.9) β2(γ − 1) > 2δ.

Indeed, 1 + o(1)=ν(S2
N,N̄)=

N̄∑
j=1

vj+
∑
j1 6=j2

ν (Tj1Tj2) . The second term here is at most

C
∑

n1,n2:|n1−n2|≥Nβ2

mN([n1, n1 + 1])mN([n2, n2 + 1])

|n1 − n2|γ
.

Summing over n2 using assumption (b) we are left with

C
∑
n1

mN([n1, n1 + 1])N δ−(1/4)−β2(γ−1)

= CmN([−N1/2+δ, N1/2+δ])N δ−(1/4)−β2(γ−1) ≤ C̄N2δ−β2(γ−1) = oN→∞(1),

where in the last inequality we also used assumption (a).
This proves that (5.9) implies (5.8). (5.8) shows in particular that∑
j

vjN
−δ=O(N−δ). Also

∑
j

wj =o(1) due to assumption (c) of Proposition 5.3, while

N̄ ε̂≤N1/4+2δ−β1−β2(γ−1) =o(1)

provided that

(5.10) β1 + β2(γ − 1) >
1

4
+ 2δ.

Plugging these estimates into (5.7) we conclude that for all ` ∈M we have

(5.11) E`
(
eiξSN,N̄

)
= e−ξ

2/2 + oN→∞(1)

if β1 and β2 satisfy (5.4), (5.6), (5.9), and (5.10). Thus we need β1 and β2 to satisfy

β1 <
1

4
− 2δ, β2 < β1 − 3δ, β1 + β2(γ − 1) >

1

4
+ 2δ, β2(γ − 1) > 2δ.

Since β1 can be chosen arbitrary close to 1
4
− 2δ and β2 can be chosen arbitrarily close

to β1 − 3δ, the above inequalities are compatible if (5.3) holds. It then follows that
(5.11) holds on the convex hull of M which includes ν. This completes the proof of
Proposition 5.3 modulo Lemma 5.5. �

Proof of Lemma 5.5. Let Jj = [n−j , n
+
j ]. Denote mj = τ +

n+
j−1+n−j

2
. We use the almost

Markov decomposition (5.1):

E`(A ◦Gmj) =
∑
s

csE`s(A) +O(ε̃N)

where ε̃N = θN
β2 , `s = (Ds, ρs) ∈M and

∑
s

cs = 1−O(ε̃N).

Fix arbitrary ys ∈ G−mjDs. Then

E`
(
eiξSN,j

)
=
∑
s

csE`s
(
eiξ[SN,j−1(ys)+T̃j(y)]

)
+O(ε̃N)
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where

T̃j(y) = Tj(G−mjy) =

∫
Jj

At(Gt−mjy)dmN(t).

Next

E`s
(
eiξT̃j

)
= 1 + iξE(T̃j)−

ξ2

2
E`s(T̃ 2

j ) +O

(
E`s
(∣∣∣T̃j∣∣∣3)) .

Note that E(T̃j) = O
(
Nβ2(γ−1)−(1/4)+δ

)
due to the equidistribution of unstable leaves.

To estimate E`s(T̃ 2
j ) we split

E`s(T̃ 2
j ) =

∫∫
Jj×Jj

E`s [At1(Gt1−mjy)At2(Gt2−mjy)]dmN(t1)dmN(t2) = I + II

where I includes the terms where |t1 − t2| ≤
√

lnN and II includes the other terms.
According to [10, Theorem 2],

E`s
(
(At1 ◦Gt1−mj)(At2 ◦Gt2−mj)

)
= O

(
|t2 − t1|−γ

)
.

Therefore II = O(wj).
To estimate I, we note that

E`s
(
(At1 ◦Gt1−mj)(At2 ◦Gt2−mj)

)
= E`s

(
(Dt1,t2 ◦Gt1−mj)

)
where Dt1,t2 = At1(At2 ◦Gt2−t1) with ‖Dt1,t2‖Cr ≤ Kt2−t1 ≤ N δ/2.

Hence using the equidistribution of unstable leaves, we obtain

E`s
(
(At1 ◦Gt1−mj)(At2 ◦Gt2−mj)

)
= ν(Dt1,t2) +O

(
N δ/2(t1 −mj)

−γ)
= ν(At1(At2 ◦Gt2−t1)) +O

(
N δ/2(t1 −mj)

−γ) .
It follows that

I =

∫∫
t1,t2∈Jj

|t1−t2|≤
√

lnN

ν(At1(At2Gt2−t1))dmN(t1)dmN(t2) +O
(
N (5δ/2)−(1/2)−β2(γ−1)

√
lnN

)
= vj +O(wj) +O

(
N3δ−(1/2)−β2(γ−1)

)
.

Finally

E`s(|T̃j|3) ≤ N−δE`s(|T̃j|2) = O
(
[vj + wj]N

−δ +N2δ−(1/2)−β2(γ−1)
)
.

Summing over s and using the fact that
∑
s

csE`s
(
eiξSN,j−1(ys)

)
= E`

(
eiξSN,j−1

)
+O(ε̃N),

we obtain the result. �
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