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Abstract. We exhibit new classes of smooth systems which satisfy the Central Limit
Theorem (CLT) and have (at least) one of the following properties:
• zero entropy;
• weak but not strong mixing;
• (polynomially) mixing but not K;
• K but not Bernoulli and mixing at arbitrary fast polynomial rate.

We also give an example of a system satisfying the CLT where the normalizing se-
quence is regularly varying with index 1. All these examples are C∞ except for a zero
entropy diffeomorphism satisfying the CLT which can be made Cr for an arbitrary
finite r.
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Part I. Main Results

1. Introduction

An important discovery made in the last century is that deterministic systems can
exhibit chaotic behavior. The Central Limit Theorem (CLT) is a hallmark of chaotic
behavior. There is a vast literature on the topic. In particular there are numerous
methods of establishing CLT including the method of moments (cumulants) [10, 26],
spectral method [54], the martingale method [51, 58, 75] (the list of references here
is by no means exhaustive, we just provide a sample of papers which could be used
for introducing non-experts to the corresponding techniques and their applications to
dynamical systems). However, the above methods require strong mixing properties
of the system. As a result, they apply only to systems which have strong statistical
properties including Bernoulli property and summable decay of correlations. The only
example going beyond strongly chaotic framework as manifested by the Bernoulicity
and summable correlations is the product of an Anosov1 diffeomorphism (called diffeo

1The methods of [28] apply to more general systems in the first factor, however, they seem insufficient
to produce the examples described in Theorems 1.3– 1.5.
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in the sequel) and a Diophantine rotation, which is shown in [28] to satisfy the CLT
(see also [71, 93] or Theorem 3.1 below).

Thus the knowledge on possible ergodic behaviors of smooth systems satisfying CLT
is very restricted. The main goal of this paper is to provide new classes of systems sat-
isfying CLT with intermediate ergodic properties. In Appendix C we will describe how
our results fit into a general program of flexibility of statistical properties in smooth
dynamics.

In order to formulate our results we need a few definitions. Let (M, ζ) be a smooth
orientable manifold with a smooth measure ζ. For an integrable function A on M, we
denote ζ(A) =

∫
M
A(x)dζ(x). For r ∈ (0,∞] we denote by Cr(M, ζ) the space of Cr

diffeomorphisms of M preserving the measure ζ.

Definition 1.1. Let r ∈ (0,∞]. We say that F satisfies the Central Limit Theorem
(CLT) on Cr if F ∈ Cr(M, ζ) and there is a sequence an such that for each A ∈ Cr(M),∑

0≤j<n

A ◦ F j(·)− n · ζ(A)

an

converges in law as n → ∞ to normal random variable with zero mean and variance
σ2(A) (such normal random variable will be denoted N (0, σ2(A)) in the sequel) and,
moreover, σ2(·) is not identically equal to zero on Cr(M). We say that F satisfies the
CLT if it satisfies the CLT on Cr for some r > 0. We say that F satisfies the classical
CLT if one can take an =

√
n.

One can analogously define the CLT for a flow (FT ) ∈ Cr(M, ζ) replacing

1

an

[ ∑
0≤j<n

A ◦ F j(·)− n · ζ(A)

]
by

1

a(S)

[∫ S

0

A ◦ Fs(·)ds− S · ζ(A)

]
,

where a(S) is now a real valued function.

Definition 1.2. Let ψ : N → R be a function. We say that F is mixing on Cr

at the rate ψ if F ∈ Cr(M, ζ) and for any A1, A2 ∈ Cr(M) the correlation function
ρn(A1, A2) = ζ(A1 · (A2 ◦ F n))− ζ(A1)ζ(A2) satisfies

(1.1) |ρn(A1, A2)| ≤ ‖A1‖Cr‖A2‖Crψ(n).

We say that F is mixing at the rate ψ if it is mixing with the rate ψ on Cr for some
r > 0. In case ψ(n) = Cn−δ for some C, δ > 0, we say that F is polynomially mixing.
If ψ(n) = Ce−δn for some C, δ > 0, we say that F is exponentially mixing2.

The above definitions can be extended to flows in a straightforward way by replacing
the discrete parameter n ∈ N with a continuous parameter t ∈ R. We will now state
main results of the paper. A more detailed description of the systems which appear in

2 We note that a simple interpolation argument shows that if F is mixing with exponential (re-
spectively polynomial rate) on Cr for some r > 0 then it is mixing with exponential (respectively
polynomial) rate on Cr for all r > 0, however the exponent δ depends on r.
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the theorems below is given in Section 2. Our first main result deals with the CLT for
zero entropy systems:

Theorem 1.3. (a) There exists an analytic flow of zero entropy which satisfies the

CLT with normalization aT = T/ ln1/4 T.
(b) For each r ∈ N there is a smooth manifold (Mr, ζr) and a zero entropy diffeomor-

phism Fr ∈ Cr(Mr, ζr) which satisfies the classical CLT.

We note that in all previous results on the CLT, the normalization was regularly
varying3 with index 1

2
. 4 Theorem 1.3(a) is the first result for a CLT with a different

regularly varying index, namely 1.
We say that a system F is K if it has no non-trivial zero entropy factor, [97]. In

the theorem below, we give examples of weakly mixing but not mixing as well as
polynomially mixing but not K systems satisfying the CLT.

Theorem 1.4. (a) There exists a weakly mixing but not mixing C∞-flow, which sat-
isfies the classical CLT.

(b) There exists a polynomially mixing C∞-flow, which is not K and satisfies the
classical CLT.

Recall that a system is Bernoulli if it is isomorphic to a Bernoulli shift. Our next
result shows existence of K non Bernoulli systems which are mixing at arbitrary fast
polynomial rate.

Theorem 1.5. For eachm ∈ N there exists a manifold (Mm, ζm) and Fm ∈ C∞(Mm, ζm)
which is mixing at rate n−m but is not Bernoulli. Moreover, Fm is K and satisfies the
classical CLT.

To the best of our knowledge, the first part of the theorem provides the first ex-
ample of a system which has summable correlations but is not Bernoulli. The second
(“moreover”) part answers a question that we heard from multiple sources, initially
from J-P. Thouvenot.

All the systems in Theorems 1.3–1.5 belong to the class of generalized (T, T−1) trans-
formations which we now describe. The class of generalized (T, T−1) transformations
is a classical subject (see [59, 85, 105] and reference therein for some early work on
this topic) with a rich range of applications in probability and ergodic theory. In fact,
generalized (T, T−1) transformations were used to exhibit examples of systems with
unusual limit laws [67, 29], central limit theorem with non standard normalization [12],
K but non Bernoulli systems in abstract [60] and smooth setting in various dimen-
sions [63, 98, 62], very weak Bernoulli but not weak Bernoulli partitions [31], slowly

3 Recall that a real valued function a(·) defined on [m,∞) for some m ∈ R is regularly varying in

the sense of Karamata with index α if for each s > 0, lim
t→∞

a(st)

a(t)
= sα. A sequence an is regularly

varying with index α if the function a(t) = a[t] is regularly varying with index α.
4 CLT with normalization

√
n lnn appears for expanding and hyperbolic maps with neutral fixed

points [53, 19], as well as in several hyperbolic billiards [4, 5, 100]. In a followup paper we will
show it also appears for generalized T, T−1 transformations with hyperbolic base and two parameter
exponentially mixing flows in the fiber.
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mixing systems [32, 80, 35], systems with multiple Gibbs measures [45, 83]. To de-
fine (Cr- smooth) (T, T−1) transformations, let X, Y be compact orientable manifolds,
f : X → X be an ergodic Cr map preserving a smooth measure µ and Gt : Y → Y be
a Cr-smooth Rd action on the manifold Y preserving a smooth measure ν.

Definition 1.6. Let X, Y, f,Gt be as above. Let τ : X → Rd be a Cr- smooth function
that will be called a cocycle. The map F : X × Y → X × Y befined by

(1.2) F (x, y) = (f(x), Gτ(x)y).

is called a (Cr-smooth) T, T−1 transformation.

Note that F is Cr (since so are f,Gt and τ) and it preserves the measure ζ = µ× ν.
Moreover,

(1.3) FN(x, y) = (fNx,GτN (x)y)

where

(1.4) τN(x) =
N−1∑
n=0

τ(fnx).

We also analogously define (T, T−1) flows. Namely let ht be a Cr-flow on X preserving
µ. Set

(1.5) FT (x, y) = (hT (x), GτT (x)y) where τT (x) =

∫ T

0

τ(htx)dt.

Note that if FT is a (T, T−1) flow then for each T0, the time t0 map of F is a gener-
alized (T, T−1) tranformation.

In this paper we study (T, T−1) systems whose fiber dynamics is very chaotic:

Definition 1.7. Gt is exponentially mixing of all orders if there is r > 0 such that for
every m ∈ N there exist Cm, δm > 0 such that for every Aj ∈ Cr(Y ), j = 1, . . . ,m, we
have

(1.6)

∣∣∣∣∣
∫
Y

(
m∏
j=1

Aj(Gtjx)

)
dν(x)−

m∏
j=1

ν(Aj)

∣∣∣∣∣ ≤ Cm

m∏
j=1

‖Aj‖Cr e−δm mini 6=j ‖ti−tj‖.

We note that if Gt is exponentially mixing of all orders then so is its any subaction,
that is the action of any proper subgroup V ⊂ Rd.

Throughout the paper we assume that the action Gt is exponentially mix-
ing of all orders.

The main example that the reader should keep in mind is the following:

Example 1.8. Let d ≥ 1 and let Γ be a co-compact lattice in SL(d+ 1,R). Let D+ be
the group of diagonal matrices in SL(d+ 1,R) with positive elements on the diagonal.
It is easy to see that D+ is isomorphic to Rd. The group D+ acts on SL(d+ 1,R)/Γ by
left translation. When d = 1, this one parameter flow is called the geodesic flow. When
d ≥ 2, we obtain a Rd action (Gt), which is called the Weyl Chamber flow. Then (Gt)
is exponentially mixing of all orders (see [9]).
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In order to construct our examples we need to extend significantly the existing meth-
ods for proving both the CLT and the non Bernoulli property of these maps. In fact,
the main difficulty in Theorems 1.3 and 1.4 is to establish the CLT while other proper-
ties are rather straightforward. On the other hand, the main difficulty in Theorem 1.5
is to show non Bernoullicity. We note that even though the question about the CLT
and the non Bernoulli properties seem quite different, the key tools needed to answer
both questions are the same. Namely, the proofs of all theorems in the paper rely on
the exponential mixing in the fiber and the fine recurrence properties of deterministic
cocycles. More details on the general framework for proving the CLT for generalized
(T, T−1) transformations is presented in Section 3, while the precise results pertaining
to the non Bernoullicity are described in Part V.

Outline of the paper: The rest of the paper is organized as follows. In §2 we
showcase the examples realizing Theorems 1.3–1.5. Specifically, in §2.1 we discuss
Theorem 1.3(a), in §2.2 we discuss Theorem 1.3(b), in §2.3 we discuss Theorem 1.4,
and in §2.4 we discuss Theorem 1.5. There are no technical proofs in Section 2, we
just formulate more specific results, namely Theorems 2.2 - 2.7 that imply the main
Theorems 1.3–1.5. Parts II - IV complete the proof of the theorems from Section 2.

In Part II, we discuss the CLT for generalized (T, T−1) transformations. In Section
3, we state two results (Theorem 3.1 and Theorem 3.2) that are the main tools in
proving CLT for all our examples (in the discrete and continuous case respectively).
The proofs of these results occupy the rest of Part II. Part III is devoted to the proof
of Theorem 2.2 and Theorem 2.3. Part IV is devoted to the proof of Theorem 2.4 and
Theorem 2.5. In Part V, we prove Theorem 2.7. Finally in Part VI we prove some
technical results needed in the proof (Appendix A and Appendix B) as well as discuss
the general context of flexibility of statistical properties (Appendix C) and state some
open problems (Appendix D).

2. Main examples.

We will now make precise what type of generalized (T, T−1) transformations will be
used in the proofs of our main results. We present the examples in four subsections
below.

2.1. Zero entropy flow. We start with the following lemma which shows that the
entropy of a generalized (T, T−1) transformation is zero provided that the base map
has entropy zero and the cocycle has zero mean. Recall Definition 1.6.

Lemma 2.1. Let F ∈ Cr(X×Y, ζ) with r > 1 be a generalized (T, T−1) transformation
such that f is ergodic, hµ(f) = 0 and µ(τ) = 0. Then hζ(F ) = 0. The same result holds
for (T, T−1) flows.

The proof is given in Appendix A.

Let Q be a hyperbolic surface of constant negative curvature of arbitrary genus p ≥ 1.
Let ht be the (stable) horocycle flow on the unit tangent bundle X = SQ, that is, ht is



FLEXIBILITY OF STATISTICAL PROPERTIES FOR SMOOTH SYSTEMS WITH THE CLT 7

moving x ∈ X at unit speed along its stable horocycle

(2.1) H(x) = {x̃ ∈ X : lim
t→∞

d(Gt(x),Gt(x̃)) = 0}

where Gt is the geodesic flow on X. Let γ1, . . . , γ2p be the basis in homology of Q.
Choose i ∈ {1, . . . 2p} and let λ be a closed form on Q such that

(2.2)

∫
γj

λ = δij

where δ is the Kronecker symbol. Set

(2.3) τ(q, v) = λ(q)(v∗)

where v∗ is a unit vector obtained from v by the 90 degree rotation. Let (Gt, Y, ν) be
an R action which is exponentially mixing of all orders. Consider the system (see (1.5))

(2.4) FT (x, y) = (hT (x), GτT (x)y).

We have

(2.5) τT (x) =

∫
h(x,T )

λ

where h(x, T ) is the projection of the horocyle starting from x and of length T , to Q.
Theorem 1.3(a) follows immediately from the following theorem:

Theorem 2.2. Let (FT )T∈R be the flow defined in (2.4). Then

h1. hζ(FT ) = 0;
h2. For every smooth observable H ∈ C∞(X × Y ) with ζ(H) = 0, there exists

σ2(H) ≥ 0 such that

(lnT )1/4

T

∫ T

0

H(Ft(·))dt

converges as T → ∞ to the normal distribution with zero mean and variance
σ2(H);

h3. There exists H ∈ C∞(X × Y ) with ζ(H) = 0 such that σ2(H) > 0.

The proof of Theorem 2.2 is provided in Section 6.

2.2. Zero entropy map. We will now define the generalized (T, T−1) transformations
used in Theorem 1.3 (b). Let m ∈ N and let || · || denote the distance to the nearest
integer in Rm. For κ > 0, let

D(κ) =
{
α ∈ Tm : ∃D(α) > 0 such that

∣∣∣∣∣∣〈k, α〉∣∣∣∣∣∣ ≥ D(α)

|k|κ
, for every k ∈ Zm \ {0}

}
Recall that from Khintchine’s theorem ([69]) it follows that D(κ) is non-empty if

κ ≥ m and it has full measure if κ > m. Theorem 1.3 (b) immediately follows from
the following result:
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Theorem 2.3. Let m ∈ N and κ ∈ [m, 2m). Let µ be the Lebesgue measure on Tm.
For every α ∈ D(κ) and every r ∈ (κ/2,m) there exists d ∈ N and a function τ = τα ∈
Cr(Tm,Rd) such that if (Gt, Y, ν) is a C∞ smooth Rd action which is exponentially
mixing of all orders then the system

F : (Tm × Y, µ× ν)→ (Tm × Y, µ× ν), F (x, y) = (x+ α,Gτ(x)y)

satisfies:

r1. hµ×ν(F ) = 0;
r2. For every H ∈ Cr(Tm × Y ) with µ × ν(H) = 0, there exists σ2(H) ≥ 0 such

that
1√
N
HN =

1√
N

∑
n≤N

H(F n(·))

converges as N → ∞ to the normal distribution with zero mean and variance
σ2(H);

r3. There exists H ∈ Cr(Tm × Y ) with µ× ν(H) = 0 such that σ2(H) > 0.

Notice that since the rotation by α and the action (Gt, Y, ν) are both C∞ and the
cocycle τ is of class Cr(Tm,Rd) it follows that the map F is of class Cr and so indeed
the above theorem implies Theorem 1.3 (b). We prove Theorem 2.3 in Section 7.

2.3. Flows with intermediate mixing properties. We will now describe the class
of generalized (T, T−1) transformations used to prove Theorem 1.4. The flows that we
will consider in the base are a subclass of the class of smooth flows on surfaces. For
more details on smooth flows on surfaces we refer the reader to [3, 73, 74, 103, 104].
In particular it follows by Pesin entropy formula ([6]) that the entropy of any smooth
flow on a surface is equal to 0. Let M be a surface and let (ϕt) be a C∞ flow on M
that preserves the area µ. Ergodic properties of smooth flows on surfaces have been
successfully studied via their special representation. More precisely, one considers a one
dimensional closed transversal T on M and represents the flow as the special flow over
the first return map to T ∼ T and under the roof function f which is the first return
time. Since the flow is smooth, the return function is also smooth except for fixed
points of the flow, at which f blows up. In particular, every point in x ∈ M which is
not a fixed point can be written as x = ϕsθ, where θ ∈ T and 0 ≤ s < f(θ).

In what follows we will always assume that the set of fixed points of (ϕt) is non-
empty and finite. In the case of smooth flows on surfaces the first return map to
T is an interval exchange transformation or in some cases (which will be our main
focus in what follows), an irrational rotation. For a more detailed discussion on special
representation of (ϕt) we refer the reader to [73, 74, 49]. We will now describe what
examples of smooth flows (ϕt) will be considered in this paper.

Let α ∈ T be an irrational number. Let f : T → R+ be a function which is C3 on
T \ {0}, and satisfying

∫
fdLeb = 1 and

(2.6) lim
θ→0+

f ′′(θ)

h′′(θ)
= A and lim

θ→1−

f ′′(θ)

h′′(1− θ)
= B,

where A2 +B2 6= 0 and the function h belongs to one of the classes specified below.
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(1) h(θ) = log θ and A = B, then for every α ∈ T \Q there exists f satisfying (2.6)
such that Rαθ = θ + α is the first return map and f is the first return time of
some C∞ ergodic flow (ϕt) on a surface (M,µ) with genus ≥ 2 (see e.g. [73],
[49, Proposition 2]). Such flows are not mixing, [73], but are weakly mixing for
a.e. α, [49]. Let us denote K(α, logsym) the set of C∞ area preserving flows
(ϕt) for which Rα is the first return map and the corresponding first return time
f satisfies (2.6) (with h(θ) = log(θ)).

(2) h(x) = x−γ, γ ∈ Bsing where Bsing is a non-empty set such that for every
α ∈ T\Q there exists f satisfying (2.6) with h such that Rαθ = θ+α is the first
return map and f is the first return time of some C∞ ergodic flow (ϕt) on the
torus (T2, µ), [74]. In [74] it is shown that γ = 1/3 ∈ Bsing. Moreover by [74]
(ϕt) is mixing for every α and by [47] if γ ≤ 2/5, then the flow is polynomially
mixing for a.e. α. In what follows we will always assume that γ ≤ 2/5. For
γ ∈ Bsing, let us denote K(α, γ) the set of smooth area preserving flows (ϕt) on
T2 for which Rα is the first return map and the corresponding first return time
f satisfies (2.6) with h(x) = x−γ.

We will consider the continuous flow FT given by (see (1.5)) FT (x, y) = (ϕT (x), GτT (y)),
where (ϕt) is as in (1) or (2) above and τ and Gt are defined in the theorems below.

We have the following two theorems which together give Theorem 1.4.

Theorem 2.4. Let (Gt, Y, ν) be a C∞ flow which is exponentially mixing of all orders
and let τ : M → R be any C∞ positive function. There exists F ⊂ T with Leb(F) = 1
such that if α ∈ F , (ϕt) ∈ K(α, logsym), and FT (x, y) := (ϕT (x), GτT (x)(y)), then

w1. (FT )T∈R is weakly mixing but not mixing;
w2. For every H ∈ C∞(M × Y ) with µ × ν(H) = 0, there exists σ2(H) ≥ 0 such

that
1√
T
HT =

1√
T

∫ T

0

H(Ft(·))dt

converges as T → ∞ to the normal distribution with zero mean and variance
σ2(H);

w3. There exists H ∈ C∞(M × Y ) with µ× ν(H) = 0 such that σ2(H) > 0.

The above theorem immediately implies Theorem 1.4 (a).

Theorem 2.5. Let (Gt, Y, ν) be a C∞ flow which is exponentially mixing of all orders
and let τ : T2 → R be any C∞ positive function. There exists F ′ ⊂ T with Leb(F ′) = 1
such that if α ∈ F ′, (ϕt) ∈ K(α, γ) for γ ∈ Bsing and FT (x, y) := (ϕT (x), GτT (x)(y)),
then

n1. (FT )T∈R is polynomially mixing and not K;
n2. For every H ∈ C∞(T2 × Y ) with µ × ν(H) = 0, there exists σ2(H) ≥ 0 such

that
1√
T
HT =

1√
T

∫ T

0

H(Ft(·))dt

converges as T → ∞ to the normal distribution with zero mean and variance
σ2(H);
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n3. There exists H ∈ C∞(T2 × Y ) with µ× ν(H) = 0 such that σ2(H) > 0.

Notice that the above theorem immediately implies Theorem 1.4 (b).

Remark 2.6. In the above two theorems we only need that the C∞ cocycle τ is positive.
The simplest case of our theorem is to take τ ≡ 1. In this case the resulting (T, T−1)
transformation is just the direct product flow (ϕt ×Gt).

2.4. K but not Bernoulli example. We will now specify the (T, T−1) transforma-
tions that we will use in the proof of Theorem 1.5. Let f : (Tm, µ) → (Tm, µ) be a
volume preserving Anosov diffeomorphism.

Let τ : Tm → Rd be a mean zero cocycle. We shall say that τ is irreducible if it is
not cohomologous to a cocycle taking value in a proper linear subspace of Rd.

Recall Example 1.8. Theorem 1.5 is a consequence of the following result.

Theorem 2.7. Fix an integer d ≥ 1. Let f : (Tm, µ)→ (Tm, µ) be a volume preserving
Anosov diffeomorphism. Let (Gt) be a geodesic flow on SL(2,R)/Γ (if d = 1), or a
Weyl chamber flow on SL(d+ 1,R)/Γ (when d ≥ 2). Let τ : Tm → Rd be a mean zero
irreducible Hölder cocycle. Then the map on Tm × SL(d+ 1,R)/Γ defined by

Fd(x, y) = (fx,Gτ(x)y)

with the invariant measure µ× Haar is non-Bernoulli.

The irreducibility assumption is not too restrictive. First, it holds for most cocycles.
To see this we shall use the following well known fact. Let τ(1)(x), . . . τ(d)(x) denote the
components of the vector τ(x). Recall the by the CLT for Anosov diffeos (see e.g. [92,

Chapter 4]) τN/
√
N converges in law as N → ∞ to a normal random variable with

zero mean and covariance matrix with components

(2.7) D2
i,j(τ) =

∞∑
n=0

µ(τ(i)(τ(j) ◦ fn)).

Proposition 2.8. Let f : (Tm, µ) → (Tm, µ) be a volume preserving Anosov diffeo-
morphism and τ : Tm → Rd be a zero mean Hölder cocycle. Then the following are
equivalent

(i) There is a measurable h : Tm → Rd such that τ − h + h ◦ f takes values in a
proper linear subspace;

(ii) There is a Hölder h : Tm → Rd such that τ − h + h ◦ f takes values in a proper
linear subspace;

(iii) The diffusion matrix D2(τ) is degenerate, i.e. there is a unit vector u such that
D2(τ)u = 0;

(iv) There is a unit vector u such that if x is a periodic orbit of period p then
τp(x) ⊥ u.

Thus if τ is reducible, then for any collection of d periodic points x1, . . . , xd of periods
p1, . . . , pd the determinant of the matrix with components Qij = (τ(i))pj(xj) is zero.
Since there are infinitely many periodic orbits, τ must satisfy infinitely many algebraic
equations. Thus the set of reducible cocycles is contained in an algebraic submanifold
of infinite codimension.
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Second, if τ is reducible we still can apply Theorem 2.7 to a lower rank subac-
tion. Namely suppose τ̃ = τ − h + h ◦ f takes values in a proper subspace V. Then
the transformations defined by τ and by τ̃ are conjugated via the change of variables
(x, y) 7→ (x,Gh(y)). Thus to undestand the (T, T−1) map defined by τ one can study the
(T, T−1) map defined by τ̃ which is associated to the lower rank subaction of V ⊂ Rd.

Proof of Proposition 2.8. If τ−h+h◦f ∈ V where V is a proper linear subspace of Rd,
then taking a unit vector u orthogonal to V we get 〈τ(x),u〉 = ĥ(x) − ĥ ◦ f(x) where

ĥ(x) = 〈h(x),u〉. Conversely, if for some unit vector u we have that 〈τ,u〉 = ĥ−ĥ◦f then

τ −
[
ĥ− ĥ ◦ f

]
u belongs to the orthogonal complement of u. Also denoting τ̂u = 〈τ,u〉

we have that

〈D2(τ)u,u〉 =
∞∑

n=−∞

µ(τ̂u(τ̂u ◦ fn)) =: σ2(τ̂u).

The foregoing discussion shows that for y ∈ {i, ii, iii, iv} we have that (y) holds iff

there exists a unit vector u ∈ Rd such that (̂y)u holds where

(̂i)u The equation τ̂u = ĥ− ĥ ◦ f has a measurable solution;

(̂ii)u The equation τ̂u = ĥ− ĥ ◦ f has a Hölder solution;

(̂iii)u σ
2(τ̂u) = 0;

(̂iv)u For each periodic point x of period p, τ̂p(x) = 0.

However, for each fixed u the properties (̂i)u, (̂ii)u (̂iii)u, and (̂iv)u are equivalent.

Indeed the equivalence of (̂i)u, (̂ii)u, and (̂iv)u follows from Livsic Theorem [82], while

the equivalence of (̂i)u and (̂iii)u follows from the L2–Gottschalk-Hedlund Theorem
([24]). This completes the proof of the proposition. �

Proof of Theorem 1.5. The K property for Fd with any d ≥ 1 follows from Corollary 2
in [57], the classical CLT for any d ≥ 3 follows from [35, Theorem 5.1] (since the proof
of Theorem 5.1 in [35] is relatively long we provide a different proof of the CLT in §B.1
using the tools developed in Part II) and mixing of Fd with rate n−d/2 follows from [35,
Theorem 4.6]. Finally non-Bernoullicity follows from Theorem 2.7. �

The proof of Theorem 2.7 is carried out in Part V.

Part II. Central Limit Theorem for (T, T−1) transformations

3. The main result.

Here we present sufficient conditions for generalized (T, T−1) transformations defined
by (1.2) (and (1.5)) to satisfy the CLT. Namely, Theorem 3.1 and 3.2 below give such
conditions for discrete and continuous time T, T−1-transformations, respectively.

Recall (1.4).
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Theorem 3.1. Let r ∈ R+ and f ∈ Cr(M) satisfy the following: for each A ∈ Cr(M)
with µ(A) = 0, there is a number σ2(A) ≥ 0 such that

(3.1)
1√
N

∑
0≤n<N

A(fn·)⇒ N (0, σ2(A))

as5 N →∞, where the left hand side is understood as a random variable with respect
to the measure µ. Let τ : M → Rd be a Cr cocycle satisfying the following: there are
ε > 0 and C > 0 so that for every N > 0,

(3.2) µ
(
x ∈M : |τN(x)| < log1+εN

)
<

C

N5
.

Let (Gt, Y, ν) be a C∞ Rd action which is exponentially mixing of all orders and let
F (x, y) = (fx,Gτ(x)y). Then for every H ∈ Cr(M × Y ) with µ × ν(H) = 0, there is
Σ2(H) ≥ 0 such that

1√
N

∑
0≤n<N

H(F n(·, ·))⇒ N (0,Σ2(H))

as N →∞. Moreover, if σ2(A) = 0 for all A ∈ Cr(M), then

(3.3) Σ2(H) =
∞∑

k=−∞

∫
M

∫
Y

H̃(x, y)H̃(fkx,Gτk(x)y)dν(y)dµ(x),

where H̃(x, y) = H(x, y)−
∫
Y
H(x, y)dν(y).

Next, we extend Theorem 3.1 to continuous time. Below, τT (x) :=
∫ T

0
τ(ftx)dt.

Theorem 3.2. Let r ∈ R+ and f ∈ Cr(M) satisfy the following: for each A ∈ Cr(M)
with µ(A) = 0, there is a number σ2(A) ≥ 0 such that

(3.4)
1√
T

∫ T

0

A(ft·)dt⇒ N (0, σ2(A))

as T → ∞. Let τ : M → Rd be a Cr cocycle satisfying: there are ε > 0 and C > 0 so
that for every T > 0,

(3.5) µ
(
x ∈M : |τT (x)| < log1+ε T

)
<

C

T 5
.

Let (Gt, Y, ν) be a C∞, Rd action which is exponentially mixing of all orders and let
Ft(x, y) = (ftx,Gτt(x)y). Then for every H ∈ Cr(M × Y ) with µ × ν(H) = 0 there is
Σ2(H) ≥ 0 such that

1√
T

∫ T

0

H(Ft(·, ·))dt⇒ N (0,Σ2(H))

5Here, and in the sequel, ⇒ denotes weak convergence of random variables. Note that in contrast
with Definition 1.1, we do not require σ2(A) > 0.
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as T →∞. Moreover, if σ2(A) = 0 for all A ∈ Cr(M), then

(3.6) Σ2(H) =

∫ ∞
−∞

∫
M

∫
Y

H̃(x, y)H̃(ftx,Gτt(x)y)dν(y)dµ(x)dt

where H̃(x, y) = H(x, y)−
∫
Y
H(x, y)dν(y).

Remark 3.3. We remark that in Theorems 3.1, 3.2, the conditions (3.2) and (3.5)
hold trivially in case τ is bounded below by a positive constant c (indeed, in this case
min
x
|τN(x)| ≥ cN ≥ log2N for N sufficiently large).

4. A criterion of CLT for Rd actions

In the proof of Theorem 3.1, we will use the strategy of [12] except that we replace
the Feller Lindenberg CLT for iid random variables used in [12] by a CLT for Rd actions
which are exponentially mixing of all orders. This CLT for such Rd actions was proven
by Björklund and Gorodnik in [10]. Since it is a key tool in our argument, we devote
this section to recalling it.

Proposition 4.1 (Theorem 1.5 in [10]). Let (Gt, Y, ν) be an Rd action which is expo-
nentially mixing of all orders. Let (mT )T∈R be a sequence of non-negative measures on
Rd. For t ∈ Rd, let At ∈ C1(Y ) be a family of functions satisfying: ν(At) = 0 for every
t ∈ Rd and sup

t∈Rd
‖At‖C1(Y ) < +∞. Let ST (y) :=

∫
Rd At(Gty)dmT (t). Suppose that

(a) lim
T→∞

mT (Rd) =∞.

(b) For each r ∈ N, r ≥ 3 for each K > 0

lim
T→∞

∫
mr−1
T

(
B(t,K lnmT (Rd))

)
dmT (t) = 0,

where B(t, r) denotes a ball in Rd of radius r > 0 centered at t.
(c) There exists σ2 = σ2((At)) ≥ 0 so that lim

T→∞
VT = σ2, where

VT :=

∫
S2
T (y)dν(y) =

∫∫∫
At1(Gt1y)At2(Gt2y)dmT (t1)dmT (t2)dν(y).

Then ST (·) converges as T → ∞ to normal distribution with zero mean and variance
σ2.

Proposition 4.1 is proven in [10, Theorem 1.5] in case At does not depend on t. Since
the proof directly extends to the case of t-dependent observables At (with uniform C1

norm), we do not repeat it here. In the case of discrete (T, T−1) transformations, we
will only need Proposition with T ∈ N. In this case, we will replace T by N and write
mN ,SN , etc.

5. The CLT for skew products
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5.1. A quenched CLT. In this section, we use Proposition 4.1 to derive a quenched
CLT (Lemma 5.1). In the next section, we will use this quenched CLT to prove Theo-
rems 3.1 and 3.2. Let f ∈ Cr(M), τ : M → Rd and (Gt, Y, ν) satisfy the assumptions
of Theorem 3.1. Let H ∈ Cr(M × Y ) be such that

(5.1)

∫
H(x, y)dν(y) = 0

for each x ∈ M. Given x ∈ M , we define the measure mN(x) and the observable At,x

for all t ∈ Rd as

(5.2) mN(x) =
1√
N

N−1∑
n=0

δτn(x), At,x(y) =
1

mN(x)({t})
∑

n≤N :τn(x)=t

H(fnx, y).

Then

SN = SN,x(y) =
N−1∑
n=0

H(fnx,Gτn(x)y) = HN(x, y)

where HN is the ergodic sum of H.
One may think about mN as the rescaled local time of the deterministic random

walk τN . Now the quenched CLT means that we fix x and prove the CLT where the
randomness only comes from y. It is enough to verify the conditions of Proposition 4.1:

Lemma 5.1. Assume that (5.1) holds and that the assumptions of Theorems 3.1 are
satisfied. Then the number

σ2(H) :=
∞∑

k=−∞

∫
M

∫
Y

H(x, y)H(fkx,Gτk(x)y)dν(y)dµ(x)

is non-negative and finite. Furthermore, there are subsets X̂N ⊂M such that lim
N→∞

µ(X̂N) =

1 and for any sequence xN ∈ X̂N the measures {mN(xN)} and the functions (At,xN )t∈Rd
defined by (5.2) satisfy the conditions of Proposition 4.1, with σ2 = σ2(H) in part (c).

The rest of §5.1 contains the proof of Lemma 5.1. In §5.2 we will show how Lemma 5.1
implies Theorems 3.1 and 3.2.

To prove Lemma 5.1, we need to check properties (a)–(c) of Proposition 4.1.

Property (a) is clear since for every x ∈ M , mN(x)(Rd) =
√
N. Other properties

are less obvious and will be checked in separate subsections below.

5.1.1. Proof of Property (b). Let

(5.3) XN =
{
x ∈M : Card{n : |n| < N and ‖τn(x)‖ ≤ ln1+ε/2N} ≥ N0.23

}
where ε is from (3.2).

Lemma 5.2. If τ satisfies (3.2), then lim
N→∞

Nµ(XN) = 0.

Proof. First observe that for large N

XN ⊂ X∗N := {x : L(x,N) ≥ N0.22},
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where
L(x,N) = Card{n : N0.21 < |n| < N, ‖τn(x)‖ ≤ ln1+ε/2N}.

Next, observe that if τ satisfies (3.2), then for every n ≥ N0.21, we have

µ(‖τn‖ < ln1+ε/2N) ≤ µ
(
‖τn‖ < ln1+ε n

)
< C|n|−5

for N sufficiently large, where C is the constant from (3.2). We conclude by the Markov
inequality that

µ(XN) ≤ µ(X∗N) ≤ N−0.22µ(L(x,N)) = N−0.22
∑

n:N0.21<|n|<N

µ(‖τn‖ < ln1+ε/2N) < CN−1.06

for N sufficiently large, where C is the constant from (3.2). �

Lemma 5.3. There are sets X̃N ⊂ M such that µ(X̃N) → 1 and for all xN ∈ X̃N the
measures mN(xN) satisfy property (b).

Proof. Let X̃N = {x : fnx 6∈ XN for all n = 1, ..., N}. By Lemma 5.2

µ(X̃N) ≥ 1−Nµ(XN)→ 1

as N →∞. Thus for each K we have that for N large enough and for each x ∈ X̃N∫
mr−1
N (x)(B(t,K lnN))dmN(x)(t) =

1

N r/2

N−1∑
n=0

Cardr−1{j < N : ‖τj(x)− τn(x)‖ ≤ K lnN} ≤

1

N r/2

N−1∑
n=0

Cardr−1{j < N : ‖τj−n(fnx)‖ ≤ ln1+ε/2N} ≤ N0.23(r−1)− r
2

+1 = N0.77−0.27r → 0.

Here, in the last line we used that x ∈ X̃N and that r ≥ 3. Property (b) follows. �

5.1.2. Property (c). Note that by definition of SN ,

(5.4) VN(x) =
1

N

∫
S2
N(x, y)dν(y) =

1

N

N−1∑
n1,n2=0

σn1,n2(x)

where

(5.5) σn1,n2(x) =

∫
H(fn1x,Gτn1 (x)y)H(fn2x,Gτn2 (x)y)dν(y).

Notice that since ν is Gt invariant,

(5.6) σn1,n2(x) = σ0,n2−n1(fn1x).

To prove property (c) we need to show that σ2(H) is indeed finite and that for any

sequence xN ∈ X̂N , lim
N→∞

VN(xN) = σ2(H). We first study σ2(H). We have∫
M

VN(x)dµ(x) =
1

N

N−1∑
n1,n2=0

∫
M

σn1,n2(x)dµ(x) =
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N−1∑
k=−N+1

N − |k|
N

∫
H(x, y)H(fkx,Gτk(x)y)dµ(x)dν(y) =

N−1∑
k=−N+1

N − |k|
N

∫
M

σ0,k(x)dµ(x) =
N−1∑

k=−N+1

∫
M

σ0,k(x)dµ(x)− 1

N

N−1∑
k=−N+1

|k|
∫
M

σ0,k(x)dµ(x)

Note that due to (5.1) and exponential mixing of Gt, there are constants c, C so that
for all x,

(5.7) |σ0,k(x)| ≤ C‖H‖2
Cre
−c‖τk(x)‖.

If τ satisfies (3.2), then (5.7) implies that there are constants β > 1 and C̄ > 0 such
that

(5.8)

∫
M

|σ0,k(x)| dµ(x) ≤ C̄k−β

(in fact, (5.8) holds for each β < 5).
In particular, (5.8) implies that the following limit exists

(5.9) σ2(H) := lim
N→∞

∫
M

VN(x)dµ(x) =
∞∑

k=−∞

∫
σ0,k(x)dµ(x).

This shows that σ2(H) is finite.
The next result shows that property (c) holds with probability close to 1.

Lemma 5.4. Let F be an ergodic (T, T−1) transformation and H be a function satis-
fying (5.1) and (5.8) with β > 1. Let VN be given by (5.4) and σ2(H) be given by (5.9).
Then VN ⇒ σ2(H) as N →∞.

Lemma 5.4 completes the proof of Lemma 5.1. Indeed given N let εN be the smallest
number ε such that µ(X∗N,ε) ≥ 1 − ε where X∗N,ε = {x ∈ X : |VN(x) − σ2(H)| ≤ ε}.
By Lemma 5.4, lim

N→∞
εN = 0. Therefore the set X̂N = X̃N ∩X∗N,εN , where X̃N is from

Lemma 5.3, satisfies the conclusions of Lemma 5.1.
Thus it remains to prove Lemma 5.4.

Proof. Given ε > 0 let kε be the smallest number such that
∑
|k|>kε

µ(|σ0,k|) ≤ ε2. By

ergodicity for large N we have for |k| ≤ kε

(5.10) µ

(
x :

∣∣∣∣∣ 1

N

N−1−kε∑
n=kε

σ0,k(f
nx)− µ(σ0,k)

∣∣∣∣∣ ≥ ε

2kε

)
≤ ε

2kε
.
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Next, we write

VN(x) =
1

N

N−1∑
k=−N+1

min{N−1,N−1−k}∑
n=max{−k,0}

σ0,k(f
nx)

=
1

N

∑
|k|≤kε

N−1−kε∑
n=kε

σ0,k(f
nx) +

1

N

∑
|k|>kε

min{N−1,N−1−k}∑
n=max{−k,0}

σ0,k(f
nx)

+
1

N

∑
|k|≤kε

 kε−1∑
n=max{−k,0}

+

min{N−1,N−1−k}∑
n=N−kε

σ0,k(f
nx)

= : V ′N + V ′′N + V ′′′N

By definition of kε and the Markov inequality, µ(x : |V ′′N | ≥ ε) ≤ ε. Next, |V ′′′N | ≤
2kε‖H‖2

∞/N and so V ′′′N is negligible. Next, by (5.10),

µ

x :

∣∣∣∣∣∣V ′N −
∑
|k|≤kε

µ(σ0,k)

∣∣∣∣∣∣ > ε

 ≤ ε

for N sufficiently large. Using the definition of kε again we see that∣∣∣∣∣∣
∑
|k|≤kε

µ(σ0,k)

− σ2(H)

∣∣∣∣∣∣ ≤ ε2.

Combing the above estimates we obtain

µ(x : |VN(x)− σ2(H)| ≥ 3ε) ≤ 2ε+ ε2

for N sufficiently large. Since ε is arbitrary, the lemma follows. �

5.2. From quenched to annealed CLT: proofs of Theorems 3.1 and 3.2. In
this section we give the proof of Theorem 3.1 using the quenched CLT (Lemma 5.1).
We do not give a separate proof of Theorem 3.2 because the proof of Theorem 3.1 with
trivial modifications applies in continuous time.

It is convenient to make the following definition. Let F ∈ Cr(X × Y, ζ) be a skew
product of the form F (x, y) = (fx, g(x, y)). Thus we assume that f preserves a proba-
bility measure µ on X and for each x, g(x, ·) preserves a probability measure ν on Y ,
so that F preserves the measure ζ = µ× ν.

Definition 5.5. F satisfies a quenched CLT on Cr if for each function H ∈ Cr(X×Y )
satisfying (5.1) there exist a constant σ(H) and sets XN ⊂ X such that lim

N→∞
µ(XN) = 1

and for each xN ∈ XN the sequence of random variables HN (xN ,y)√
N

where y is distributed

according to ν converges in law as N → ∞ to the normal random variable with zero
mean and variance σ2(H).

In our case, F satisfies a quenched CLT on Cr by Lemma 5.1 and Proposition 4.1.
Thus Theorem 3.1 will follow immediately from Lemma 5.6 below.
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Lemma 5.6. Let F ∈ Cr(X × Y, ζ) be a skew product such that f satisfies the CLT
on Cr and F satisfies the quenched CLT on Cr. Then F satisfies the CLT on Cr.

Proof of Lemma 5.6. Split

(5.11) H(x, y) = H̃(x, y) + H̄(x) where H̄(x) =

∫
H(x, y)dν(y).

We will show that for each ξ ∈ R

lim
N→∞

∫
eiξHN (x,y)/

√
Ndζ = e−σ

2(H)ξ2/2

where σ2(H) = σ2(H̄) + σ2(H̃), σ2(H̄) is the limiting variance in the CLT for H̄N and
σ2(H̃) is the limiting variance in the quenched CLT for H̃. Let XN be the sets from
Definition 5.5 for H̃. Split∫

X×Y
eiξHN (x,y)/

√
Ndζ =

∫
XN×Y

eiξHN (x,y)/
√
Ndζ +

∫
Xc
N×Y

eiξHN (x,y)/
√
Ndζ.

The second integral converges to 0 since lim
N→∞

µ(Xc
N) = 0. On the other hand for x ∈ XN

lim
N→∞

∫
eiξH̃N (x,y)/

√
Ndν(y) = e−ξ

2σ2(H̃)/2 uniformly on XN (otherwise we could take a

subsequence xNj ⊂ XNj such that the distribution of
H̃N (xNj ,·)√

N
does not converges to

the normal distribution with zero mean and variance σ2(H̃) which is a contradiction
with the assumption that F satisfies a quenched CLT on Cr). Hence

lim
N→∞

∫
XN×Y

e
iξ
HN (x,y)√

N dµ(x)dν(y) = lim
N→∞

∫
XN

e
iξ
H̄N (x)√

N

[∫
Y

e
iξ
H̃N (x,y)√

N dν(y)

]
dµ(x)

= lim
N→∞

e−ξ
2σ2(H̃)/2

∫
XN

e
iξ
H̄N (x)√

N dµ(x) = lim
N→∞

e−ξ
2σ2(H̃)/2

∫
X

e
iξ
H̄N (x)√

N dµ(x) = e−ξ
2σ2(H)/2

where the last equation follows from the assumption that f satisfies the CLT on Cr.
This completes the proof of the lemma. �

Proof of Theorem 3.1. The CLT for F follows from Lemma 5.6. So it remains to estab-
lish the formula for the variance. If σ2(H̄) = 0, then σ2(H) = σ2(H̃), where

σ2(H̃) =
∞∑

k=−∞

∫
M

∫
Y

H̃(x, y)H̃(fkx,Gτk(x)y)dν(y)dµ(x)

by Lemma 5.1. This gives (3.3) and hence completes the proof of the theorem. �

Part III. CLT for systems of zero entropy, Theorem 1.3

By the discussion in Part I, it is enough to prove Theorem 2.2 (which implies Theo-
rem 1.3 (a)) and Theorem 2.3 (which implies Theorem 1.3 (b)). We provide the proof
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of these two theorems in the next two sections.

6. Theorem 2.2

In this Section we prove Theorem 2.2. We need to show h1–h3. h1 is an immediate
consequence of Lemma 2.1 since the entropy of the horocycle flow (ht) is zero and τ
given by (2.3) has mean zero. (µ(τ) = 0 since µ is invariant under the involution given
by I(q, v) = (q,−v), while τ ◦I = −τ.) We will prove h2 in §6.1 and h3 in §6.2. Finally,
§6.3 contains the proof of the key technical result: mixing temporal local limit theorem
for horocycle windings.

6.1. Reduction of h2 to a mixing local limit theorem.

Proof of h2. As in Section 5, it suffices to give a proof under the assumption (5.1).
Indeed we can split arbitrary H as H(x, y) = H̄(x) + H̃(x, y) where H̃ satisfies (5.1)
and use the fact that due to [20], H̄T (x) = O(Tα) for some6 α < 1.

Since |HT1(x, y) −HT2(x, y)| ≤ ‖H‖C0|T1 − T2| it suffices to consider the case when
T is an integer. Analogously to (5.2), we define

mT (x) =
(lnT )1/4

T

T−1∑
n=0

δτn(x) At,x(y) =
1

mT (x)({t})
∑

n≤T :τn(x)=t

∫ 1

0

H(hn+sx,Gsy)ds.

As before we check properties (a)–(c) of Proposition 4.1. Property (a) is immediate as
‖mT‖ = (lnT )1/4.

To prove (b) and (c) we need some preliminary information. Let

m̃T (x) =
(lnT )1/4

T

∫ T

0

δτt(x)dt.

Note that for each set I ⊂ R, we have

mT (x)(I) ≤ m̃T (x)(Ĩ), m̃T (x)(I) ≤ m̃T (x)(Ĩ),

where Ĩ is the unit neighborhood of I. Therefore it suffices to check (b) with m̃T in
place of mT . Thus for part (b), we need to control

m̃T (B(s,K ln lnT )) = (ln1/4 T )× mes(t ∈ [0, T ] : |τt(x)− s| ≤ K ln lnT )

T
The second factor here is the probability that τt(x) is within distance K ln lnT from
s when x is fixed and t is uniformly distributed on [0, T ]. Such results are referred to
in [42] as temporal limit theorems (in contrast to more classical spatial limit theorems
where t is fixed and x is random). The study of temporal limit theorems goes back
to [46]. While there are by now several systems where the temporal limit theorem is
proven (see [18, 42] and the references therein), there is only one such system which
involves a smooth observable, namely, horocycle windings, and this is the main reason

6Let λ0 be the smallest eigenvalue of the Laplacian on Q. According to [20, Theorem 1.2 and

Corollary 1.3] (which relies on [48]) one can take α =
1 +
√

1− 4λ0

2
if λ0 <

1

4
. If λ0 ≥ 1

4 one can take

α =
1

2
+ ε for any ε > 0. The precise value of α is not important for our purposes.
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for the choice of the base map in Theorem 2.2. The availability of the temporal limit
theorem is crucial in our construction. In fact, we need to extend the temporal limit
theorem for horocycle windings ([42, Theorem 5.1]) in two ways. First, the results of

[42] concern the probability that τt(x) belong to an interval of length
√

lnT whereas we
need to consider intervals of unit size (for part (b) it is sufficient to handle the interval
of size O(ln lnT ) but for part (c) we need to consider shorter intervals).

It is natural to call this extension a local temporal limit theorem. Secondly we need
a mixing limit theorem which claims, roughly speaking, that the values of τt(x) and
Gt(x) are asymptotically independent.

To state our temporal limit theorem we need some notation. Write x = (q, v) ∈ X
and say that q is the configurational component of x.

Let q0 ∈ Q be an arbitrary reference point and for each q ∈ Q let Γq be a shortest
geodesic from q0 to q. Define β(q) =

∫
Γq
λ and let

ξT (x) = τT (x)− β(hTx) + β(x).

(2.5) shows that ξT (x) is an integral of λ over a curve starting and ending at q0, so by
(2.2) it is an integer.

Let gT (x) be the configurational component of the geodesic of length lnT starting

at q with speed −v. Denote sT (x) =

(∫
gT (x)

λ

)
+ β(x)− β(x̄), where x̄ = G− lnTx and

Gt denotes the geodesic flow.

Proposition 6.1. There is a constant C > 0 and a zero mean Gaussian density p, so
that the following statements are true for all x ∈ X.

(a) For each z ∈ R,

1

T
mes

(
t ≤ T :

ξt − sT (x)√
lnT

≤ z

)
=

∫ z

−∞
p(s)ds+ oT→∞(1).

(b) For any set A ⊂ X whose boundary is a finite union of proper compact subman-
ifolds (with boundary), we have

(6.1)

√
lnT

T

∫ T

0

1ξt(x)=k1ht(x)∈Adt = µ(A)p

(
k − sT (x)√

lnT

)
+ oT→∞(1),

where the convergence is uniform when k−sT (x)√
lnT

varies over a compact set.

(c) For any k ∈ Z, we have 7

(6.2) mes({t ≤ T : ξt(x) = k}) ≤ CT√
lnT

.

Part (a) of Proposition 6.1 is proven in [42]. Parts (b) and (c) are new but they could
be established by the methods of [42]. To focus on the new ideas first, we complete the
proof of h2 in §6.1 and h3 in §6.2 assuming Proposition 6.1. Finally, in the separate
§6.3, we prove Proposition 6.1.

7Estimates such as (6.2) are often called anticoncentration inequalities since (6.2) shows that the
probability that τ(·) belongs to a unit interval is small no matter where this interval is located.
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Thus we proceed with the proof of property h2. Recall, that it remains to verify
properties (b) and (c) of Proposition 4.1. Property (b) of Proposition 4.1 reduces to
showing that for each K and each r ≥ 3,∫

m̃r−1
T (B(t,K ln lnT ))dmT (t)→ 0.

Observe that by Proposition 6.1 (c), for each unit segment I ⊂ R, m̃T (I) ≤ C/ ln1/4 T

and hence m̃T (B(t,K ln lnT )) ≤ C(K) ln lnT

ln1/4 T
. Thus∫

m̃r−1
T (B(t,K ln lnT ))dm̃T (t) ≤ Cr−1(K)(ln lnT )r−1

ln(r−1)/4 T
‖mT‖∞ ≤

Cr−1(K)(ln lnT )r−1

ln
r−2

4 T
→ 0

since r > 2. This implies property (b) of Proposition 4.1.

To establish property (c) of Proposition 4.1 we need to compute lim
T→∞

√
lnT ζ(H2

T )

T 2
.

We have

ζ(H2
T ) =

∑
k1,k2∈Z

∫
Ik1,k2(x)dµ(x),

where

Ik1,k2(x) =

∫ T

0

∫ T

0

1ξt1=k11ξt2=k2 ρ(ht1x, ht2x, k2 − k1 + β(qt2)− β(qt1))dt1dt2,

qt is the configurational component of ht(x) and

(6.3) ρ(x′, x′′, s) =

∫
H(x′, y)H(x′′, Gsy)dν(y).

Fix a large R and partition the sum into three three parts. Let I be sum of the terms
where

(6.4) |k2 − k1| ≤ R, |k1 − sT (x)| ≤ R
√

lnT ;

II be sum of the terms where |k2 − k1| > R; and III be sum of the terms where

|k2 − k1| ≤ R but |k1 − sT (x)| > R
√

lnT .

We split our analysis in two parts. Lemma 6.2 says that for large R the main
contribution to the variance comes from I, while Lemma 6.3 obtains the asymptotics
of the main contribution.

Lemma 6.2. For each δ > 0 there is R0 > 0 such that for R ≥ R0 there exists
T0 = T0(R) such that for T ≥ T0

|II| ≤ δT 2

3
√

lnT
and |III| ≤ δT 2

3
√

lnT
.

Lemma 6.3. For each δ > 0 there is R0 > 0 such that for R ≥ R0 there exists
T0 = T0(R) such that for T ≥ T0∣∣∣∣ I

T 2/
√

lnT
− p(0)√

2
Λ(H)

∣∣∣∣ < δ

3
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where8

Λ(H) =
∑
k∈Z

∫∫
ρ(x′, x′′, β(q′′)− β(q′) + k)dµ(x′)dµ(x′′).

Since δ is arbitrary, combining Lemmas 6.2 and 6.3, we obtain that

lim
T→∞

√
lnT ζ(H2

T )

T 2
=

p(0)√
2

Λ(H)

completing the proof of property (c) from Proposition 4.1 and thus verifying h2. It
remains to prove Lemmata 6.2 and 6.3.

Proof of Lemma 6.2. Since Gt is exponentially mixing and H satisfies (5.1), there are
constants C1, c1 such that |ρ(x′, x′′, t)| ≤ C1e

−c1t uniformly in x′, x′′. Hence using Propo-
sition 6.1(c) and summing over k2 we obtain

|II| ≤
∑
k1∈Z

∑
k2:|k2−k1|≥R

mes(t1 ∈ [0, T ] : ξt1(x) = k1)mes(t2 ∈ [0, T ] : ξt2(x) = k2)×C1e
−c1|k1−k2|

≤ C ′T√
lnT

∑
k1

mes (t1 ≤ T : ξt1(x) = k1) e−cR ≤ C ′′T 2

√
lnT

e−c1R

where the second inequality is obtained by summing over k2 for fixed k1. Taking R0 so
large that C ′′e−c1R0 ≤ δ

3
we obtain the required estimate on II.

Similarly, after summing over k2 we obtain

|III| ≤ C ′RT√
lnT

∑
k1: |k1−sT (x)|>R

√
lnT

mes (t1 ≤ T : ξt1(x) = k1)

(6.5) =
C ′RT√

lnT
mes

(
t1 ≤ T : |ξt1(x)− sT (x)| > R

√
lnT

)
.

By Proposition 6.1(a)

lim
T→∞

mes
(
t1 ≤ T : |ξt1(x)− sT (x)| > R

√
lnT

)
T

= P(|N | > R)

where N is the normal random variable with density p. Therefore for large T , (6.5)

is smaller than

(
T 2

√
lnT

)
× (2C ′R · P(|N | ≥ R)) . Since lim

R→∞
R · P(|N | ≥ R) = 0 we

can make (6.5) smaller than
δT 2

3
√

lnT
by taking R sufficiently large. This completes the

proof of the lemma. �

8Note that Λ depends on H since ρ depends on H, see (6.3).
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Proof of Lemma 6.3. Choose a small ε > 0 (the smallness of ε depends on δ and R, see
below for the precise restrictions) and divide X into cubes {Cl} with diameters smaller

than ε. Let xl = (ql, vl) be the center of Cl. Next write Ik1,k2 =
∑
l1,l2

Ik1,k2,l1,l2 where

Ik1,k2,l1,l2 =

∫ T

0

∫ T

0

1ξt1 (x)=k11Cl1 (ht1x)1ξt2 (x)=k21Cl2 (ht2x)

ρ(ht1x, ht2x, k2 − k1 + β(qt2)− β(qt1))dt1dt2.

Using uniform continuity of ρ(x′, x′′, t) on the set |t| ≤ 2R we see that for any η > 0 we
can take ε so small that for all (x′, x′′) ∈ Cl1×Cl2 and for all k1, k2 satisfying |k1−k2| ≤ R
we have that

|ρ(xl1 , xl2 , k2 − k1 + β(ql2)− β(ql1))− ρ(x′, x′′, k2 − k1 + β(qt2)− β(qt1))| ≤ η.

Therefore

(6.6) Ik1,k2,l1,l2 = κk1,k2,l1,l2 + Jk1,l1Jk2,l2ρ(xl1 , xl2 , k2 − k1 + β(ql2)− β(ql1))

where

Jk,l = mes(t ∈ [0, T ] : ξt(x) = k1, htx ∈ Cl)
and the error term satisfies |κk1,k2,l1,l2| ≤ ηJk1,l1Jk2,l2 . Next, Proposition 6.1(b) tells us
that given η̄, R, and the partition {Cl}, we can take T so large that∣∣∣∣Jk,l − T√

lnT
µ(Cl)p

(
k − sT (x)√

lnT

)∣∣∣∣ < T√
lnT

η̄

for all k such that

∣∣∣∣k − sT (x)√
lnT

∣∣∣∣ ≤ R. Therefore∣∣∣∣∣ ∑
k1,l1,k2,l2

Jk1,l1Jk2,l2ρ(k2 − k1 + β(ql2)− β(ql1))− T 2R

lnT

∣∣∣∣∣
(6.7) ≤ C

T 2

√
lnT

R2Card2({Cl})η̄.

where the sum is over all tuples (k1, l1, k2, l2) such that (k1, k2) satisfy (6.4),

R =
∑

k1,l1,k2,l2

µ(Cl1)µ(Cl2)p

(
k1 − sT (x)√

lnT

)
p

(
k2 − sT (x)√

lnT

)
ρ(k2 − k1 + β(ql2)− β(ql1))

and
T 2

√
lnT

η̄ appears in the RHS of (6.7) since each term contributes an error of order

O

(
T 2η̄

lnT

)
and the number of terms is O

(√
lnT

)
due to the second constraint in (6.4).

Thus we can take T so large and η̄ so small that RHS of (6.7) is smaller than
δT 2

10
√

lnT
.
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Next, decreasing ε if necessary9 and taking T sufficiently large, we can approximate
the Riemann sum R by the corresponding integral. Thus we can achieve that∣∣∣∣ R√

lnT
− IR

∣∣∣∣ ≤ δ

10

where

IR =

(∫ R

−R
p2(z)dz

) ∑
|k|<R

∫∫
ρ(x′, x′′, k + β(q(x′′))− β(q(x′))dµ(x′)dµ(x′′).

Here, as before,
√

lnT appears in the denominator to account for the summation with
respect to k1 and we have used the fact that due the first constraint in (6.4),

p

(
k2 − sT (x)√

lnT

)
= p

(
k1 − sT (x)√

lnT

)
+O

(
R√
lnT

)
.

A similar argument shows that∑
k1,l1,k2,l2

|κk1,l1,k2,l2| ≤
CR2T 2

√
lnT

η

uniformly in ε. Indeed, each term in the sum satisfies

|κk1,l1,k2,l2| ≤
CT 2η

lnT
µ(Cl1)µ(Cl2) ≤ C̄ε6T 2η

lnT

and the number of terms is of order

O
(
R2
√

lnT Card2({Cl})
)

= O

(
R2
√
lnT

ε6

)
.

Therefore choosing η sufficiently small, we get

|κk1,l1,k2,l2| ≤
T 2δ

10
√

lnT
.

Finally, using the fact that for Gaussian densities∫ ∞
−∞

p2(z)dz =
p(0)√

2
,

we obtain lim
R→∞

IR =
p(0)√

2
Λ(H). Thus choosing R so large that∣∣∣∣IR − p(0)√

2
Λ(H)

∣∣∣∣ ≤ δ

100

completes the proof of the lemma. �

We have finished the proofs of Lemmas 6.2 and 6.3. The proof of h2 is thus completed.
�

9Recall that ε is the diameter of {Cl}.
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6.2. Variance.

Proof of h3. Recalling the definition of ρ we can rewrite

Λ(H) =
∑
k

∫∫∫
H(x′, y)H(x′′, Gk+β(q(x′′))−β(q(x′))y)dµ(x′)dµ(x′′)dν(y)

=
∑
k

∫∫∫
H(x′, Gβ(q(x′)y)H(x′′, Gk+β(q(x′′))y)dµ(x′)dµ(x′′)dν(y) = ρ(H)

where

(6.8) H(y) =

∫
X

H(x,Gβ(q(x))y)dµ(x)

and

(6.9) ρ(H) =
∑
k

∫
H(y)H(Gky)dν(y).

Observe that for each H ∈ Cr(Y ) there is H ∈ Cr(X × Y ) such that

H(y) =

∫
X

H(x,Gβ(q(x))y)dµ(x).

Indeed we can just take H(x, y) = ψ(q(x))H(G−β(q(x))y) where ψ is a probability density
supported on a small ball centered at q0. (Note that β(q(x)) is smooth if d(q(x), q0) is
smaller than the injectivity radius of our surface Q.)

Therefore h3 follows from the result below. �

Theorem 6.4. Let G be a diffeomorphism of a compact manifold Y which preserves a
smooth measure ν. Assume that (G, ν) is exponentially mixing (of order 2) on Cs(Y ).
Then ∃H ∈ Cs such that ρ(H) 6= 0 where 10

(6.10) ρ(H) =
∞∑

k=−∞

[
ν(H(H ◦Gk))− (ν(H))2

]
.

Proof. Call a point y0 ∈ Y slowly recurrent if for each A,K there exists r0 = r0(A,K)
such that for each r ≤ r0 we have

ν(B(y0, r) ∩G−kB(y0, r)) ≤
ν(B(y0, r)

| ln r|A

for 1 ≤ k ≤ K| ln r|. By [36, Lemma 4.13] for exponentially mixing systems almost

every y0 is slowly recurrent. Take such a point y0 and let r ≤ r0(2,K)
2

where K is large
enough (see (6.11) below). With these parameters fixed, choose a function ψ such that

(i) supp(ψ) ∈ B(y0, r);
(ii) ν(ψ) = 0;
(iii) ‖ψ‖C0 ≤ 1
(iv) ν(ψ2) ≥ c1ν(B(y0, r));
(v) ‖ψ‖Cs ≤ c2r

−s.

10Note that if H is given by (6.8) where H satisfies (5.1) then ν(H) = 0 so (6.10) reduces to (6.9).
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By (ii), ρ(ψ) = ν(ψ2)+2
∞∑
k=1

ν(ψ(ψ◦Gk)). By (iv) the first term is at least c1ν(B(x0, r)).

We will show that the remaining sum is of the lower order if r is small enough. Indeed
by exponential mixing and (v), |ν(ψ(ψ ◦Gk))| ≤ c3r

−2sθk. Hence

(6.11)
∞∑

k=K| ln r|

|ν(ψ(ψ ◦Gk))| ≤
c1

10
ν(B(y0, r))

if K is large enough. Note that |ψ(y)ψ(Gky)| ≤ 1 and moreover, this product is
zero unless y ∈ B(y0, r) ∩ G−kB(y0, r). Since y0 is slowly recurrent it follows that for
1 ≤ k ≤ K| ln r|

|ν(ψ(ψ ◦Gk))| ≤ ν(B(y0, r) ∩G−kB(y0, r)) ≤
ν(B(y0, r))

| ln r|2
.

Hence by further decreasing r if necessary we get that

(6.12)

K| ln r|∑
k=1

|ν(ψ(ψ ◦Gk))| ≤
c1

10
ν(B(y0, r)).

Combining (ii), (6.11) and (6.12) we obtain the result. �

Remark 6.5. While Theorem 6.4 appears to be new for general exponentially mixing
systems, it seems to be well known for all known examples of such systems. Note that
to prove Theorem 1.3(a) it suffices to produce one flow G and one function H such
that ρ(H) 6= 0. In particular, one can take (Y, ν) = (X,µ) (recall that X is the unit
tangent bundle of a compact hyperbolic surface with constant negative curvature) and
G = G–the geodesic flow. Next, take

H(y) =

∫ 1

0

J(Gsy)dy where J(y) = ω(q(y))(v(y))

and ω is a harmonic one form. Then

ρ(H) =

∫
Y

∫ ∞
−∞

J(y)J(Gsy) ds dν(y) = 4

∫
Y

J2(y)dν(y)

where the first identity is obtained by direct computation and the second one is proven in
[81, Theorem 2]. In fact, in the case G = G a much stronger result than Theorem 6.4
is known, namely, the set of H such that ρ(H) = 0 is a linear subspace of infinite
codimension.

Indeed, if ρ(H) = 0 then L2 Gottschalk-Hedlund Theorem ([24]), implies that H is
an L2 coboundary, that is there is an L2 function A such that H = A−A ◦G1. Then
the Livsic theorem for partially hyperbolic systems ([107, Theorem A]) implies that A
has a continuous (in fact smooth) version. It then follows that the ergodic sums of H
are uniformly bounded, which implies that H has zero mean with respect to any G
invariant ergodic measure. Since there are uncountably many such measures ([14]), the
condition ρ(H) = 0 holds on a subspace of infinite codimension.
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6.3. Mixing local limit theorem for geodesic flow.

Proof of Proposition 6.1. Part (a) is [42, Theorem 5.1] but we review the proof as it will
be needed for parts (b) and (c). The key idea is to rewrite the temporal limit theorem for
the horocycle flow as a central limit theorem for the geodesic flow. To be more precise,
let h(x, t) and g(x, t) denote the configurational component of the horocycle H(x, t) and
the geodesic of length t starting from x. Consider the quadrilateral Π(x, t, T ) formed
by

h(x, t), −g(ht(x), T ), −h(G− lnTx, t/T ), g(x, T )

where − indicates that the curve is run in the opposite direction. This curve Π(x, t, T ) is
contractible as can be seen by shrinking t and T to zero. Therefore the Stokes Theorem
gives

(6.13) ξt(x) =

(∫ lnT

0

τ ∗(Grhux̄)dr

)
+ β(hux̄)− β(x̄)

where x̄ = G− lnTx, u = t/T and τ ∗(q, v) = λ(v). Note that if t is uniformly distributed
on [0, T ] then u = t/T is uniformly distributed on [0, 1]. Since the curvature is constant,
it follows that hux̄ is uniformly distributed on H(x̄, 1). Now part (a) follows from the
central limit theorem for the geodesic flow G.

To prove part (b), write

τ̂s(y) =

∫ s

0

τ ∗(Gry)dr + β(y)− β(Gsy).

Then by (6.13), we have
√

lnT

T

∫ T

0

1ξt(x)=k1ht(x)∈Adt =
√

lnT

∫ 1

0

1τ̂lnT (hu(x̄))=k1GlnT (hu(x̄))∈Adu.

Denote t = lnT . Then the claim of part (b) is reduced to showing that

(6.14)
√
t

∫ 1

0

1τ̂t(hux̄)=k1Gt(hux̄)∈Adu = p(k/
√
t)µ(A) + ot→∞(1).

In [40, Theorem 3.1(B)] it is proven that if m is a smooth measure on X, then

(6.15)
√
t

∫
X

1τ̂t(x̃)=k1Gt(x̃)∈Adm = p(k/
√
t)µ(A) + ot→∞(1).

Note that the LHS of (6.14) also has the form of (6.15), however, in the case of
(6.14) the initial measure is not smooth, in fact, it is a uniform measure on an unstable
curve of the geodesic flow. However, one can deduce (6.14) from (6.15) by the standard
argument going back to Margulis’ thesis [84] approximating the measures supported on
unstable curve by smooth measures. We sketch the argument here for completeness. To
simplify the notation we assume that β is continuous (and hence smooth) on h(x̄, 1). If
it is not the case, we break11 h(x̄, 1) into several pieces and apply the argument below

11Note that the discontinuity set of β on Q is a finite number of geodesic arcs. Namely let Q = H2/Γ.
If q is a discontinuity point of β, then there is γ̄ ∈ Γ\{Id} such that d(q, q0) = d(q, γ̄q0) = min

γ∈Γ
d(q, γq0).

Since the diameter of Q is finite, the discontinuity set of the map x 7→ β(q(x)) on X is contained in a
finite number of analytic surfaces transverse to the orbits of hu.
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to each piece. Note that it suffices to show that for each compactly supported Lipschitz
probability density ψ on R and each Lipschitz function φ on X we have

(6.16) It :=
√
t

∫
R
ψ(u)1τ̂t(hux̄)=kφ(Gthux̄)du = p(k/

√
t)µ(φ) + ot→∞(1)

since (6.14) follows from (6.16) by approximating 1[0,1] and 1A from above and below
by Lipschitz functions. To prove (6.16), take a small ε and consider

It,ε = ε−2
√
t

∫∫∫
R3

ψ(u)ψ(s/ε)ψ(t/ε)1τ̂t(x(u,s,t))=kφ(Gtx(u, s, t))dudsdt

where x(u, s, t) = Gth̃shux̄ and h̃ is the unstable horocycle flow. On one hand, for each
fixed ε the distribution of x(u, s, t) is smooth, whence (6.15) implies

(6.17) It,ε = p(k/
√
t)µ(φ) + ot→∞(1).

On the other hand since x(u, s, t) belongs to the weak stable manifold of hux̄, we
conclude that Gthux̄ and Gtx(u, s, t) are O(ε) close. Hence there exists a constant
C = C(ψ, φ) such that

|1τ̂t(x(u,s,t))=k φ(Gtx(u, s, t))− 1τ̂t(hux̄)=k φ(Gthux̄)| ≤ Cε

unless Gtx(u, s, t) ∈ Dε where Dε denotes the Cε neighborhood of the discontinuity set
of β. Accordingly, denoting by mε the initial distribution of x(u, s, t), we obtain

|It,ε − It| ≤

(6.18) C̄
[√

t mε(x : |τ̂t(x)− k| ≤ 1)ε+
√
tmε(x : |τ̂t(x)− k| ≤ 1, Gtx ∈ Dε)

]
.

Since mε is smooth, (6.15) gives

(6.19)
√
t mε(x : |τ̂t(x)− k| ≤ 1) = O(1).

Next, approximating 1Dε from above by a Lipchitz function and arguing as before we
get that

(6.20)
√
t mε(x : |τ̂t(x)− k| ≤ 1, Gtx ∈ Dε) = O(ε).

Combining (6.18), (6.19) and (6.20) we see that It,ε = It + O(ε) where the implied
constant depends on the Lipschitz norms of ψ and φ. Since ε is arbitrary, (6.16) follows
from (6.17). Part (b) of Proposition 6.1 follows.

To prove part (c), we can again use the approach of [40] to lift the anticoncentration
inequality from discrete to continuous time. Let us represent the geodesic flow G as a
suspension flow over a Poincaré section M such that the first return map T : M →M
is Markov ([13]). Then the approximation arguments of the proof of part (b) also show
that it suffices to prove that for any smooth measure m on M ,

(6.21) m(x : τ̂t(x) = k) ≤ C/
√
t
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holds uniformly in k. Let r : M → R+ be the first return time. Denote τ̄(x) = τ̂r(x)(x).
Define

rn(x) =
n−1∑
j=0

r(T jx), τ̄n(x) =
n−1∑
j=0

τ̄(T jx).

Let R = max(‖r‖∞, ‖τ̄‖∞). Concentrating on the last time before time t then the orbit
crosses M we see that it suffices to show that there exists C̄ so that for all t and m,

(6.22) m(x ∈M : ∃n : t−R < rn(x) ≤ t, τ̄n(x) = m) ≤ C̄/
√
t

(indeed, (6.21) follows from (6.22) by summing over m such that |m− k| ≤ R).
To prove (6.22), we use the discrete anticoncentration estimate. Namely, according

to [94, Appendix A], there exists a constant Ĉ and a two dimensional Gaussian density
g such that for each m,n

(6.23) Pn ≤
Ĉ

n

[
g

(
t− rn√

n
,
m√
n

)
+

1√
n

]
,

where

Pn = m(x ∈M : t−R < rn(x) ≤ t, τ̄n(x) = m)

and r is the mean free path (the average time between the crossings of M). To prove
(6.22), it is sufficient to show that

c2t∑
n=c1t

Pn ≤ C̄/
√
t,

where c1 = 1/R and c2 = 1/min r. Indeed, the number of returns to M before time t

is always between c1t and c2t. Since

c2t∑
n=c1t

1

n3/2
≤ C/

√
t, it is enough to prove that

c2t∑
n=c1t

P ′n ≤ C̄/
√
t,

where P ′n =
1

n
g

(
t− rn√

n
,
m√
n

)
. Now let Ik = [t/r−2k

√
t, t/r−2k−1

√
t], where k ranges

over positive integers such that t/r− 2k−1
√
t > c1t. Then∑

n∈Ik

P ′n ≤ |Ik|
1

c1t

[
exp

(
−r222k−2t

c2t

)]
≤ C

1√
t
2k exp(−c322k)

Summing over k, we obtain

t/r∑
n=c1t

P ′n ≤ C/
√
t. A similar argument gives

n=c2t∑
t/r

P ′n ≤ C/
√
t.

This completes the proof of (6.22). �
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7. Theorem 2.3

In this section we prove Theorem 2.3. Recall that µ denotes the Lebesgue measure
on Tm.

The main result used in the proof is the following proposition which gives bounds on
ergodic averages of the base rotation by α:

Proposition 7.1. For every κ/2 < r < m, there exists d ∈ N such that for every
α ∈ D(κ), we have:

D1. for every φ ∈ Cr(Tm,R) with µ(φ) = 0,

1√
n

∥∥∥ ∑
0≤k<n

φ(·+ kα)
∥∥∥

2
→ 0,

as n→∞.
D2. there is a function τ := τ (α) ∈ Cr(Tm,Rd) such that µ(τ) = 0 and

n2κmµ
(
{x ∈ Tm :

∣∣∣ ∑
0≤k<n

τ(x+ kα)
∣∣∣ < log2 n}

)
→ 0,

as n→∞.

Let us show how to prove Theorem 2.3 using the above proposition:

Proof of Theorem 2.3. For r ∈ (κ/2,m) let d ∈ N be from Proposition 7.1 and fix
α ∈ D(κ). Let τ = τα be from D2 and consider F (x, y) = (x + α,Gτ(x)y) where
(Gt, Y, ν) is smooth Rd action action that is exponentially mixing of all orders. F has
zero entropy by Lemma 2.1 and so r1 holds.
Property r2 follows from Theorem 3.1. Namely, by D1 it follows that (3.1) holds for
f = Rα with σ2(·) identically equal to 0. Moreover property (3.2) follows from D2 by
taking m so that 2κm ≥ 5.

It remains to show r3, that is, that the variance is non identically zero. Let τk(x) =∑
i<k

τ(x+ iα). In the setting of Theorem 3.1, (3.3) shows that, for functions satisfying

(5.1) the asymptotic variance is given by

(7.1) σ2(H) =
∞∑

k=−∞

∫
Tm

∫
Y

H̃(x, y)H̃(x+ kα,Gτk(x)y)dν(y)dµ(x).

We shall use that the map f(x) = x + α satisfies the following: for every δ > 0, and

every x0 ∈ Tm if p =
(
D(α)

2δ

)1/κ

, then

(7.2) f jB(x0, δ) ∩B(x0, δ) = ∅ for every |j| ≤ p

Indeed, if the intersection is non-empty, then by α ∈ D(κ)

2δ > ||x0 − (x0 + jα)|| = ||jα|| ≥ D(α)

|j|κ
.
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Let φ ∈ C∞(R) be a non-negative function supported on the unit interval. Set

H(x, y) = φ

(
|x− x0|

δ

)
D(y), where D ∈ C∞(Y ), ν(D) = 0, note that then H = H̃ in

(7.1). Then the term in (7.1) corresponding to k = 0 equals∫
Tm

∫
Y

[
φ

(
|x− x0|

δ

)
D(y)

]2

dν(y)dµ(x) =

∫
Tm

φ2

(
|x− x0|

δ

)
dµ(x) ·

∫
Y

D(y)2dν(y).

By a change of variables, the above term is equal to to

‖D‖2
2 · δm

∫
Rm

φ2(|x|)dx.

Notice that by (7.2), the terms in (7.1) with 0 < |k| ≤ p are equal to zero since for

such k, the function φ

(
|x− x0|

δ

)
φ

(
|fkx− x0|

δ

)
is identically equal to 0.

For |k| > p, notice that for every x ∈ Tm by exponential mixing of G∫
Y

H(x, y)H(x+ kα,Gτk(x)y)dν(y) ≤ C‖D‖2
r · e−η|τk(x)|.

If |τk(x)| ≥ log2 k, then the above integral is upper bounded by

C ′‖D‖2
r · k−2.

By D2, µ(|τk(x)| ≤ log2 k) ≤ C ′′k−2κm. Since supp(H) ⊂ B(0, δ)× Y , it follows by the
above that∫

Tm

∫
Y

H(x, y)H(x+ kα,Gτk(x)y)dν(y)dµ(x) ≤ C ′′k−κm‖D‖0 + δmC ′‖D‖2
r · k−2

Therefore (7.1) is equal to

‖D‖2
2 · δm

∫
Rm

φ2(|x|)dx + Err,

where

|Err| ≤ C ′δm‖D‖2
r

∑
|k|≥p

k−2 + C ′′‖D‖0

∑
|k|≥p

k−2κm ≤ C ′′′
[
‖D‖2

rδ
mp−1 + ‖D‖0p

−2κm+1
]

Since p =
(
D(α)

2δ

)1/κ

, by taking δ small enough, we can guarantee that

C ′′′‖D‖2
rδ

mp−1 <
1

3
· ‖D‖2

2 · δm
∫
Rm

φ2(|x|)dx,

and

C ′′′‖D‖0p
−2κm+1 <

1

3
· ‖D‖2

2 · δm
∫
Rm

φ2(|x|)dx.

Therefore the LHS of (7.1) is positive. This finishes the proof. �

It remains to prove Proposition 7.1:
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Proof of Proposition 7.1. We start with property D1, which is much simpler. Note that

if φ(x) =
∑
k 6=0

ake
2πi〈k,x〉 then

φN(x) =
∑
k 6=0

ake
2πi〈k,x〉1− e2πiN〈k,α〉

1− e2πi〈k,α〉 .

Therefore

(7.3) ‖φN‖2
2 =

∑
k 6=0

|ak|2|Ak(N)|2

where Ak(N) = 1−e2πiN〈k,α〉
1−e2πi〈k,α〉 . A simple calculation gives

(7.4) |Ak(N)| =
∣∣∣∣1− e2πiN〈k,α〉

1− e2πi〈k,α〉

∣∣∣∣ =
| sin(πN〈k, α〉)|
| sin(π〈k, α〉)|

.

Since r > κ/2, Property D1 is a direct consequence of the following:

Lemma 7.2. For everu α ∈ D(κ) there exists C > 0 such that for every r < κ and
φ ∈ Cr(Tm), we have

‖φN‖2 ≤ CN1−(r/κ).

Proof. Note that

|Ak(N)| = N · | sin(πN〈k, α〉)|||π〈k, α〉||
| sin(π〈k, α〉)|||πN〈k, α〉||

≤ C0 ·N.

Also if |〈k, α〉| ≤ 1, then |Ak(N)| ≤ 1
| sin(π〈k,α〉)| ≤ C0(π|〈k, α〉|)−1. Therefore

|Ak(N)|2 ≤ C min
{
〈k, α〉−2, N2

}
.

Since α ∈ D(κ), using the above estimate on |Ak(N)|2, we get

‖φN‖2
2 ≤ CD(α)

∑
|k|≤N1/κ

|k|2κ|ak|2 + C
∑

|k|≥N1/κ

N2|ak|2 = C ′[I + II]

where

I ≤
∑

|k|≤N1/κ

(|k|2r|ak|2)k2(κ−r) ≤
∑

|k|≤N1/κ

(|k|2r|ak|2)N2(1− r
κ

) ≤ C‖φ‖2
Cr(N

1−(r/κ))2,

and II ≤
∑

|k|≥N1/κ

(|k|2r|ak|2)(N1−(r/κ))2 ≤ C‖φ‖2
Cr(N

1−(r/κ))2. �

So it remains to establish property D2. We start with the following lemma:

Lemma 7.3. Let α ∈ D(κ). There exists Rm > 0 such that for every N ∈ N there
exists kN ∈ Zm satisfying:

|〈kN , α〉| <
1

4N
, |kN | ≤ RmN

1/m.
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Proof. Let α = (α1, . . . , αm). For N ∈ N, consider the lattice

L(α,N) =


N−1/m . . . 0 0
. . . . . . . . . . . .
0 . . . N−1/m 0
0 . . . 0 N




1 . . . 0 0
. . . . . . . . . . . .
0 . . . 1 0
α1 . . . αm 1

Zm+1 ⊂ Rm+1

The points in this lattice are of the form

e = (x, z) ∈ Rm × R where x =
k

N1/m
, z = N · (〈k, α〉+m) and (k,m) ∈ Zm × Z.

Let Rm be such that a ball B of radius Rm in Rm has volume 2m+3. Then

vol(B × [−1/4, 1/4]) ≥ 2m+2).

So by Minkowski’s Theorem, L(α,N) contains a non-zero vector (x, z) in B×[−1/4, 1/4].
Let x = kN

N1/m and z = N(〈kN , α〉 + m). Then |z| ≤ 1/4 and x ∈ B. This finishes the
proof. �

The following lemma gives an lower bound on the Ak(N) for k of the form k2` , ` ∈ N.

Lemma 7.4. For every α ∈ D(κ) let (kN)N∈N be the sequence from Lemma 7.3. There
exists c > 0 such that for every l ∈ N and every N ∈ [2l, 2l+1], we have

|Ak
2l

(N)|
|k2l |r

≥ c ·N1−r/m.

Proof. By the bound on k2l from Lemma 7.3 it suffices to show that

|Ak
2l

(N)| ≥ c′ ·N.

By Lemma 7.3, |N〈k2l , α〉| < 1/2. Now using the estimate C−1 <
sin z

z
< C for

z = N〈k2l , α〉 and z = 〈k2l , α〉 in (7.4), we obtain the result. �

For α ∈ D(κ), let (k2l)l∈N be the sequence from Lemma 7.4. For a real sequence
{al}l∈N ⊂ [−1, 1], let τα((al)) = τ(al) : Tm → C be given by

(7.5) (τ(al))(x) =
∑
l>0

ale
2πi〈k

2l
,x〉

|k2l |r l2
.

For d ∈ N let τ(a
(1)
l , ..., a

(d)
l ) : Tm → Cd be defined by (τ(x))j = (τ(a

(j)
l ))(x). Let

{a(j)
l }j≤d,l∈N be random variables uniformly distributed on the unit interval in Rd and

the corresponding probability measure is denoted by Pā, i.e.

Pā(a(j)
l ∈ Ai,`, for j ≤ d, ` ∈ N) =

∏
j≤d,`∈N

Leb
(
{x ∈ [−1, 1] : a

(j)
l (x) ∈ Aj,`}

)
Lemma 7.5. For every ε > 0 there exists C > 0 such that for every x ∈ Tm and every
N ∈ N,

Pā (‖(τ(ā))N(x)‖ ≤ N ε) <

(
C

N1−r/m−2ε

)d
.
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Proof. Since for a fixed x different components of τ are independent, it suffices to
consider the case d = 1. In this case, τ is given by (7.5). Let l be such that N ∈ [2l, 2l+1].
We now fix all the aj for j 6= l. Then, since N, x and all frequencies 2j except 2l are
fixed, we can write (with some c ∈ C depending on aj, j 6= l and N),

(7.6) τN(x) = c +
alAk

2l
(N)e2πi〈k

2l
,x〉

|k2l |rl2

Let M = (M1,M2) := 1
|k

2l
|rl2

(
<
(
Ak

2l
(N)e2πi〈k

2l
,x〉
)
,=
(
Ak

2l
(N)e2πi〈k

2l
,x〉
))

.

By Lemma 7.4,

|M | =
|Ak

2l
(N)|

|k2l |rl2
≥ c ·N1−r/m−ε.

Let us WLOG assume that |M1| ≥ c/2 ·N1−r/m−ε (if |M2| ≥ c/2 ·N1−r/m−ε the proof is
analogous). It then follows that the measure of z ∈ [−1, 1] for which |M1·z−<(c)| < N ε,

is bounded above by
2

cN1−r/m−2ε
. Since al is uniformly distributed on [−1, 1],(7.6)

finishes the proof. �

Now we are ready to define the map τ and hence also finish the proof of D2.
Take d ∈ N such that d(1−r/m−2ε) > 10κm. Summing the estimates of Lemma 7.5

over N , we obtain that for some C ′ > 0 and every fixed x ∈ Tm,

Pā ({ there exists N ≥ n : ‖(τ(ā))N(x)‖ ≤ N ε}) < C ′

n10κm−1
.

It follows by Fubini’s theorem that

(Pā × µ)
(
{(ā, x) : for all N ≥ n, ‖(τ(ā))N(x)‖ ≥ N ε}

)
≥ 1− C ′

n10κm−1
.

Using Fubini’s theorem again, we get that there exists An with P(An) ≥ 1− C′

n4κm , such
that for every ā ∈ An,

µ({x : for all N ≥ n, ‖(τ(ā))N(x)‖ ≥ N ε}) ≥ 1− C ′

n4κm
.

It is then enough to take ā ∈
⋂
n≥N0

An for any fixed N0 (notice that
⋂
n≥N0

An is non-empty

if N0 is large enough). Then the corresponding τ(ā) : Tm → Cd = R2d satisfies D2
(with 2d instead of d). This finishes the proof of the proposition. �

Part IV. Flows with intermediate mixing properties satisfying
CLT.

8. Surface flows in the base.

8.1. Proofs of Theorems 2.4 and 2.5. In this section we prove Theorems 2.4 and 2.5.
The proofs rely on two auxiliary results (namely, Proposition 8.1 and Lemma 8.2) which
will proven later.
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Proposition 8.1. There exists a set P ⊂ T with Leb(P) = 1 such that for every α ∈ P
if (ϕt) ∈ K(α, logsym)∪K(α, γ), with γ ∈ Bsing, then there exists ε, δ > 0 such that for
every A ∈ C3(M),

T δ
∣∣∣µ({x ∈M :

∣∣∣ ∫ T

0

A(ϕtx)dt− Tµ(A)
∣∣∣ = O(T 1/2−ε)

})
− 1
∣∣∣→ 0, as T →∞.

Lemma 8.2. Let FT be a C∞ (T, T−1) flow on M × Y :

FT (x, y) = (ϕT (x), GτT (y)).

Suppose that G-action on (Y, ν) is exponentially mixing of all orders and that the base
flow on M preserves a measure µ and satisfies the following: there exists C,m > 0 such
that for every δ > 0, we have

(8.1) ϕsB(x0, δ) ∩B(x0, δ) = ∅

for |s| ∈ (Cδ, p), with p =
(

1
Cδ

) 1
m

. Then there exists H ∈ C∞(M × Y ) satisfying (5.1)

such that Σ2(H) > 0 where

(8.2) Σ2(H) =

∫ ∞
−∞

∫
M

∫
Y

H(x, y)H(ftx,Gτt(x)y)dν(y)dµ(x)dt.

The proof of Lemma 8.2 is relatively short and will be given in §8.2. The proof of
Proposition 8.1 is longer and will be given in §8.3.

Proof of Theorem 2.4. By [49] there exists a full measure set P ′ such that for every
α ∈ P ′, every (ϕt) ∈ K(α, logsym) is weakly mixing and not mixing. Let us take
(ϕt) ∈ K(α, logsym), with α ∈ P ′ ∩ P ∩ D, where P is from Proposition 8.1, and

D :=
{
α ∈ T : ∃C,m > 0 such that ‖kα‖ ≥ C

km
, for k ∈ Z \ {0}

}
is the set of Diophantine numbers (the set D will be used in proving that the variance
is not identically zero).

Then (ϕt) is weakly mixing but not mixing and so (FT ) is also not mixing (since the
base is not mixing). To see that FT is weakly mixing we note that if H ∈ C∞(M × Y ),
then analogously to (5.11)

H(x, y) = H̃(x, y) + H̄(x),

where H̄(x) =
∫
Y
H(x, y)dν, and for every x ∈ M ,

∫
Y
H̃(x, y)dν = 0. We can WLOG

assume that
∫
M
H̄(x)dµ =

∫
M×Y H(x, y)dµdν = 0.

Then ∫
M

∫
Y

H(x, y)H(FT (x, y))dνdµ =∫
M

∫
Y

H̃(x, y)H̃(FT (x, y))dνdµ+

∫
M

∫
Y

H̃(x, y)H̄(ϕTx)dνdµ+∫
M

∫
Y

H̄(x)H̃(FT (x, y))dνdµ+

∫
M

∫
Y

H̄(x)H̄(ϕT (x))dνdµ.
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The mixed terms (involving H̄ and H̃) are 0, since for every x ∈M ,

∫
Y

H̃(x, y)dν = 0

and H̄ only depends on x. Moreover, the term involving only H̃ goes to 0 as T goes to
∞ by exponential mixing of (Gt) and positivity of τ . Finally, by weak mixing of (ϕt)

1

R

∫ R

0

∣∣∣ ∫
M

∫
Y

H̄(x)H̄(ϕT (x))dνdµ
∣∣∣dT → 0 as R→∞.

Putting this together, we get

1

R

∫ R

0

∣∣∣ ∫
M

∫
Y

H(x, y)H(FT (x, y))dνdµ
∣∣∣dT → 0 as R→∞.

So (FT ) is weakly mixing. This gives w1. Next w2 follows from Theorem 3.2, since
Proposition 8.1 implies that (3.4) is satisfied with σ2(·) identically equal to 0, and by
Remark 3.3 we know that (3.5) holds. Moreover since σ2(A) = 0 for all functions which
depend only on the base variables, the limiting variance for functions satisfying (5.1)
is given by (8.2). Hence the fact that the limiting variance is non-zero follows from
Lemma 8.2 once we check that the base flow satisfies (8.1). To check (8.1) we consider
the representation of ϕ as a special flow over a rotation. Thus

ϕs(θ, u) = (θ + nα, u+ s− fn(θ))

for some |n| ≤ C̄|s| where fn is the ergodic sum of f. If n = 0 then (8.1) holds since the
second coordinates differ by at least Cδ. If n 6= 0 then the first coordinates differ by at
least δ since α is Diophantine. This shows that (8.1) holds and completes the proof of
Theorem 2.4. �

Proof of Theorem 2.5. By [47] there exists a full measure set P ′ such that for every
α ∈ P ′′, every (ϕt) ∈ K(α, γ) is polynomially mixing. Let use take (ϕt) ∈ K(α, γ), with
α ∈ P ′′ ∩ P ∩ D. Then (ϕt) is polynomially mixing and moreover by Proposition 8.1
for τ , it follows that τ satisfies polynomial large deviation bounds:

µ
(
{x ∈M : |τT (x)− Tµ(τ)| < ε}

)
≤ C · T−δ

Therefore by Theorem 4.1(b) in [35]12, (FT ) is also polynomially mixing. Moreover, the
entropy of (ϕt) is zero and so (FT ) is not K. This gives n1. Next, n2 follows from
Theorem 3.2 since by Proposition 8.1, (3.4) holds with σ2(·) identically equal to 0 and
als (3.5) holds by Remark 3.3. Now n3 follows by Lemma 8.2 similarly to the proof of
Theorem 2.4. �

8.2. Variance.

Proof of Lemma 8.2. Let φ be a non negative function supported on the unit interval,

with φ(t) ≡ 1 for t ∈ [1/4, 3/4]. Set H(x, y) = φ

(
d(x, x0)

δ

)
D(y), where D is a C∞

observable on Y with ν(D) = 0. Note that ν(D) = 0 implies that H satisfies (5.1).

12Although Theorem 4.1(b) in [35] only covers the discrete case, the proof is the same for continuous
time, see Remark 4.11 in [35].
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We split the integral over (−∞,∞) into three summands Σ2(H) = I1 +I2 +I3, where

I1 =

∫ Cδ

−Cδ

∫
M

∫
Y

H(x, y)H(ϕsx,Gτs(x)y)dν(y)dµ(x)ds,

I2 =

∫
(−p,−Cδ)∪(Cδ,p)

∫
M

∫
Y

H(x, y)H(ϕsx,Gτs(x)y)dν(y)dµ(x)ds

and

I3 =

∫
(−∞,−p)∪(p,∞)

∫
M

∫
Y

H(x, y)H(ϕsx,Gτs(x)y)dν(y)dµ(x)ds.

Notice that I2 equals zero as for every |s| ∈ (Cδ, p),

φ

(
d(x, x0)

δ

)
· φ
(
d(ϕsx, x0)

δ

)
,

is identically equal to zero by (8.1). Moreover, since τ is positive, and (Gt) is expo-
nentially mixing, it follows that for any u ≥ p, τu(x) ≥ cτ · u, and so for some global
C ′ > 0,

|I3| ≤ C ′ ·
∣∣∣ ∫
|u|>p

∫
Y

D(y)D(Gτu(x)(y))dνdu
∣∣∣ ≤ C ′′‖D‖2

r ·
∫
|u|>p

e−ηcτudu ≤

C ′′′‖D‖2
r · e−ηcτp.

Finally,

I1 =

∫ Cδ

−Cδ

∫
M

∫
Y

H(x, y)H(ϕsx,Gτs(x)y)dν(y)dµ(x)ds =

∫ Cδ

−Cδ

∫
M

∫
Y

H(x, y)H(ϕsx, y)dν(y)dµ(x)ds+ O(δ4) =

‖D‖2
2 ·
∫ Cδ

−Cδ

∫
M

φ

(
d(x, x0)

δ

)
· φ
(
d(ϕsx, x0)

δ

)
dµds+ O(δ4)

and for some c′φ > 0∫ Cδ

−Cδ

∫
M

φ

(
d(x, x0)

δ

)
· φ
(
d(ϕsx, x0)

δ

)
dµds ≥ c′φ · C2δ · δ2 = c′φC

2δ3.

If we take δ sufficiently small we can then guarantee that |I1| > 2|I3| and |I1| > 0 (the

first inequality since we have p =
(

1
Cδ

) 1
m

). Summarizing Σ2(H) > 0. �
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8.3. Proof of Proposition 8.1. We start with some results on deviation of ergodic
averages for functions with logarithmic singularities and with power singularities.

For N ∈ N, let θmin,N := min
j<N
‖θ + jα‖, where θ ∈ T and ‖z‖ = min{z, 1 − z}. In

the lemmas below we want to cover the cases of logarithmic and power singularities
simultaneously. For roof functions with logarithmic singularities one can get much
better bounds (with deviations being a power of log) but we do not pursue the optimal
bounds here since the bounds of the present section are sufficient for our purposes. Let
J ∈ C2(T \ {0}) be any function satisfying

(8.3) lim
θ→0+

J(θ)

θ−γ
= P and lim

θ→1−

J(θ)

(1− θ)−γ
= Q,

for some constants P,Q. Notice that by l’Hopital’s rule it follows that any f as in (2.6)
satisfies (8.3) (with P = Q = 0 if f has logarithmic singularities). Recall that γ ≤ 2/5.

In what follows, let (an) denote the continued fraction expansion and (qn) denote the
sequence of denominators of α, i.e. q0 = q1 = 1 and

(8.4) qn+1 = an+1qn + qn−1.

Set
Jm(x) :=

∑
0≤j<m

J(x+ jα).

Lemma 8.3. For every x ∈ T and every n ∈ N,

|Jqn(θ)− qn
∫
T
J(ϑ)dϑ| = O

(
θ−γmin,qn

)
Proof. Let J̄(θ) = (1 − χ[− 1

10qn
, 1
10qn

](θ)) · J(θ). Then J̄ is of bounded variation. Since

the cardinality of the set {θ+ jα}j<qn ∩ [− 1
10qn

, 1
10qn

], is either zero or one it follows that

|J̄qn(θ)− Jqn(θ)| = O
(
θ−γmin,qn

)
,

by the definition of θmin,qn . By the Denjoy-Koksma inequality,

|J̄qn(θ)− qn
∫
T
J̄(ϑ)dϑ| ≤ Var(J̄) = O(qγn).

Moreover, since

∣∣∣∣{θ + jα}j<qn
⋂[
−10

qn
,
10

qn

]∣∣∣∣ ≥ 1 it follows that θmin,qn ≤
10

qn
, and so

qγn = O
(
θ−γmin,qn

)
. It remains to notice that∣∣∣∣∫
T
J̄dϑ−

∫
T
Jdϑ

∣∣∣∣ =

∫ 1
10qn

0

Jdϑ+

∫ 1

1− 1
10qn

Jdϑ = O (qγn/qn) ,

by the definition of J̄ . Since γ < 1
2
, the result follows. �

Lemma 8.4. Fix ζ, C > 0 and assume that α is such that sup
n∈N

qn+1

q1+ζ
n

≤ C for some

ζ, C > 0. Then for every N ∈ N∣∣∣∣JN(θ)−N
∫
T
J(ϑ)dϑ

∣∣∣∣ = O
(
N ζ logN · θ−γmin,N

)
.
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Proof. Let N =
∑
k≤M

bkqk, with bk ≤ ak, bM 6= 0, M = O(logN) be the Ostrovski

expansion of N . For every point θ̄ = θ + jα, j < N with j + qk < N , we have that
θ̄min,qk ≥ θmin,N . Hence for each such point Lemma 8.3 gives

|Jqk(θ̄)− qk
∫
T
J(ϑ)dϑ| = O

(
θ−γmin,N

)
.

Using cocycle identity, we write JN(θ) =
∑
k≤M

∑
j<bk

Jqk(θj,k), for some points θ̄ = θi,k

satisfying the above inequality for qk. Then∣∣∣∣JN(θ)−N
∫
T
J(ϑ)dϑ

∣∣∣∣ = O

(
M · sup

k
bk · θ−γmin,qn

)
= O

(
logN ·N ζθ−γmin,N

)
,

where we use that M = O(logN) and (using (8.4))

sup
k
bk ≤ sup

k
ak = O(qζk) = O(N ζ).

This finishes the proof. �

We will now define the full measure set P from Proposition 8.1. Let 0 < ζ < 1/1000
and let

(8.5) P := {α ∈ T : ∃C > 0 such that qn+1 < Cq1+ζ
n for every n ∈ N}.

The set P has full measure by Khintchine’s theorem, [69]. Assume now that we fix
(ϕt) ∈ K(α, logsym) ∪ K(α, γ), with γ ∈ Bsing (in particular γ ≤ 2/5). By definition
Rα : T→ T is the first return map and f is the first return time. In particular for every
x ∈ M (except the singularity), x = ϕs(θ), where θ ∈ T and s < f(θ). We will denote
this by x = (θ, s).

Let c = infT f > 0. For T > 0, we say that θ ∈ T is T -good if the orbit {θ + jα}j≤T
c

does not visit the interval

[
− 1

T 1+1/100
,

1

T 1+1/100

]
. We have the following

Lemma 8.5. Let (ϕt) ∈ K(α, logsym) ∪ K(α, γ) be a flow on M . Let

W (T ) := {x = (θ, s) ∈M : θ is T -good}.
Then there exists η > 0 such that T ηµ(W (T )c)→ 0 as T →∞.

Proof. For an interval I ⊂ T, let If := {(θ, s) : s < f(θ), θ ∈ I}. Note that

(W (T ))c =
⋃
j≤T

c

Ifj ,

where Ij =

[
−jα− 1

T 1+1/100
,−jα +

1

T 1+1/100

]
. Moreover, by the diophantine assump-

tions on α, all the intervals Ij are pairwise disjoint. Therefore, for j 6= 0,

sup
θ∈Ij

f(θ) ≤ C · T (1+1/100)γ.
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Hence

(8.6) µ

 ⋃
06=j≤T

c

Ifj

 ≤ CT (1+1/100)(γ−1).

Moreover, since f satisfies (2.6), for some η > 0,

(8.7) µ(If0 ) =

∫
[− 1

T1+1/100
1

T1+1/100
]

fdLeb ≤ T−2η.

for T sufficiently large. Combining (8.6) and (8.7) gives the result. �

Using the three lemmas above we can prove Proposition 8.1.

Proof of Proposition 8.1. Let P be as in (8.5) and let (ϕt) ∈ K(α, logsym) ∪ K(α, γ),
with γ ∈ Bsing (in particular γ ≤ 2/5). Let A ∈ C3(M) and denote AT (x) :=∫ T

0
A(ϕtx)dt. We will show that there exists C > 0 such that for every T , and ev-

ery x ∈ W (T ), we have

|AT (x)− Tµ(A)| ≤ CT 1/2−1/1000.

This by Lemma 8.5 will finish the proof of the proposition, as µ(W (T ))→ 1 as T →∞.
Let x = (θ, s) ∈ W (T ), i.e. θ is T -good. Then we have in particular that

s < f(θ) ≤ CT (1+1/100)γ ≤ CT 1/2−1/1000

and

|AT (θ, s)− AT (θ, 0)| < C ′s ≤ C̄ ′T 1/2−1/1000.

Therefore, it is enough to show that if (θ, 0) ∈ W (T ), then

(8.8) |AT (θ, 0)− Tµ(A)| ≤ C ′′T 1/2−1/1000.

for some constant C ′′ > 0. For r > 0 let N(θ, 0, r) be such that ϕr(θ, 0) = (θ +
N(θ, 0, r)α, r̄), i.e. N(θ, 0, r) is equal to the number of returns to the transversal T up
to time r.

Note that since c = minT f > 0, we have that the minimal return time is c and so

(8.9) cN(θ, 0, T ) ≤ T.

Therefore ‖θ+N(θ, 0, T )α‖ ≥ min
j≤T

c

‖θ+jα‖ ≥ T−1−1/100, since θ is T -good. In particular

by (2.6) ,

(8.10) f(θ +N(θ, 0, T )α) ≤ C ′′′T (1+1/100)γ.

So ∫ T

0

A(ϕt(θ, 0))dt− Tµ(A) =

O
(
T (1+1/100)γ

)
+

(∫ N(θ,0,T )

0

A(ϕt(θ, 0))dt−N(θ, 0, T )µ(A)

)
+ (T −N(θ, 0, T ))µ(A).
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Since γ ≤ 2/5, it is enough to bound the second and last term above. It is therefore
enough to prove the following: for every θ which is T -good,

(8.11) |T −N(θ, 0, T )| = O
(
T 1/2−1/1000

)
,

and

(8.12)
∣∣∣ ∫ N(θ,0,T )

0

A(ϕt(θ, 0))dt−N(θ, 0, T )µ(A)
∣∣∣ = O

(
T 1/2−1/1000

)
.

Since N(θ, 0, T ) is the number of returns up to time T , we have

fN(θ,0,T )(θ) ≤ T ≤ fN(θ,0,T+1)(θ) ≤ fN(θ,0,T )(θ) + C ′′′T (1+1/100)γ, .

the last inequality by (8.10). Hence up to an additional negligible error of size T (1+1/100)γ,
it is enough to control

|fN(θ,0,T )(θ)−N(θ, 0, T )|.
By (8.9) it follows that θmin,N(θ,0,T ) ≥ T−1−1/100. So by Lemma 8.4, the boundN(θ, 0, T ) ≤
T/c and the fact that

∫
T fdLeb = 1 imply that

|fN(θ,0,T )(θ)−N(θ, 0, T )| ≤ O
(
T ζ+(1+1/100)γ log T

)
.

Since ζ + (1 + 1/100)γ ≤ 1/1000 + (1 + 1/100)2/5 ≤ 1/2− 1/1000, (8.11) follows.

To prove (8.12) we can WLOG assume that µ(A) = 0. Note that∫ N(θ,0,T )

0

A(ϕt(θ, 0))dt =

N(θ,0,T )−1∑
i=0

∫ f(θ+iα)

0

A(ϕs(θ + iα, 0))ds =

N(θ,0,T )−1∑
i=0

F (θ + iα)

where F (θ) =

∫ f(θ)

0

A(ϕs(θ, 0))ds. Moreover, Leb(F ) = µ(A) = 0 and F is smooth

except at 0. Let p be the fixed point. We claim that for every ε > 0 there exists δ > 0
such that

(8.13) (A(p)− ε)f(θ)− 2‖A‖0δ
−1 ≤ F (θ) ≤ (A(p) + ε)f(θ) + 2‖A‖0δ

−1.

Indeed, we write

F (θ) =

∫ δ−1

0

A(ϕs(θ, 0))ds+

∫ f(θ)

δ−1

A(ϕs(θ, 0)).

The first integral is estimated trivially by ‖A‖0δ
−1. If the second integral is non trivial,

i.e. f(θ) > δ−1, this means that for sufficiently small δ > 0, ϕs(θ, 0) is in ε2 neighbor-
hood of the fixed point p for every s ∈ [δ−1, f(θ)). Therefore, |A(ϕs(θ, 0))−A(p)| < ε.
In particular,

(A(p)− ε)[f(θ)− δ−1] ≤
∫ f(θ)

δ−1

A(ϕs(θ, 0)) ≤ (A(p)− ε)[f(θ)− δ−1].

Putting the above together, we get (8.13). Since f satisfies (8.3) and A ∈ C3, it follows
by (8.13) that

lim
θ→0+

F (θ)

θ−γ
= P ′ and lim

θ→1−

F (θ)

(1− θ)−γ
= Q′
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where P ′ = PA(p), Q′ = QA(p).Ṫhus F (·) also satisfies the assumptions (8.3). So by
Lemma 8.4, the fact that θ is T -good and the bound N(θ, 0, T ) ≤ T

c
,∣∣∣∣∣∣

N(θ,0,T )−1∑
i=0

F (θ + iα)

∣∣∣∣∣∣ = O
(
T ζ+(1+1/100)γ log T

)
= O

(
T 1/2−1/1000

)
.

This finishes the proof of (8.12) and completes the proof of the proposition. �

Part V. Non Bernoulicity of T, T−1 transformations.

This part is devoted to the proof of Theorem 2.7. Our approach is motivated by
[60, 98]. In particular, the statement of the key Proposition 15.2 is similar to the
corresponding statements of [60, 98]. However, its proof in our case is different, since
the other authors rely on fine properties of the ergodic sums of the cocycle τ while our
approach uses exponential mixing in the fiber. We note that in dimension d ≥ 3 if
the dynamics of the fiber is the full Zd shift then the corresponding skew product is
Bernoulli ([32]). Therefore using properties of the fiber dynamics is essential. We exploit
it mainly by establishing that the relative atoms (on the fiber) of the past partition
are points (see Proposition 11.1). The proof uses the geometry of Weyl chambers, see
Section 11. We emphasize that Proposition 11.1 does not hold if the fiber dynamics is
the full Zd shift with d ≥ 3. Another place where the fiber mixing plays a key role is
Section 13.

Another important ingredient in our approach is the use of Bowen-Hamming distance
(see Proposition 12.1) which allows us to handle continuous higher rank actions in the
fiber, and so it plays a crucial role in constructing the example of Theorem 1.5. We also
emphasize that the systems considered in [60, 98] were shown by the authors not to
be loosely Bernoulli. We believe that our methods would work also to show non loose
Bernoullicity at a cost of rather technical combinatorial considerations as one needs to
consider the f̄ metric instead of the Hamming metric. To keep the presentation rela-
tively simple and since our goal was to establish smooth K but non Bernoulli examples
satisfying CLT, we restrict our attention to only dealing with non Bernoullicity.

We note that the assumption that τ has zero mean in Theorem 2.7 is essential. Indeed,
if τ has non-zero mean, then by [35, Theorem 4.1(a)], F is exponentially mixing, and
then one can show using the argument of [61] that F is Bernoulli. The details are given
in a separate paper [37].

9. Background on symbolic dynamics.

Symbolic dynamics provides a powerful tool for studying hyperbolic systems. In this
section we briefly recall the facts from symbolic dynamics needed in our proof.

Let Ω = {1, . . . p} be a finite set with p elements and A = (Aij) be an p × p matrix
whose entries are zeroes and ones. The subshift of finite type is the set

ΣA =
{
{ωj}∞j=−∞ ∈ ΩZ : Aωjωj+1

= 1 for all j ∈ Z
}
.
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The shift on ΣA is defined by σ(ω)j = ωj+1. We endow ΣA with the distance

d(ω′, ω′′) = 2−k where k = max(k̄ ≥ 0 : ω′j = ω′′j ∀j : |j| < k̄).

ΣA is topologically mixing iff there is q > 0 such that all entries of Aq are positive.
We shall assume henceforth that A is such that ΣA is topologically mixing. Given a
Hölder function, φ : ΣA → R we define its pressure by P (φ) = inf[hµ + µ(φ)], where
the minimum is taken over all shift invariant measures and hµ is the entropy of µ. An
invariant measure µ is called the equilibrium measure for φ if P (φ) = hµ + µ(φ).

A word is a finite sequence ω̄0, . . . , ω̄n−1 such that Aω̄j ω̄j+1
= 1 for all 0 ≤ j ≤ n− 1.

The set
D(ω̄0, . . . ω̄n−1) = {ω ∈ ΣA : ωj = ω̄j ∀j ∈ [0, n− 1]}

is called a cylinder of length n. An invariant measure µ is called Gibbs with potential φ
if there is a constant K > 0 such that for each n ∈ Z for each cylinder D of length n
for each ω ∈ D

(9.1)
1

K
≤ µ(D)

eφn(ω)−nP (φ)
≤ K.

It is known (see e.g. [92, Chapter 3]) that φ is a Hölder function on ΣA then it has
unique equilibrium state µφ which is also a Gibbs measure with potential φ.

The Gibbs property (9.1) implies the following important quasi independence esti-
mate. If µ is a Gibbs measure with a Hölder potential, then there is a constant K̄ such
that if D1 and D2 are cylinders of lengths n1 and n2 respectively and if n ≥ n1 is such
that D1 ∩ σ−nD2 6= ∅ then

(9.2)
1

K̄
≤ µ(D1 ∩ σ−nD2)

µ(D1)µ(D2)
≤ K̄.

We note the following consequence of (9.2). Let Fa,b denote the σ-algebra generated

by {ωj}a≤j≤b. Then there is a constant K̂ such that for each set B ⊂ Fk,∞

(9.3)
1

K̂
≤ µ(B|F−∞,k)

µ(B|Fk,k)
≤ K̂.

Indeed since µ is shift invariant it suffices to analyze the the case k = 0. Consider two

cylinders D = D(ω̄0, . . . , ω̄n) and D̃ = D(ω̃0, . . . , ω̃m) with ω̄n = ω̃0. Then

µ(ω ∈ D̃|σ1−nω ∈ D) =
µ(D(ω̄0, . . . , ω̄n, ω̃1, . . . , ω̃m))

µ(D(ω̄0, . . . , ω̄n))

≥ µ(D(ω̃1, . . . , ω̃m))

K̄
≥ µ(D̃)

K̄2µ(D(ω̃0))
=

1

K̄2
µ(ω ∈ D̃|F0,0)(ω̃0)

proving the lower bound in (9.3). The upper bound is similar.

Let f : Tm → Tm be an Anosov diffeo preserving a smooth measure µ̄. Using
Markov partitions one constructs a measure preserving (Hölder) isomorphism j be-
tween (ΣA, σ, µφ) and (Tm, f, µ̄) where ΣA is a topologically transitive subshift of finite
type (SFT), µφ is the Gibbs measure with Holder potential

(9.4) φ(ω) = ln | det(df |Eu)(j(ω))|
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and Eu is the unstable distribution of f ([14]). (Note that the fact that µ̄ is the
equilibrium measure for the potential φ̄(x) = ln | det(df |Eu)(x)| follows from Pesin
entropy formula). Therefore, Theorem 2.7 follows from:

Theorem 9.1. Let d ≥ 1, ΣA be a topologically mixing subshift of finite type and µ be
a Gibbs measure with a Hölder potential. Let (Gt) be a geodesic flow on SL(2,R)/Γ
(if d = 1), or a Weyl chamber flow on SL(d + 1,R)/Γ (when d ≥ 2). Let τ : ΣA → Rd

be a mean zero Hölder cocycle which is not cohomologous to a cocycle taking value
in a proper linear subspace of Rd. Then the homeomorphism on ΣA × SL(d+ 1,R)/Γ
defined by

F (x, y) = (σω,Gτ(ω)y)

with the invariant measure ζ = µ× Haar is non-Bernoulli.

10. Fiber dynamics: Weyl chamber flow

Let d ≥ 1. Let H := SL(d + 1,R), Γ be a co-compact lattice in H and Y := H/Γ.
Let D+ ⊂ H be the subgroup of diagonal matrices in H with positive elements. It is
easy to see that D+ is isomorphic to Rd. The group D+ acts on Y by left translation.
When d = 1, this one parameter flow is called geodesic flow. When d ≥ 2, it is a Rd

action, which is called Weyl Chamber flow. Let h = sl(d + 1,R) be the Lie algebra of
H and let dH denote the right-invariant metric on H and dY the induced metric on Y .
For 1 ≤ i, j ≤ d + 1, let vi,j be the elementary (d + 1) × (d + 1) matrix with only one
nonzero entry equal to one in the row i and the column j. If i 6= j let hi,j ⊂ h be the
subalgebra generated by vi,j. Let o ⊂ h be the subalgebra of diagonal matrices with
zero trace. Then

(10.1) h = o⊕
(⊕

i 6=j

hi,j

)
.

For each pair (i, j) define χi,j : Rd → R by χij(t) = χij(t1, . . . , td) = ti− tj. Then for
v ∈ hij

Gt · exp(v) = exp(eχi,j(t)v) ·Gt.

The χi,j are exactly the Lyapunov functionals of G in classical Lyapunov theory. For
every i 6= j, the equation ti = tj defines a hyperplane Hi,j in Rd, where the functional
χi,j vanishes (notice that for i = j, χi,i ≡ 0). The connected components of

Rd\
⋃
i 6=j

Hi,j

are called Weyl chambers of the action G. Notice that by continuity each Lyapunov
functional has constant sign in a Weyl chamber. For any Weyl chamber C we denote

h+
C :=

⊕
χi,j>0 on C

hi,j

with an analogous notation for h−C . The above distributions define foliations on G: for
y ∈ H let W+

C (y) = exp(h+
C ) and W−C (y) = exp(h−C )y respectively.
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To simplify notations, we enumerate the Lyapunov functionals as {χi}1≤i≤m and the
corresponding splitting (10.1) as

h =
⊕
i≤m

hi

Using the above splitting and the exponential map we can introduce the system of local
coordinates on Y : there exists a constant ζ0 such that if dH(y, y′) ≤ ζ0, then

(10.2) y = exp(Z)y′, where Z =
∑
i

Zi, and Zi ∈ hi.

By [66], any Weyl chamber flow is exponentially mixing13.
Moreover, we say that G is exponentially mixing on balls if there exist C, η′, η > 0 such

that for every v ∈ Rd, every B(y, r), B(y′, r′) ⊂ Y with y, y′ ∈ Y and r, r′ ∈ (e−η
′‖v‖, 1)

the following holds:

(10.3) |ν(B(y, r) ∩GvB(y′, r))− ν(B(y, r))ν(B(y′, r′))| ≤ Ce−η‖v‖.

A standard approximation argument (see eg. [50]) shows that exponential mixing
for sufficiently smooth functions implies that G is exponentially mixing on balls. So we
have:

Lemma 10.1. Any Weyl chamber flow is exponentially mixing on balls.

11. Relative atoms of the past partition

Recall that F : (ΣA × Y, ζ)→ (ΣA × Y, ζ) is given by F (ω, y) = (σω,Gτ(ω)y). Let Pε
be a partition of ΣA given by cylinders on coordinates [−ε−

1
β , 0], where β is the Hölder

exponent of τ . Let Qε be a partition of Y into sets with piecewise smooth boundaries
and of diameter ≤ ε.

Recall that Ω denotes the alphabet of the shift space. For ω− = (..., ω−1, ω0) ∈ ΩZ≤0 ,
let

Σ+
A(ω−) = {ω+ = (ω1, ω2, ...) ∈ ΩZ+ : (..., ω−1, ω0, ω1, ...) ∈ ΣA}.

Note that Σ+
A(ω−) only depends on ω0. We will also use the notation ω = (ω−, ω+) and

Σ+
A(ω) = Σ+

A(ω−). For ω = (ω−, ω+) and S+ ⊂ Σ+
A(ω), we write

µ+
ω (S+) = µ({(ω−, ω̄+) : ω̄+ ∈ S+}).

With a slight abuse of notation, we also denote by µ+
ω a measure on ΣA defined by

µ+
ω (S) = µ+

ω ({ω̄+ : (ω−, ω̄+) ∈ S}). Notice that, for any measurable subset S ⊂ ΣA,

µ(S) =

∫
ΣA

µ+
ω (S)dµ(ω).

We can assume that τ only depends on the past. Indeed, if this is not the case,
then ([92, Proposition 1.2]) τ is cohomologous to another Hölder function τ̄ depending
only on the past: τ(ω) = τ̄(ω−) + h(ω) − h(σω). If F̄ is the (T, T−1) transformation

13 In fact, by [9] G is exponentially mixing of all orders. The multiple exponential mixing plays
important role in verifying that F satisfies the CLT if d ≥ 3 (see §B.1), but it is not needed in the
proof of Theorem 9.1.
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constructed using τ̄ and L(ω, y) = (ω,Gh(ω)y), then L ◦ F = F̄ ◦ L. Since F and F̄ are
conjugate, we can indeed assume that τ only depends on the past.

The main result of this section is:

Proposition 11.1. There exists ε0 > 0 and a full measure set V ⊂ ΣA × Y such that
for every (ω, y) ∈ V , the atoms of

∞∨
i=0

F i(Pε0 ×Qε0)

are of the form {ω−×Σ+
A(ω−)}×{y}, i.e. the past of ω and the Y -coordinate are fixed.

Before we prove the above proposition, we need some lemmas. For a non-zero χi, let
Ci ⊂ Rd be a cone

Ci = {a ∈ Rd : χi(a) ≥ c′‖a‖}, where c′ = min
i:χi 6=0

‖χi‖/2.

We start with the following lemma:

Lemma 11.2. Let (G, Y, ν) be a Weyl chamber flow. Choose cones Ĉi properly con-
tained in Ci. Then for each a ∈ R+ there exists κ = κ(G, a) > 0 such that the following
holds. Let {aj}j∈N ⊂ Rd, be a sequence such that a1 = 0 and

A. supj ‖aj+1 − aj‖ < a;
B. for every i we have sup

j:aj∈Ĉi
‖aj‖ =∞.

Then for any y, y′ ∈ Y with y′ /∈ O(y), where O(y) denotes the G-orbit of y, there is
j ∈ N such that dY (Gajy,Gajy

′) ≥ κ
4
.

In order to prove the above lemma, we first establish the divergence on the universal
cover.

Lemma 11.3. There exists κ̄ > 0 such that for any y, y′ ∈ H with y′ /∈ O(y) and any
{aj} satisfying A.,B., there exists j0 such that

dH(Gaj0
y,Gaj0

y′) > κ̄.

Proof. To simplify notation we denote Gty simply by ty. Fix y, y′ ∈ H. WLOG,
assume dH(y, y′) < ζ0 where ζ0 is defined above (10.2). We can write y = exp(Z)y′,
where Z ∈ h, and Z =

⊕
i Zi with Zi ∈ hi. Since y′ /∈ O(y), there exists i such

that χi 6= 0 and Zi 6= 0. Accordingly there is a Weyl chamber C such that splitting
Z = Z+ +Z− with Z± ∈ h±C we have Z+ 6= 0. Let y′′ = W−C (y)∩W+

C (y′). Then y′′ 6= y′

since Z 6∈ h−C .

Let Ĉ be a cone which is strictly contained inside C. Note that by the definition of y′′,
there exists a global constant K > 0 such that for each aj ∈ C we have dH(ajy, ajy

′′) ≤
Kζ0. By triangle inequality, dH(ajy, ajy

′) ≥ dH(ajy
′, ajy

′′)−dH(ajy, ajy
′′). To complete

the proof it is enough to note that due to the fact that the vectors in h+
C are expanded

by Ĉ at a uniform rate and sup
j:aj∈Ĉ

‖aj‖ = ∞, there exists j such that dH(ajy
′, ajy

′′) ≥

Kζ0 + κ̄, for some κ̄ > 0. �
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With Lemma 11.3, we can prove Lemma 11.2:

Proof of Lemma 11.2. To simplify notation we denote Gty simply by ty. Since Γ ⊂ H
is co-compact, it follows that there exists c > 0 such that

(11.1) inf
y∈H

inf
γ 6=e

dH(y, yγ) > c > 0.

Let C1 := sup
j
‖aj+1 − aj‖ <∞ and let C = C(α) > 0 be such that

(11.2) sup
0<dH(y,y′)≤1

sup
‖b‖<C1

dH(by,by′)

dY (y, y′)
≤ C,

Let 0 < κ < κ̄ be such that c ≥ (C + 1/4)κ (recall that κ̄ is the constant from Lemma
11.3 ). Let y, y′ ∈ Y , with y′ /∈ O(y), with dY (y, y′) ≤ κ/4. By taking appropriate lifts
of y and y′ to H, we can assume that dH(y, y′) ≤ κ/4. By Lemma 11.3, there exists
j0 ∈ N such that dH(aj0y, aj0y

′) > κ/4. Let us take the smallest j0 with this property.
Then, dH(aj0−1y, aj0−1y

′) ≤ κ/4. Therefore by the bound in (11.2)

dH(aj0y, aj0y
′) = dH

(
(aj0 − aj0−1)(aj0−1y), (aj0 − aj0−1)(aj0−1y

′)
)
≤ Cκ.

Take γ ∈ H such that dY (aj0y, aj0y
′) = dH

(
aj0y, aj0y

′γ
)

. By (11.1) we get

dH

(
aj0y, aj0y

′γ
)
≥ dH

(
aj0y

′, aj0y
′γ
)
− dH

(
aj0y, aj0y

′
)
≥ c− Cκ ≥ κ/4.

This finishes the proof. �

Recall that for τ : ΣA → Rd and n ∈ N, we denote τn(ω) :=
n−1∑
j=0

τ(σjω), and

τ−n(ω) = −τn(σ−nω). The next result, proven in §B.2, helps verifying condition (B) of
Lemma 11.2.

Lemma 11.4. Let τ : ΣA → Rd be a zero mean Hölder function that is not cohomolo-
gous to a function taking values in a linear subspace of Rd of dimension < d. Then for
any cone C ⊂ Rd, for µ a.e. ω ∈ ΣA

(11.3) sup
v∈({τn(ω)}n≥0)∩C

‖v‖ =∞ and sup
v∈({τn(ω)}n<0)∩C

‖v‖ =∞.

Proof of Proposition 11.1. We will take ε0 := κ(G, ‖τ‖C0)/5 where κ is from Lemma
11.2. By Corollary 2 in [57], the skew product F is ergodic. Let Λ be the set of points
(ω, y) whose forward and backward orbits are dense and such that (11.3) holds for ω

and every cone {Ĉi} from Lemma 11.2. By ergodicity of F and Lemma 11.4 ζ(Λ) = 1.

Notice that if (ω, y) ∈ Λ, and (ω, y), (ω̄, y′) lie in the same atom of
∞∨
i=0

F i(P × Qε0),

then ω− = ω̄−. Since τ depends only on the past, τ−j(ω) = τ−j(ω̄) for j ∈ N. We will
show that y′ = y.

Assume first that y′ ∈ O(y) and let y′ = Gw · y, for some w ∈ Rd. Let Q be an
atom of Qε0 . Note that there exists q ∈ Q and ε = ε(w) > 0 such that B(q, ε) ⊂ Q and
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Gw ·B(ε, q)∩Q = ∅. Indeed, if not then Q would be invariant under the translation Gw

which is impossible if Gw 6= Id by Moore ergodicity theorem [87]. This contradiction
shows that such q and ε exist. Since the F orbit of (ω, y) is dense, there exists n, such
that F−n(ω, y) ∈ ΣA × B(ε, q) ⊂ ΣA × Q. Let u = τ−n(ω). Then Guy

′ = GwGuy /∈ Q.
So F−n(ω, y) and F−n(ω′, y′) are not in the same atom of P ×Q. If y′ /∈ O(y) then we
use Lemma 11.4 and Lemma 11.2 with aj = τj(ω) to finish the proof. �

Remark 11.5. We believe that ALL partially hyperbolic algebraic abelian actions
satisfy the assertion of Proposition 11.1. However, the proof is more complicated if
there is a polynomial growth in the center. We plan to deal with the general situation
in a forthcoming paper.

12. Non Bernoulicity under zero drift. Proof of Theorem 9.1

12.1. The main reduction. We introduce the notion of (ε, n)-closeness which is an
averaged version of Bowen closeness. Let d denote the product metric on Σ × Y. Two
points (ω, y), (ω′, y′) ∈ ΣA × Y are called (ε, n)-close if

#
{
i ∈ [1, n] : d

(
F i(ω, y), F i(ω′, y′)

)
< ε
}
≥ (1− ε)n.

We will now state two propositions that imply Theorem 9.1.

Proposition 12.1. If F is Bernoulli then for every ε, δ > 0 there exists n0 such that
for every n ≥ n0 there exists a measurable set W ⊂ ΣA × Y with ζ(W ) > 1 − δ such
that if (ω, y), (ω̄, ȳ) ∈ W , then there exists a map Φ(ω−,y)(ω̄−,ȳ) : Σ+

A(ω) → Σ+
A(ω̄) with

(Φω−,ω̄−)∗(µ
+
ω ) = µ+

ω̄ and a set Uω− ⊂ Σ+
A(ω) such that:

(1) µ+
ω (Uω−) > 1− δ;

(2) if z ∈ Uω− then ((ω−, z), y) and ((ω̄−,Φ(ω−,y)(ω̄−,ȳ)z), ȳ) are (ε, n)-close.

We will also need another result. For ε > 0, n ∈ N, ω ∈ ΣA, y
′ ∈ Y , let

(12.1) D(ω, y′, ε, n) :=
{
y ∈ Y : ∃ω′ ∈ ΣA s.t. (ω, y) and (ω′, y′) are (ε, n)-close

}
.

Proposition 12.2. There exists ε′ > 0, an increasing sequence {nk}, and a family of
sets {Ωk}, Ωk ⊂ ΣA, µ(Ωk)→ 1, such that

lim
k→∞

sup
ω∈Ωk
y′∈Y

ν(D(ω, y′, ε′, nk)) = 0.

We will prove Proposition 12.1 in a §12.2 and Proposition 12.2 in §12.3. Now we
show how these two propositions imply Theorem 9.1:

Proof of Theorem 9.1. We argue by contradiction. Fix ε = ε′/100, δ = ε, and let
n = nk (for some sufficiently large k, specified below). Let W ⊂ ΣA × Y be the set
from Proposition 12.1. Let

W y := {ω ∈ ΣA : (ω, y) ∈ W} and Wω := {y ∈M : (ω, y) ∈ W}.

By Fubini’s theorem, there exists Z ⊂ ΣA, µ(Z) ≥ 1 − 2ε such that for every ω ∈ Z,
ν(Wω) > 1/2. Let k be large enough (in terms of ε) such that µ(Z ∩ Ωk) ≥ 1− 4ε. By
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Fubini’s theorem, it follows that there exists Z ′ ⊂ Z ∩Ωk, µ(Z ′) > 1− 4ε such that for
ω ∈ Z ′, µ+

ω (Z ∩ Ωk) > 1− 8ε. In particular, it follows that

µ+
ω ({ω̄+ ∈ Uω− : (ω−, ω̄+) ∈ Z ∩ Ωk}) > 1− 16ε.

Let ω = (ω−, ω+) ∈ Z ∩Ωk ∩ ({ω−} ×Uω−) and let (ω̄, y′) ∈ W . Since ω ∈ Z it follows
that ν(Wω) > 1/2. Since ω ∈ Ωk, it follows that for k large enough there exists

(12.2) y ∈ Wω \D(ω, y′, ε′, nk).

Since ω+ ∈ Uω− , by (2) we get that (ω−, ω+, y) and (ω̄−,Φω−,ω̄−(ω+), y′) are (ε, nk)-
close. This by the definition of D(ω, y′, ε′, nk) implies that y ∈ D(ω, y′, ε′, nk). This
however contradicts (12.2). This contradiction finishes the proof. �

12.2. Hamming–Bowen closeness. We start with introducing the notion of VWB
(very weak Bernoulli) partitions in the setting of skew-product for which the assertion
of Proposition 11.1 holds (see e.g. [23] or [62]). Let R be a partition of ΣA × Y . Two
points (ω, y), (ω′, y′) ∈ ΣA × Y are called (ε, n,R)-matchable if

#{i ∈ [1, n] : F i(ω, y) and F i(ω′, y′) are in the same R atom} ≥ (1− ε)n.

Definition 12.3. F is very weak Bernoulli with respect to R if and only if for every
ε′ > 0, there exists n′ such that for every n ≥ n′ there exists a measurable set W ′ ⊂
ΣA ×M with µ × ν(W ′) > 1 − ε′ such that if (ω, y), (ω̄, ȳ) ∈ W ′, then there exists a
map Φ(ω−,y)(ω̄−,ȳ) : Σ+

A(ω) → Σ+
A(ω̄) with (Φω−,ω̄−)∗(µ

+
ω ) = µ+

ω̄ and a set U ′ω− ⊂ Σ+
A(ω)

such that:

(1) µ+
ω (U ′ω−) > 1− ε′;

(2) if z ∈ U ′ω− then ((ω−, z), y) and ((ω̄−,Φ(ω−,y)(ω̄−,ȳ)z), ȳ) are (ε′, n,R)-matchable.

Proof of Proposition 12.1. Recall that by [88] if F is Bernoulli then it is VWB with
respect to every non-trivial partition.

Let (P × Q)n be the sequence of partitions defined above, where the atoms have
diameter that goes to 0 as n → ∞. Let n̄ be such that the atoms of (P × Q)n̄ have
diameter≤ ε. This then implies that if two points (ω, y) and (ω′, y′) are (ε, n) matchable,
then they are (ε, n)-close. It is then enough to use VWB definition for (P × Q)n̄ with
ε′ = min{δ, ε}. This finishes the proof. �

Remark 12.4. Now we explain why it is easier to work with closeness rather than
matchability, in the case G = Rd. Notice that if (ω, y) and (ω′, y′) are (ε, n)-close, and
‖u‖ < δ < ε, then (ω, y) and (ω′, Guy

′) are (ε + δ, n) close. 14 This is not necessarily
true for matchability (if the orbit of y′ is always close to the boundary of the partition).
This property of closeness crucially simplifies our consideration as it allows us to obtain
a crucial inclusion (15.4).

14Notice that for any i ∈ N the points F i(ω′, y′) and F i(ω′, Guy
′) are δ close. Indeed, they have

the same first coordinate and the second one is Gτi(ω)y
′ vs Gu+τi(ω)y

′ which are δ close since ‖u‖ < δ.
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12.3. Proof of Proposition 12.2. Given Ωk, nk denote

ak(ε
′) := sup

ω∈Ωk
y′∈Y

ν(D(ω, y′, ε′, nk)).

Proposition 12.5. There exists n1 ∈ N and a family of sets {Ωk} such that if

εk :=

(
1− 1

50k2

)
εk−1, ε1 := 1

10n1
and nk+1 = (10k)100 · nk, then we have

ak(εk)→ 0, as k →∞.

We remark that the recursive relations in Proposition 12.5 imply that

(12.3) εk = ε1

k∏
j=2

(
1− 1

50j2

)
,

(12.4) nk+1 = n1(10kk!)100.

Proposition 12.5 which is proven in Section 15 immediately implies Proposition 12.2:

Proof of Proposition 12.2. We define ε′ := inf
k≥1

εk =
∞∏
j=2

ε1

(
1− 1

50j2

)
. Then by the

definition of {εk}, ε′ > 0 and monotonicity, we have

0 ≤ ak(ε
′) ≤ ak(εk)→ 0,

as k →∞. This finishes the proof. �

13. Consequence of exponential mixing

We have the following quantitative estimates on independence of the setsD(ω, y′, ε′, nk)
under the action Gt. This is the only place in the proof where we use exponential mixing
of Gt.

In this section we shall denote `k = 2k20√nk−1.

Lemma 13.1. For k ∈ N let ω1, ω2 ∈ ΣA be such that

(13.1) sup
r≤nk−1

‖τr(ωi)‖ ≤ `k

for i = 1, 2. Then, for any y1, y2 ∈ Y , any v ∈ Zd, ‖v‖ ≥ k25n
1/2
k−1, and any ε > 0.

ν
(
Gv(D(ω1, y1, ε, nk−1)) ∩D(ω2, y2, ε, nk−1)

)
≤ C# ·

∏
i=1,2

ν
(
D(ωi, yi, ε+ 2−n

1/2
k−1 , nk−1)

)
.

Proof. Let L := max{ sup
‖v‖=1

‖Gv‖C1 , 100}. Then if d(y, y′) ≤ (2L)−`k , then

d(Guy,Guy
′) ≤ L`k · (2L)−`k ≤ 2−`k ≤ 2−n

1/2
k−1

for all u ∈ A with ‖u‖ ≤ `k. Using this for u = τr(ωi), r < nk−1, (13.1) implies that if

d(y, y′) ≤ (2L)−`k , then

(13.2) d(Gτj(ωi)(y), Gτj(ωi)(y
′)) ≤ 2−n

1/2
k−1 , for all j < nk−1.
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Therefore for every y ∈ D(ωi, yi, ε, nk−1),

(13.3) B
(
y, (2L)−`k

)
⊂ D(ωi, yi, ε+ 2−n

1/2
k−1 , nk−1).

Using Besicovitch theorem for the cover
{
B
(
y, (2L)−`k

)}
, where

y ∈ D(ωi, yi, ε, nk−1),

we get a finite cover by a family of balls {Bj,i
s }j≤C′,s≤mj i = 1, 2, such that for every

i ∈ {1, 2}, j ≤ C ′, the balls {Bj,i
s }s≤mj are pairwise disjoint. Therefore

ν
(
Gv(D(ω1, y1, ε, nk−1)) ∩D(ω2, y2, ε, nk−1)

)
≤
∑
j,j′

∑
s,s′

ν(Gv(B
j,1
s ) ∩Bj′,2

s′ ).

Using that G is exponentially mixing on balls in the sense of (10.3), and the fact that

e−η
′‖v‖ ≤ ( 1

2L
)`k (since ‖v‖ ≥ k25n

1/2
k−1) we get that the above term is upper bounded by

(13.4) C ·
∑
j,j′

∑
s,s′

ν(Bj,1
s )ν(Bj′,2

s′ ) = C

[∑
j

∑
s

ν(Bj,1
s )

]
·

[∑
j′

∑
s′

ν(Bj′,2
s′ )

]
.

Since the balls are disjoint for fixed i and j, we have∑
s

ν(Bj,i
s ) = ν

(⋃
s

Bj,i
s

)
≤ ν(D(ωi, yi, ε+ 2−n

1/2
k−1 , nk−1))

where the last inequality follows from (13.3). Since the cardinality of j′s is globally
bounded (only depending on the manifold Y ), (13.4) is upper bounded by

C · Cd ·
∏
i

ν(D(ωi, yi, ε+ 2−n
1/2
k−1 , nk−1)).

This finishes the proof. �

We also have the following lemma.

Lemma 13.2. For any constant C2 > 1 the following is true. If n1 > C2 and bk is a
sequence of real numbers satisfying

b1 ≤
( 1

100n1

)300d

and bk ≤ C2 · n2d+1
k · b2

k−1,

then bk → 0.

Proof. By induction, we see that

ln bk ≤ (2k−1 − 1) lnC2 + (2d+ 1)

[
k∑
l=2

2k−l lnnl

]
+ 2k−1 ln b1

Now using (12.4), we obtain

ln bk ≤ (2k−1 − 1) lnC2 + (2d+ 1)

[
k∑
l=2

2k−l100l(ln 10 + ln l)

]
+ 2k+2d lnn1 + 2k−1 ln b1.
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Using the condition on b1, the result follows. �

14. Construction of Ωk

Let n1 be a number specified below and nk be defined by (12.4). For k ≥ 2 define

Ak :=
{
ω ∈ ΣA : #{(i, j) ∈ [0, (10k)100]× [0, (10k)100], i 6= j :

1

(|j − i|nk−1)1/2
‖τ(j−i)nk−1

(σink−1ω)‖ ≥ k−20} > (10k)200(1− k−9)
}
,

Bk :=
{
ω ∈ ΣA : #{i < (10k)100 : sup

r≤nk−1

1

n
1/2
k−1

‖τr(σink−1ω)‖ ≤ k20} > (10k)100(1−k−9)
}
.

For ω ∈ ΣA, let ω[0,n−1) denote the cylinder in coordinates [0, . . . , n− 1) determined
by ω and let

Ãk =
⋃
ω∈Ak

ω[0,nk−1) and B̃k =
⋃
ω∈Bk

ω[0,nk−1).

This way, Ãk and B̃k are unions of cylinders of length nk.
The next lemma is proven in §B.3.

Lemma 14.1. For any C0 > 0, there exists an n0, such that if n1 ≥ n0, we have:

m1. for every k ≥ 1, min
(
µ(Ãk), µ(B̃k)

)
≥ 1− C0k

−8.

m2. for every ω ∈ Ãk,

(14.1) #
{

(i, j) ∈ [0, (10k)100]× [0, (10k)100], i 6= j :

1

(|j − i|nk−1)1/2
‖τ(j−i)nk−1

(σink−1ω)‖ ≥ k−20/2
}
> (10k)200(1− k−9)

and for every ω ∈ B̃k,

(14.2) #

{
i < (10k)100 : sup

r≤nk−1

1

n
1/2
k−1

‖τr(σink−1ω)‖ ≤ 2k20

}
> (10k)100(1− k−9).

Define

(14.3) Ω̄1 :=
{
ω : ‖τn1(ω)‖ ≥ n

1/2−1/11
1

}
and Ω1 :=

⋃
ω∈Ω̄1

ω[0,n1−1).

Notice that by Hölder continuity of τ it follows that for every ω ∈ Ω1, ‖τn1(ω)‖ ≥
n

1/2−1/10
1 , if n is large enough.
We suppose that n1 is large enough, see below. For k ≥ 2 we define:

Ωk := Ãk∩ B̃k∩
{
ω ∈ ΣA : #{i < (10k)100 : σink−1(ω) ∈ Ωk−1} > (10k)100(1−k−5)

}
.

Lemma 14.2. For every k, the set Ωk is a union of cylinders of length nk.
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Proof. For k = 1, this follows from the definition of Ω1. Also by definition the sets
Ãk and B̃k are unions of cylinders of length nk. Now inductively, if Ωk−1 is a union
of cylinders of length nk−1, then for every i < (10k)100, the event σink−1(ω) ∈ Ωk−1,
depends only on the [ink−1, (i+ 1)nk−1] coordinates of ω. Since i < (10k)100, the union
of these events depends only on the first nk coordinates of ω. �

Let Ck = {C : C is a union of cylinders of length nk−1}. Since µ is Gibbs, by (9.2)
there exists a constant C1 ≥ 1 independent of the cylinders C and of k such that for
any cylinders C1, C2 ∈ Ck, for any m ≥ nk−1

µ(C1 ∩ σmC2) ≤ C1µ(C1)µ(C2).

We obtain by induction that for any C1, . . . , C` ∈ Ck, any j1 < · · · < j`,

(14.4) µ

(⋂̀
i=1

σjink−1Ci

)
≤ C`

1

∏̀
i=1

µ(Ci).

We assume that n1 is so large that µ(Ω1) ≥ 1− C−2
1 2−200.

Proposition 14.3. There exists a constant C0 > 0, such that for any k ≥ 1,

(14.5) µ(Ωk) ≥ 1− C0k
−7.

Proof of Proposition 14.3: Set C0 =
1

C2
1 20200

. We prove (14.5) by induction. By the

choice of n1 and C0, (14.5) holds for k = 1. Now assume it holds for k− 1 ≥ 1. We are
going to show it holds for k.

We claim that µ(Dk) ≤ C0k
−7/3, where

Dk =
{
ω ∈ ΣA : #{i < (10k)100 : σink−1(ω) ∈ Ωk−1} < (10k)100 − (10k)95

}
.

By Lemma 14.2, the set Ωk−1 is a union of cylinders of length nk−1. So is the complement
Ωc
k−1.
Divide the interval [0, (10k)100] into 10(10k)94 intervals of length 105k6. If ω ∈ Dk,

one of those intervals I should contain at least k visits to Ωc
k−1. Let i1, . . . ik be the

times of the first k visits inside I. By (14.4), for each tuple i1, . . . , ik

µ
(
σijnk−1ω ∈ Ωc

k−1 for j = 1, . . . , k
)
≤ (C1µ(Ωc

k−1))k.

Since the number of tuples inside I is less than |I|k = 105kk6k,

µ
(
#{i ∈ I : σiω ∈ Ωc

k−1} ≥ k
)
≤ (10k)6kCk

1µ(Ωc
k−1)k.

Since there are 10(10k)94 intervals, we have

µ(Dk) ≤ 10(10k)94(10k)6kCk
1µ(Ωc

k−1)k ≤ 1

Ck
1 2100kkk

≤ C0k
−7/3.

By m1 in Lemma 14.1 and the definition of Ωk, we obtain µ(Ωk) ≥ 1− C0k
−7. �

Definition 14.4. We say that a pair (i, j) ∈ [0, (10k)100]2 is nk–good for ω if for
v ∈ {i, j} σvnk−1ω ∈ Ωk−1,

(14.6)
1

(|j − i|nk−1)1/2
‖τ(j−i)nk−1

(σink−1ω)‖ ≥ k−20/2,
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and

(14.7) sup
r≤nk−1

1

n
1/2
k−1

‖τr(σvnk−1ω)‖ ≤ 2k20.

By definition of Ωk, there are at least (10k)200(1 − 5k−5) nk–good pairs (i, j), for
every ω ∈ Ωk.

15. Proof of Proposition 12.5

We will show that Proposition 12.5 holds for sets Ωk and n1 from Section 14. Let
C2 = 10200 · C# · dd · 100d(sup ‖τ‖)d, where C# is from Lemma 13.1.

We start with the following lemma:

Lemma 15.1. Let n1 > C2 be sufficiently large. Then

a1(ε1) ≤
( 1

100n1

)300d

.

Proof. Let ω ∈ Ω1 and y ∈ D(ω, y′, ε1, n1). Thus there is some ω′ so that (ω, y) and
(ω′, y′) are (ε1, n1)-close. Since ε1 = 1

10n1
it follows that for every 0 ≤ i ≤ n1 − 1,

d
(
F i(ω, y), F i(ω′, y′)

)
< ε1.

Since τ depends only on the past and is Hölder continuous with exponent β, this
implies in particular that

‖τi(ω)− τi(ω′)‖ ≤ Cεβ1 for i ≤ n1.

Let ε0 = εβ1 . Using closeness of F i(ω, y) and F i(ω′, y′) on the second coordinate, we get

(15.1) d
(
Gτi(ω)y, Gτi(ω)y

′
)
< 2Cε0 for i ≤ n1.

We claim that (15.1) implies that

(15.2) dH

(
Gτi(ω)y, Gτi(ω)y

′
)
< 2Cε0 for i ≤ n1.

Indeed, if not let i0 ≤ n1 be the smallest index i for which (15.2) doesn’t hold. This
means that

dH

(
Gτi0−1(ω)y, Gτi0−1(ω)y

′
)
< 2Cε0.

Note that by (15.1) there is some γ so that

dH

(
Gτi0 (ω)y, Gτi0 (ω)y

′γ
)
< 2Cε0,

and by the definition of i0, γ 6= e. The last two displayed inequalities imply that for
some global constant C ′′ > 0,

dH

(
Gτi0 (ω)y

′, Gτi0 (ω)y
′γ
)
< C ′′ε0.

If ε0 is small enough, this gives a contradiction with the systole bound (11.1). So (15.2)
indeed holds.
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Since ω ∈ Ω1 (see (14.3)), it follows that

(15.3) ‖τn1(ω)‖ ≥ n
1/2−1/10
1 .

It follows that Gτn1 (ω) expands the leaves of one of the Lyapunov foliations by at

least ecn
2/5
1 . Hence each leaf intersects the set of y′ satisfying (15.2) in a set of measure

O
(
e−cn

2/5
1

)
.

Therefore ν(D(ω, y′, ε1, n1)) ≤ C ′ · e−cn
2/5
1 , whence a1(ε1) ≤ C · e−cn

2/5
1 ≤

( 1

100n1

)300d

if n1 is sufficiently large. The proof is finished. �

The next result constitutes a key step in the proof.

Lemma 15.2. For any k ∈ N, any ω ∈ Ωk, any y′ ∈ M and any y ∈ D(ω, y′, εk, nk),
there exists (ik−1, jk−1) ∈ [1, (10k)100]2, such that |ik−1 − jk−1| ≥ (10k)95, (ik−1, jk−1) is
nk good for ω (see Definition 14.4) and there are uk, vk such that ‖uk‖ ≤ (sup |τ |)nk,
‖vk‖ ≤ (sup |τ |)nk, and

Gτik−1nk−1
(ω)y ∈ D

(
σik−1nk−1ω,Guky

′,
(

1− 1

100k4

)
εk−1, nk−1

)
,

Gτjk−1nk−1
(ω)y ∈ D

(
σjk−1nk−1ω,Gvky

′,
(

1− 1

100k4

)
εk−1, nk−1

)
.

Before we prove the above lemma, let us show how it implies Proposition 12.5.

Proof of Proposition 12.5. Let Λk = {u : ‖u‖ ≤ (sup |τ |)nk, 100dnku ∈ Zd}. It is easy
to see that #Λk ≤ (100d(sup |τ |)n2

k)
d. Notice that for any `k with ‖`k‖ ≤ nk there

exists ` ∈ Λk such that ‖`k − `‖ ≤ n−1
k . Therefore, for any ω̄ ∈ ΣA

(15.4) D

(
ω̄, G`ky

′,
(

1− 1

100k4

)
εk−1, nk−1

)
⊂ D (ω̄, G` y

′, δk−1, nk−1)

where δk−1 :=
(

1 − 1
100k4

)
εk−1 + 1

nk
. Now combining Lemma 15.2 and (15.4) with the

choice `k ∈ {uk, vk} where uk, vk are from Lemma 15.2, we deduce

(15.5) D(ω, y′, εk, nk) ⊂⋃
(ik−1,jk−1)∈[1,(10k)100]2

⋃
u,v∈Λk

⋂
(w,z)∈{(ik−1,u),(jk−1,v)}

G−τwnk−1
(ω)D (σwnk−1ω,Gzy

′, δk−1, nk−1) .

Fix u, v and (i, j) = (ik−1, jk−1). Then by invariance of the measure,

ν
(
G−τink−1

(ω)D(σink−1ω,Guy
′, δk−1, nk−1) ∩G−τjnk−1

(ω)D(σjnk−1ω,Gvy
′, δk−1, nk−1)

)
=

(15.6)

ν
(
Gτjnk−1

(ω)−τink−1
(ω)D(σink−1ω,Guy

′, δk−1, nk−1) ∩D(σjnk−1ω,Gvy
′, δk−1, nk−1)

)
.

Since i, j are nk good and |i− j| ≥ (10k)95, it follows by (14.6) that

‖τjnk−1
(ω)− τink−1

(ω)‖ ≥ k25n
1/2
k−1.
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Moreover, since i, j are nk good, by (14.7), for w ∈ {i, j},

sup
r<nk−1

‖τr(σwnk−1ω)‖ ≤ 2k20n
1/2
k−1.

Therefore, by Lemma 13.1 (with ωw = σwnk−1ω), it follows that (15.6) is bounded from
above by

(15.7) C#

∏
w∈{i,j}

ν(D(σwnk−1ω,Guy
′, δk−1 + 2−n

1/2
k−1 , nk−1)).

Moreover, since i, j are good, σwnk−1(ω) ∈ Ωk−1. Also by (12.4), nk ≤ (1+1/100) ·2n
1/2
k .

Since inf εk > 0 and nk grows exponentially, using (12.4) again, we have

δk−1 + 2−n
1/2
k−1 =

(
1− 1

100k4

)
εk−1 +

1

nk
+ 2−n

1/2
k−1 ≤ εk−1.

Using this, we obtain that (15.7) is bounded by C#(ak−1(εk−1))2. Using (15.5) and
summing over all u, u′ ∈ Λk and (ik−1, jk−1) ∈ [1, (10k)100]2 (using that k200 ≤ nk), we
have

ak(εk) ≤ C# · [100d(sup |τ |)n2
k]
d · (10k)200 · ak−1(εk−1)2 ≤(

10200 · C# · (100d(sup |τ |))d
)
· n2d+1

k ak−1(εk−1)2.

This by Lemma 15.1 and Lemma 13.2 (with C2 = 10200 · C# · (100d(sup |τ |))d and
bk = ak(εk)) implies that ak(εk)→ 0 which finishes the proof. �

It remains to prove Lemma 15.2.

Proof of Lemma 15.2. We consider the intervals [rnk−1, (r+1)nk−1). Since y ∈ D(ω, y′, εk, nk),
it follows from the definition of {εk} that for at least (10k)98 of r < (10k)100, the points

(15.8) F rnk−1(ω, y) and F rnk−1(ω′, y′) are

((
1− 1

100k4

)
εk−1, nk−1

)
-close.

Otherwise the cardinality of i ≤ nk such that d
(
F i(ω, y), F i(ω′, y′)

)
< εk would be

bounded above by

(10k)98nk−1 + ((10k)100 − (10k)98)nk−1

(
1−

(
1− 1

100k4

)
εk−1

)
<

(10k)100nk−1

(
1−

(
1− 1

50k2

)
εk−1

)
= nk(1− εk).

This however contradicts the fact that (ω, y) and (ω′, y′) are (εk, nk)-close. So there
exists at least (10k)196 pairs (i, j) ∈ [0, (10k)100]2 which satisfy (15.8). Note that

#{(i, j) ∈ [0, (10k)100]2 : |i− j| < (10k)95} ≤ (10k)100+95.

Therefore

#{(i, j) ∈ [0, (10k)100]2 : (i, j) satisfies (15.8) and |i−j| ≥ (10k)95} ≥ (10k)196−(10k)195.

Moreover, since ω ∈ Ωk, the cardinality of nk–good pairs (i, j) (see Definition 14.4) is
at least (10k)200− 5(10k)195. Since (10k)196− (10k)195 > 5(10k)195, it follows that there
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exists (i, j) such that (15.8) holds for r = i and r = j, and (i, j) is nk-good. This means
that for r = i, j,

(15.9) (σrnk−1ω′, Gτrnk−1
(ω′)y

′) and (σrnk−1ω,Gτrnk−1
(ω)y)

are
((

1− 1
100k4

)
εk−1, nk−1

)
-close. Hence we find that for some ‖uk‖ ≤ (sup |τ |)nk,

Gτink−1(ω)y ∈ D(σink−1ω,Guiy
′, (1− 1/(100k4))εk−1, nk−1),

and the same holds for j with some vk. This finishes the proof. �

Part VI. Appendices

Appendix A. Entropy of skew products.

Proof of Lemma 2.1. We prove the statement for (T, T−1) diffeomorphisms, the result
for flows then follows by considering the time 1 map.

By Ruelle inequality it suffices to show that all Lyapunov exponents of F are non
positive 15. Differentiating (1.3) we get that for each (x, y) ∈ (X × Y ), u ∈ TxX,
v ∈ TyY

DFN(x, y)

(
u
v

)
=

 DfNu
d∑
j=1

d(τ(j))N(u)Yj +D(GτN )(v)

 (x, y)

where τ(j) denotes the j-th component of τ , Yj = d
ds
|s=0Gsej and {ej} is the standard

basis in Rd.
Since f has zero entropy, the Pesin formula shows that the Lyapunov exponents of

f are zero. Hence lim
N→∞

ln ‖DfN(x)‖
N

= 0 for a.e. x. Also since

(d(τ(j))N(v))(x) =
N−1∑
n=0

dτ(j)(f
nx)(Dfnv)

it follows that for a.e. x and all j ∈ {1, . . . , d}, lim sup
N→∞

ln ‖d(τ(j))N(x)‖
N

≤ 0. Also for

a.e. (x, y)

lim sup
N→∞

ln ‖DGτN (x)(y)‖
N

≤ C lim
N→∞

‖τN(x)‖
N

= 0

where the last step follows since f is ergodic and τ has zero mean.

The foregoing discussion shows that for a.e. (x, y), lim sup
N→∞

ln ‖DFN‖(x, y)

N
≤ 0.

Therefore all Lyapunov exponents of F indeed non positive, and so hζ(F ) = 0. �

15Applying this result to F−1 gives that all exponents of F are in fact zero, but we do not need this
fact for the proof of Lemma 2.1.
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Appendix B. Ergodic sums over subshifts of finite type

B.1. CLT for T, T−1 transformations with SFT in the base.

Theorem B.1. Consider a generalized (T, T−1) transformation (1.2) with (X, f) being
a subshift of finite type, µ is a Gibbs measure with a Hölder potential, and Gt is an Rd

action which is exponentially mixing of all orders. Suppose that d ≥ 3 and τ : X → Rd

is an irreducible Hölder cocycle. Then F satisfies the CLT on the space of Hölder
functions.

Remark B.2. As it was mentioned in §2.4, this result is a special case of Theorem
5.1 in [35]. We include the proof here to make this paper more self contained and to
demonstrate the power of Theorem 3.1. We also note that in contrast to [35] the present
proof does not rely on the exponential mixing of f , it just uses the the properties of
the local distribution of τ such as the anticoncentration inequality (B.2) below.

Proof. By Lemma 5.6 it suffices to show that F satisfies the quenched CLT in the sense
of Definition 5.5.

We define mN by (5.2) and check the conditions of Proposition 4.1.
(a) is evident.

To prove property (b), let `(x, t,N) = Card{n ≤ N : |τn(x)− t| ≤ 1}. We claim that
for each p, there is a constant Cp such that for each t ∈ Rd for each n

(B.1) µ (`p(·, t, n)) ≤ Cp.

Indeed,

µ (`p(·, t, n)) ≤
p∑
q=1

Ĉp
∑

n1≤n2≤···≤nq

µ

(
q∏
j=1

1‖τnj (x)−t‖≤1

)

≤
p∑
q=1

Ĉp
∑

n1<n2≤···<nq

µ

(
1‖τn1 (x)−t‖≤1

[
q∏
j=2

1‖τnj−nj−1 (fnj−1x)‖≤2

])
.

The multiple anticoncentration inequality of [35, Lemma A.4] tells us that there is a
contant C̄ such that for each tuple (n1, . . . nq) we have

(B.2) µ

(
1‖τn1 (x)−t‖≤1

[
q∏
j=2

1‖τnj−nj−1 (fnj−1x)‖≤2

])
≤ C̄(n1)−d/2

[
q∏
j=2

(nj − nj−1)−d/2

]
.

Summing over n1, ..., nq, we obtain (B.1).
With (B.1) proven, the Markov inequality implies that for each ε, t, p we have

µ
(
x : `(x, t,N) ≥ N (1/5)−ε) ≤ Cp

N [(1/5)−ε]p .

It follows that

µ
(
x : ∃t : ‖t‖ ≤ ‖τ‖N and `(x, t,N) ≥ N (1/5)−ε) ≤ C∗pN

d

N [(1/5)−ε]p .

Taking p = 6d, ε = 0.01, property (b) follows.
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Recall (5.5). In view of Lemma 5.4, to prove property (c) it suffices to check that
(5.8) holds for some β > 1. Using (5.7) we get∫

M

|σ0,k(x)| dµ(x) ≤ C
∞∑
m=0

[
µ(‖τk‖ ∈ [m,m+ 1))e−cm

]
≤ C

∞∑
m=0

[
md−1

kd/2
e−cm

]
≤ C

kd/2

where the second inequality relies on (B.2) with q = 1 (noting that we can cover the
set {z ∈ Rd : ‖z‖ ∈ [m,m + 1)} with Cmd−1 unit cubes). This shows that (5.8) holds
with β = d/2. This completes the verification of conditions of Proposition 4.1. �

B.2. Visits to cones.

Proof of Lemma 11.4. We only prove the result for the forward orbits, the proof for the
backward orbits is similar.

Set n1 = 2, nk+1 = n3
k, mk = nk − nk−1 and consider the sets Ak = {ω : τnk(ω) ∈ C}.

Let Fa,b denote the σ-algebra generated by {ωj}a≤j≤b. Since τ only depends on the
past, Ak is measurable with respect to F−∞,nk .

Therefore by Lévy’s extension of the Borel-Cantelli Lemma (see e.g. [106, §12.15]) it
is enough to show that for almost all ω

(B.3)
∑
k

µ(Ak+1|F−∞,nk) =∞.

Let Ĉ = {v ∈ C : dist(v, ∂C) ≥ 1}, Âk =

{
ω :

τmk(σ
nk−1ω)
√
mk

∈ Ĉ
}
,

A∗k = {ω : ∃ω̂ ∈ Âk : ωj = ω̂j for j ∈ [nk−1, nk]}. Note that A∗k ⊂ Ak because for
any ω ∈ A∗k and for the corresponding ω̂, τmk(σ

nk−1ω̂) is inside C and is at least 1
2

√
mk

away from the boundary whereas

τnk(ω)− τmk(σnk−1ω̂) = [τnk(ω)− τnk(ω̂)] + [τnk(ω̂)− τmk(σnk−1ω̂)] = O(nk−1)�
√
mk.

Next

µ(Ak+1|F−∞,nk) ≥ µ(A∗k+1|F−∞,nk) ≥
µ(A∗k+1|Fnk,nk)

K̂
≥ µ(Âk+1|Fnk,nk)

K̂

where the second inequality is due to (9.2) (note that A∗k is Fnk−1,nk–measurable, and
hence F−∞,nk–measurable and so (9.2) can be applied), and the third one holds because

A∗k+1 ⊃ Âk+1. Since µ is shift invariant

µ(Âk+1|Fnk,nk)(ω) = µ

(
τmk+1√
mk+1

∈ Ĉ
∣∣∣F0,0

)
(σ−nkω)

By the mixing CLT ([92, 44]) if ω is any symbol in the alphabet of ΣA

lim
m→∞

µ

(
τm(ω)√
m
∈ Ĉ|ω0 = ω

)
= P(N ∈ Ĉ)

uniformly in ω, where N is the normal random variable with zero mean and variance
D2(τ) given by (2.7). By the assumptions of Lemma 11.4 and Proposition 2.8, we see
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that D2(τ) is non degenerate. Thus P(N ∈ Ĉ) > 0 for any cone C. It follows that there
exists ε = ε(C) such that for all sufficiently large k and all ω

(B.4) µ(Ak+1|F−∞,nk)(ω) ≥ ε.

(B.3) follows competing the proof of the lemma. �

B.3. Separation estimates for cocycles.

Proof of Lemma 14.1. (m2) follows from the fact that there exists a constant Cτ such
that if ω′ and ω′′ belong to the same cylinder of length N , then

|τN(ω′)− τN(ω′′)| ≤ Cτ .

To prove (m1) let

NA(ω, k)=#

{
(i, j) ∈ [0, (10k)100]× [0, (10k)100], i 6= j :

‖τ(j−i)nk−1
(σink−1ω)‖

(|j − i|nk−1)1/2
< k−20

}
.

Denote mij = |i− j|nk−1. Covering the ball with center at the origin and radius

√
mij

k20

in Rd by unit cubes and applying the anticoncentration inequality (B.2) with q = 1 (or
[35, formula (A.4)]) to each cube, we obtain that

(B.5) µ

(
‖τmij(ω)‖ ≤

√
mij

k20

)
≤ Ck−20d.

Since µ is shift invariant we conclude that

µ

(
‖τmij(σink−1ω)‖

m
1/2
ij

<
1

k20

)
≤ Ck−20d.

Summing over i and j we obtain

µ (NA(·, k)) ≤ C(10k)200−20d.

Next, by the Markov inequality,

µ
(
ω : NA(ω, k) ≥ (10k)191

)
≤ C

k20d−9
.

This shows that the measure of the complement of Ak is small. The estimate of measure
of Bk is similar except we replace (B.5) by

(B.6) µ

(
max
n≤m
‖τn(ω)‖ ≥ k20

√
m

)
≤ c1e

−c2k40

.

To prove (B.6) it is sufficient to consider the case d = 1 since for higher dimensions we
can consider each coordinate separately. Thus it suffices to show that

(B.7) µ

(
max
n≤m

τn(ω) ≥ k20
√
m

)
≤ c1e

−c2k40

(the bound on µ

(
min
n≤m

τn(ω) ≤ −k20
√
m

)
is obtained by replacing τ by −τ).
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To prove (B.7) with d = 1 we use the reflection principle. Namely, [35, formula (A.3)]
shows that for each L

(B.8) µ
(
|τm(ω)| ≥ L

√
m
)
≤ c̄1e

−c̄2L2

.

Let

Dm(k) =
{
ω : ∃n ≤ m, and ω̄ : ω̄j = ωj for j ∈ 0, . . . n− 1 and τn(ω) ≥ k20

√
m
}
.

Note that Dm(k) contains the LHS of (B.7) and that Dm(k) is a disjoint union of the

cylinders of length at most m, Dm =
⋃
j

Dj (to see this, take for each ω the smallest

n such that the last display holds and recall that τ only depends on the past). Next,
similarly to (B.4) (since d = 1 the relevant cone is the cone of positive numbers) there
exists ε > 0 such that for each cylinder D of length n = n(D) and for each m ≥ n,

µ
(
τm−n(ω) ≥ 0|ω ∈ σ−nD

)
≥ ε.

Combining this with (B.8), we obtain

c̄1e
−c̄2k40/4 ≥ µ

(
τm ≥

k20
√
m

2

)
≥
∑
j

µ

(
ω ∈ Dj, τm ≥

k20
√
m

2

)
≥

∑
j

µ(Dj)µ
(
τm ≥

k20
√
m

2

∣∣∣ω ∈ Dj) ≥ ε
∑
j

µ(Dj) = εµ(Dm)

proving (B.7) and completing the proof of the lemma. �

Appendix C. The main results in general context

Here we put our results into a general context of flexibility of statistical properties
in smooth dynamics.

There is a vast literature on statistical properties of dynamical systems. A survey
by Sinai [99] lists the following hierarchy of chaotic properties for dynamical systems
preserving a smooth measure (the properties marked with * are not on the list in [99]
but we added them to obtain a more complete list 16).

(1) (Erg) Ergodicity; (2*) (WM) Weak Mixing (3) (M) Mixing; (4*) (PE) Positive
entropy; (5) (K) K property; (6) (B) Bernoulli property; (7) (CLT) Central Limit
Theorem17; (8) (PM) Polynomial mixing; (9) (EM) Exponential mixing.

Recall that a formal definition of (CLT), (PM), and (EM) were given in Section 1.
The definitions of the other properties are standard.

Properties (1)–(6) are qualitative. They make sense for any measure preserving dy-
namical system. Properties (7)–(9) are quantitative. They require smooth structure
but provide quantitative estimates. Currently there are many examples of systems en-
joying a full array of chaotic properties which follow from either uniform hyperbolicity

16Other interesting statistical properties include Large Deviations and Local Limit Theorem. We
do not include them into our list since our paper does not contain new results or counter examples
pertaining to these properties

17[99] refers to classical CLT, but since the time it was written several CLTs with non classical
normalization has been proven, cf. footnote 4.
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or non-uniform hyperbolicity, in case there is a control on the region where hyperbol-
icity is weak [11, 14, 27, 108]. Systems which satisfy only some of the above properties
are less understood. In fact, it is desirable to have more examples of such systems in
order to understand the full range of possible behaviors of partially chaotic systems.

Thus we have the following list of statistical properties of dynamical systems.
(Erg), (WM), (M), (PE), (K), (M), (CLT), (PM), (EM).
While properties on the bottom of the list are often more difficult to establish espe-

cially in the context of nonuniformly hyperbolic systems discussed in [99], property (j)
of the list in general does not imply property i for i ≤ j. Thus it is desireable to study the
following realizability problem: given two disjoint subsets A1,A2 ⊂ {1, . . . , 10}, is there
a smooth map preserving a smooth probability measure that satisfies all properties in
A1 and does not have any of the properties in A2?

The simplest version of the realizability problem is when |A1| = |A2| = 1, which case
is presented in the following table. Here Y in cell (i, j) means that the property in row
i implies the property in the column j. (k) in cell (i, j) means that a diffeo number (k)
on the list below has property (i) but not property (j).

The examples in the table below are the following (the papers cited in the list contain
results needed to verify some properties in the table):

(1) irrational rotation; (2) horocycle flow ([20]); (3) Anosov diffeo × identity; (4)
maps from Theorem 1.3; (5) skew products on T2 × T2 of the form (Ax, y + ατ(x))
where A is linear Anosov map, α is Liouvillian and τ is not a coboundary [33]; (6)
Anosov diffeo×Diophantine rotation (see [71, 28] and Theorem 3.1).

Erg WM/M PE K/B CLT PM EM
Erg ♣ (1) (1) (1) (1) (1) (1)

WM/M Y ♣ (2) (2) (5) (5) (5)
PE (3) (3) ♣ (3) (3) (3) (3)

K/B Y Y Y ♣ (5) (5) (5)
CLT Y (6) (4) (6) ♣ (6) (6)
PM Y Y (2) (2) (2) ♣ (2)
EM Y Y Y Y ?? Y ♣

We combined (WM) and (M) (as well as (K) and (B)) together since the same
counter examples work for both properties. It is well known that weak mixing does not
imply mixing (see §8.3) and that K does not imply Bernoulli (see Part V).

The positive implications in the top left 4× 4 corner are standard and can be found
in most textbooks on ergodic theory. It is also clear that Exponential Mixing ⇒ Poly-
nomial Mixing ⇒ Mixing and that CLT implies the weak law of large numbers which
in turn entails ergodicity. The fact that the exponential mixing implies the Bernouli
property (and hence both K property and positive entropy) is more recent [37].

The only open problem in the above table, namely the existence of a system satisfying
(EM) but not (CLT) seems hard. Recall from Section 4 that the classical CLT follows
if the system enjoys exponential mixing of all orders.



FLEXIBILITY OF STATISTICAL PROPERTIES FOR SMOOTH SYSTEMS WITH THE CLT 63

Therefore the problem whether (EM) implies (CLT) is related to the question
whether exponential mixing implies multiple exponential mixing which can be thought
of as a quantitative version of the famous open problem of Rokhlin. Except for this
specific question, the realizability problem is well understood in case |A1| = |A2| = 1.

Next, we study the realizability problem with |A1| = 2, |A2| = 1 and CLT∈ A1. The
table below lists in cell (i, j) a map which has both property (i) and satisfies CLT but
does not have property j. Clearly the question makes sense only if we have an example
of a system which has property (i) but not property (j).

WM M PE K B PM
WM ♣ (8) (9) (9) (9) (10)
M ♣ ♣ (9) (9) (9) (10)
PE (6) (6) ♣ (6) (6) (6)
K ♣ ♣ ♣ ♣ (7) ??
B ♣ ♣ ♣ ♣ ♣ ??

PM ♣ ♣ (9) (9) (9) ♣

Here, (6) refers to the diffeomorphisms from the previous table, while (7), (8), (9),
and (10) and refer to the maps from Theorems 1.5, 1.4(a), (b) and 1.3(a). To see that
the example of Theorem 1.3(a) is not polynomially mixing we note that for polynomially
mixing systems the growth of ergodic integrals can not be regularly varying with index
one. Namely (see e.g. [35, §8.1]), for polynomially mixing systems there exists δ > 0

such that the ergodic averages of smooth functions H satisfy lim
T→∞

HT

T 1−δ = 0 almost

surely, and hence, in law.

Appendix D. Open problems

Here we list some open problems related to our results that we believe should be
studied in the future.

In the examples in Theorem 1.3(b), dim(Mr) grows with r which leads to the following
natural problem:

Problem D.1. Construct a C∞ diffeomorphism with zero entropy satisfying the clas-
sical CLT.

The next problem is also motivated by Theorem 1.3:

Problem D.2. For which α does there exist a smooth system satisfying the CLT with
normalization which is regularly varying of index α?

We mention that several authors [7, 18, 30, 43] obtained the Central Limit Theorem
for circle rotations where normalization is a slowly varying function. However, firstly,
the functions considered in those papers are only piecewise smooth and, secondly, they
require an additional randomness or remove zero density subset of times. Similar results
in the context of substitutions are obtained in [15, 91].

In the examples in Theorem 1.4(b) the rate of polynomial mixing is rather slow
(slower than linear). This motivates the following problem:
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Problem D.3. Given m ∈ N construct a diffeomorphism which is mixing at rate n−m

and satisfies at least one of the following: (a) is not K; (b) has zero entropy; (c) does
not satisfy the CLT.

Theorem 1.5 motivates the following problems:

Problem D.4. Construct an example of K (or even Bernoulli) diffeomorphism which
satisfies the CLT but is not polynomially mixing.

Problem D.5. Let M a compact manifold of dimension at least two. Does there
exists a C∞ diffeomorphism of M preserving a smooth measure satisfying a Central
Limit Theorem?

Currently it is known that any compact manifold of dimension at least two admits an
ergodic diffeomorphism of zero entropy [2], a Bernoulli diffeomorphism [17], and, more-
over, a nonuniformly hyperbolic diffeomorphism [41]. We note that a recent preprint
[96] constructs area preserving diffeomorphisms on any surface of class C1+β (with β
small) which satisfy (CLT). It seems likely that similar constructions could be made
in higher dimensions, however, the method of [96] requires low regularity to have de-
generate saddles where a typical orbit does not spent too much time, and so those
methods do not work in higher smoothness such as C2. We also note that [22] shows
that for any aperiodic dynamical system there exists some measurable observable satis-
fying the CLT18 (see [76, 77, 79, 102] for related results). In contrast Problem D.5 asks
to construct a system where the CLT holds for most smooth functions.

Problem D.6. Let M be a compact manifold of dimension at least three. Does there
exist a diffeomorphism of M preserving a smooth measure which is K but not Bernoulli?

We note that in case of dimension two, the answer is negative due to Pesin theory
[6]. At present there are no example of K but not Bernoulli maps in dimension three.
We refer the reader to [62] for more discussion on this problem.
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[25] Chazottes J.–R., Gouëzel, S. Optimal concentration inequalities for dynamical systems, Comm.

Math. Phys. 316 (2012) 843–889.
[26] Chernov, N. I. Limit theorems and Markov approximations for chaotic dynamical systems,

Probab. Theory Related Fields 101 (1995) 321–362.
[27] Chernov N., Markarian R. Chaotic billiards, AMS Math. Surv. & Monogr. 127 (2006) xii+316 pp.
[28] Cohen G., Conze J.–P. The CLT for rotated ergodic sums and related processes, Discrete Contin.

Dyn. Syst. 33 (2013) 3981–4002.
[29] Cohen G., Conze J.–P. CLT for random walks of commuting endomorphisms on compact abelian

groups, J. Theoret. Probab. 30 (2017) 143–195.
[30] Conze J.–P., Isola S., Le Borgne S. Diffusive behavior of ergodic sums over rotations, Stoch. Dyn.

19 (2019) paper 1950016, 26 pp.
[31] den Hollander F., Keane M. S., Serafin J., Steif J. E. Weak Bernoullicity of random walk in

random scenery, Japan. J. Math. 29 (2003) 389–406.
[32] den Hollander F., Steif J. E. Mixing properties of the generalized T, T−1-process, J. Anal. Math.

72 (1997) 165–202.
[33] Dolgopyat D. On mixing properties of compact group extensions of hyperbolic systems Israel

Math. J. 130 (2002) 157–205.
[34] Dolgopyat Limit theorems for partially hyperbolic systems, Trans. AMS 356 (2004) 1637–1689



66 D. DOLGOPYAT, C. DONG, A. KANIGOWSKI, AND P. NÁNDORI
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