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Abstract

We consider a process on a compact two-dimensional surface which consists
of the fast motion along the stream lines of an incompressible periodic vector field
perturbed by white noise. It gives rise to a process on the graph naturally associated
to the structure of the stream lines of the unperturbed flow. It has been shown by
Freidlin and Wentzell that if the unperturbed motion is periodic for almost all the
initial points, then the corresponding process on the graph weakly converges to a
Markov process. We consider the situation when the unperturbed motion is not
periodic, and the flow has ergodic components of positive measure. We show that
the process on the graph still converges to a Markov process, which spends a positive
proportion of time in the vertices corresponding to the ergodic components of the
flow.

As shown in a companion paper [5], these results allow one to describe the
viscosity regularization of dissipative deterministic perturbations of incompressible
flows. In the case of surfaces of higher genus, the limiting process may exhibit
intermittent behavior in the sense that the time axis can be divided into the intervals
of random lengths where the particle stays inside one ergodic component separated
by the intevals where the particle moves deterministically between the components.

Key words and phrases: Averaging, Markov Process, Incompressible Flow, Glu-
ing Conditions, Diffusion on a Graph.
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1 Introduction

As a motivating example, consider the following stochastic differential equation on the
torus

dXε
t =

1

ε
v(Xε

t )dt+ dWt , Xε
t ∈ T2 , (1)

with the the initial condition Xε
0 = X0 that does not depend on ε and is independent of

the Brownian motion. Here v(x) is a smooth incompressible periodic vector field, Wt is
a 2-dimensional Brownian motion and ε is a small parameter. For simplicity of notation
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assume that the period of v in each of the variables is equal to one, and that v is infinitely
smooth. Let H(x1, x2) be the stream function of the flow, that is

∇⊥H = (−H ′x2 , H
′
x1

) = v .

Since v is periodic, we can write H as

H(x1, x2) = H0(x1, x2) + ax1 + bx2,

where H0 is periodic. We shall assume that
(A1) all the critical points of H are non-degenerate, and that
(A2) a and b are rationally independent.
It is known ([1]) that in this case the structure of the streamlines of v on the torus is

as follows. There are finitely may domains Uk, k = 1, . . . , r, bounded by the separatrices
of H, such that the trajectories of the dynamical system Ẋt = v(Xt) in Uk are either
periodic or tend to a point where the vector field is equal to zero. The trajectories form
one ergodic class outside of the domains Uk. More precisely, let E = T2\Cl(

⋃r
k=1 Uk).

Here Cl(·) stands for the closure of a set. Then the dynamical system is ergodic on E
(and is, in fact, mixing for a set of rotation numbers of full measure (see [11])).

Although H itself is not periodic, we can consider its critical points as points on the
torus, since ∇H is periodic. All the maxima and the minima of H are located inside the
domains Uk.

At first, let us assume that each of the domains Uk, k = 1, ..., r, contains a single
critical point Mk (a maximum or a minimum of H). Let Ak, k = 1, ..., r be the saddle
points of H, such that Ak is on the boundary of Uk. Let

U =
r⋃

k=1

Uk, γk = ∂Uk, γ =
r⋃

k=1

γk.

We denote the set {x ∈ Cl(Uk) : H(x) − H(Ak) = h} by γk(h). Thus γk(0) = γk is
the boundary of Uk. Let pk = ±1

2

∫
γk
|∇H|dl, where the sign + is taken if Mk is a local

minimum for H restricted to Uk, and − is taken otherwise.
Consider the graph G that consists of r edges Ik, k = 1, ..., r (segments labeled by k),

where each segment is either [H(Mk) − H(Ak), 0] (if Mk is a minimum) or [0, H(Mk) −
H(Ak)] (if Mk is a maximum). All the edges share a common vertex (the origin) which
will be denoted by V . Thus a point on the graph can be determined by specifying k (the
number of the edge) and the coordinate on the edge. We define the mapping h : T2 → G
as follows

h(x) =

{
0 if x ∈ Cl(E)
(k,H(x)−H(Ak)) if x ∈ Uk.

We shall use the notation hk for the coordinate on Ik.
Figure 1 shows an example of the flow lines of a vector field on the torus (viewed as

a periodic vector field on R2) and the corresponding graph.
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Figure 1: A periodic vector field and the corresponding graph G.

Consider the process Yt on G which is defined via its generator L as follows. First, for
each k we define the differential operator Lkf = ak(hk)f

′′+ bk(hk)f
′ on the interior of Ik,

where the coefficients ak and bk are given by

ak(hk) =
1

2

(∫
γk(hk)

1

|∇H|
dl

)−1 ∫
γk(hk)

|∇H|dl and

bk(hk) =
1

2

(∫
γk(hk)

1

|∇H|
dl

)−1 ∫
γk(hk)

∆H

|∇H|
dl.

The domain of L consists of those functions f ∈ C(G) which
(a) Are twice continuously differentiable in the interior of each of the edges;
(b) Have the limits limhk→0 Lkf(hk) and limhk→(H(Mk)−H(Ak)) Lkf(hk) at the endpoints

of each of the edges. Moreover, the value of the limit q(f) = limhk→0 Lkf(hk) is the same
for all edges;

(c) Have the limits limhk→0 f
′(hk), and

r∑
k=1

pk lim
hk→0

f ′(hk) = Area(E)q(f).

For functions f which satisfy the above three properties, we define Lf = Lkf in the
interior of each edge, and as the limit of Lkf at the endpoints of Ik.
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It is well-known (see [9]) that there exists a strong Markov process on G with contin-
uous trajectories, with the generator L. The measure on C([0,∞),G) (here and below
C([0,∞),G) denotes the space of continuous from [0,∞) to G) is uniquely defined by the
operator and the initial distribution of the process.

We will prove the following theorem.

Theorem 1. Let Xε
t be given by (1). Then the measure on C([0,∞),G) induced by

the process Y ε
t = h(Xε

t ) converges weakly to the measure induced by the process with the
generator L with the initial distribution h(X0).

We observe that irrationality of ρ = a/b is necessary for Theorem 1, since if ρ is rational
then the restriction of X to E is periodic rather than ergodic and the graph corresponding
to this system will be different. (We note that the limiting process for systems without
ergodic components was described in [10].) It has been conjectured by M. Freidlin [8]
that Theorem 1 holds for all irrational values of ρ. Our earlier paper [6] proves this result
for ρ’s which can not be approximated too well by rationals. On the other hand, Sowers
[18] shows that in the opposite case of ρ’s which are very well approximable by rationals,
the result is also true. There still remained a gap between the sets of rotation numbers
considered in [6] and in [18]. The current paper establishes the result for general rotation
numbers using the arguments that are much less technical than those of [6] or [18]. One of
the important ingredients in the proof is an estimate on the time it takes for the process
to exit the ergodic component. Here we use the results of [7] and [20] (which are also
closely related to [2] and [3]).

The same result remains true if some of the periodic components contain more than
one critical point. For example, Figure 2 shows a modification of the system depicted in
Figure 1, with U1 now containing one saddle point, and the graph corresponding to the
flow. In fact, we will consider a more general situation. Namely, let M be a compact
two-dimensional C∞-surface endowed with a C∞-area form ω. Let λ be the associated
area measure. Let v be a C∞-incompressible vector field on M . (We refer the reader to
[13], Chapter 14 and [17] for the the discussion of applications of incompressible flows on
surfaces to geometry and physics.) We assume that v is typical in the sense that

(B1) all the equilibrium points of v are non-degenerate and
(B2) there are no saddle connections.
Instead of (1), we now consider the process Xε

t with generator

Lε =
1

ε
Lv + LD (2)

where Lv is the directional derivative along v and LD is the generator of a non-degenerate
diffusion process on M with C∞-coefficients. We assume that LD is self-adjoint in L2(λ),
that is, λ is invariant measure for Xε

t for all ε (this assumption will be relaxed later, see
Theorem 3 in Section 6). We assume that Xε

0 = X0, where the point X0 does not depend
on ε and is independent of the Brownian motion.
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Figure 2: The graph G corresponding to the case when U1 contains a saddle point.

Let Gv
t be the flow generated by v. For x ∈ M , let ω(x) denote the ω-limits set of x.

Under our assumption on v, there are three types of possible limit sets (see [13], Proposi-
tion 14.6.2 and Corollary 14.5.12): equilibrium points, periodic orbits, and a finite number
of sets Ei, i = 1, ..., n, of positive measure. The sets Ei have the following properties:

(a1) Ei = Cl(Int(Ei)).
(a2) The flow on Ei is isomorphic to a special flow over an interval exchange trans-

formation (an interval exchange transformation is an invertible piecewise isometry of a
segment.)

The property (a2) implies ([13], Lemma 14.5.7) that (Ei, Gv
t , λ) has at most finitely

many ergodic components, that is for each i there are finitely many non-intersecting
invariant sets E1

i , ..., E
mi
i ⊆ Ei such that λ(Ei\(E1

i ∪...∪E
mi
i )) = 0 and the flow (Ej

i , G
v
t , λ)

is ergodic for each j.
We also need a fact ([16], Theorem 3.1.7) that the set of periodic orbits can be divided

into finitely many periodic components Uk where each component belongs to one of the
four classes

(b1) a cylinder bounded by two separatrix loops;
(b2) a disc bounded by one separatrix loop and having one elliptic equilibrium point

inside;
(b3) a sphere S2 containing two equilibrium points inside (in which case M = U = S2);
(b4) a torus T2 (in which case M = U = T2).
In this paper we exclude the latter two cases since the results we are going to prove
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are well–known in those cases (see [12]).
Let G be the set of all the ω-limit sets of the flow generated by v. We can regard G

as a topological space where two points (ω-limit sets) are close if the minimal distance
between them is small. Then G is a graph with each edge corresponding to a periodic
component of the flow and the vertices corresponding to either equilibrium points or the
sets Ei. The restriction of the flow to each of the periodic components is a Hamiltonian
flow with Hamiltonian that will be denoted by H. We denote the mapping of M into G
by h.

Figure 3: Flow lines on a surface and the corresponding graph G.

Figure 3 shows an example of the flow lines of an incompressible vector field on a
compact surface and the corresponding graph. More complicated graphs can be obtained
by taking one or more surfaces, cutting out the disks along the periodic trajectories, and
gluing the resulting parts together. For example, if we take two copies of the surface
shown in Figure 3, cut off the right and left tips, and glue the surfaces together, then the
graph corresponding to the resulting surface will be a cycle with four vertices (Figure 4
(a)). Similarly, cutting the surface corresponding to Figure 2 along the curves Γ1 and Γ2

and gluing these curves together will lead to the graph depicted in Figure 4 (b). Taking
two copies of the surface from Figure 2, cutting each along the curves Γ1, Γ2 and Γ3 and
gluing the two copies together will lead to the graph depicted in Figure 4 (c).

In order to describe the generator of the limiting process, we introduce a system of
local coordinates on G. Namely, given a vertex V of G, let I1, ..., IrV be the segments
obtained by following the edges of G starting at V and removing the second end-point
on each edge. If V serves as both end-points for an edge of G (as in Figure 4 (b)), then
this edge is represented twice in the list I1, ..., IrV . We define the star-shaped graph GV
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Figure 4: Different examples of the graph G.

by taking V as the central vertex, taking the segments I1, ..., IrV which share a common
end-point V , and adjoining the second end-point to each of them, with the second end-
point being distinct for each segment. (This is done so that to get two separate edges in
GV for each edge of G with both end-points in V .) The resulting closed segments will be
still denoted by I1, ..., IrV . The graphs GV play the role of local charts for the graph G.

Let Uk be the periodic component of the flow corresponding to the edge Ik (it is
possible that Uk1 = Uk2 with k1 6= k2 if there is an edge of G with both end-points in
V ) and γk be the part of the boundary of Uk corresponding to the end-point of Ik that
is the vertex V . Let Ak be the saddle point on γk. As in the case of the torus, we can
introduce the coordinates hk on Ik, 1 ≤ k ≤ rV , thus identifying Ik with the set of values
of H(x)−H(Ak) for x ∈ Cl(Uk), k = 1, ..., rV . We will write Ik = [mk, 0] if Ak is a local
maximum for H restricted to Uk and Ik = [0,mk] if Ak is a local minimum for H restricted
to Uk. (As mentioned above, if the graph G contains a loop edge (such as in Figure 4
(b)), this edge corresponds to two edges of GV . On one of those edges the coordinate will
take values from zero to some number h > 0, while on the other edge the coordinate will
take values from −h to zero.)

As in the case of the torus, we denote the set {x ∈ Cl(Uk) : H(x)−H(Ak) = hk} by
γk(hk), thus obtaining γk = γk(0). Introduce coordinates (x, y) on Uk so that ω = dxdy.
Since λ is invariant we can write the generator in the form

LD(f) =
1

2
div(α∇f).

Let Lkf(hk) = ak(hk)f
′′ + bk(hk)f

′ be the differential operator on the interior of Ik
with the coefficients

ak(hk) =
1

2

(∫
γk(hk)

1

|∇H|
dl

)−1 ∫
γk(hk)

〈α∇H,∇H〉
|∇H|

dl and (3)
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bk(hk) =
1

2

(∫
γk(hk)

1

|∇H|
dl

)−1 ∫
γk(hk)

2〈u,∇H〉+ α ·H ′′

|∇H|
dl, (4)

where α ·H ′′(x) =
∑

1≤i,j≤2 αij(x)H ′′xixj(x) and

ui = ((α1i)
′
x1

+ (α2i)
′
x2

)/2, i = 1, 2.

Alternatively, we can introduce the action angle coordinates (hk, θk) on Uk, so that hk ∈
Ik, θk ∈ [0, 1] is a periodic coordinate on the circle and the equation of the unperturbed
motion takes form

ḣk = 0, θ̇k = ρ(hk).

In this case LD can be represented as

LDf = â(hk, θk)∂
2
hk
f + b̂(hk, θk)∂hkf + L̃f,

where L̃f contains terms involving the derivatives of f with respect to θ and the mixed
derivatives. Then

ak =

∫ 1

0

â(hk, θk)dθk, bk =

∫ 1

0

b̂(hk, θk)dθk.

Let

pVk = ±1

2

∫
γk

〈α∇H,∇H〉
|∇H|

dl = ±1

2

∣∣∣∣∫
Uk

div(α∇H)(x)dx

∣∣∣∣ , (5)

where the sign + is taken if Ak is a local minimum for H restricted to Uk, and − is taken
otherwise.

Consider the process Yt on G which is defined via its generator L. The domain of L
consists of those functions f ∈ C(G) which have the following properties when considered
on GV for each V :

(a) f is twice continuously differentiable in the interior of each of the edges of GV ;
(b) There are the limits limhk→0 Lkf(hk) and limhk→mk

Lkf(hk) at the endpoints of
each of the edges I1, ..., IrV . Moreover, the value of the limit qV (f) = limhk→0 Lkf(hk) is
the same for all edges;

(c) If V corresponds to a set E ∈ {E1, ..., En} of positive measure, then there are the
limits limhk→0 f

′(hk), and

rV∑
k=1

pVk lim
hk→0

f ′(hk) = λ(E)qV (f). (6)

If V corresponds to a saddle point, then there are the limits limhk→0 f
′(hk), and

rV∑
k=1

pVk lim
hk→0

f ′(hk) = 0.
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If V corresponds to an equilibrium point that is not a saddle, then no additional con-
ditions at the end-point are imposed (we do not need to impose the boundary conditions
at vertices corresponding to elliptic equilibria since by [10] such vertices are inaccessible).

For functions f which satisfy the above three properties, we define Lf = Lkf in the
interior of each edge, and as the limit of Lkf at the endpoints of Ik. It is clear that the
value of Lkf does not depend on the choice of the GV containing a certain edge, and
therefore Lf is defined globally on G.

Let Yt be the Markov process on G with continuous trajectories, with the generator
L. Our main result is the following theorem.

Theorem 2. Let Xε
t be given by (2) and assume that the possible ω-limit sets for the

vector field v are either non-degenerated critical points, periodic orbits forming finitely
many components of type (b1) or (b2), or sets Ei satisfying (a1) and (a2). Then the
measure on C([0,∞),G) induced by the process Y ε

t = h(Xε
t ) converges weakly to the

measure induced by the process with the generator L with the initial distribution h(X0).

Note that the conditions of the theorem are satisfied if v is either a vector field on the
torus satisfying (A1) and (A2) or a vector field on any surface satisfying (B1) and (B2).
In particular, Theorem 1 follows from Theorem 2

The layout of the paper is the following. In Section 2 we reduce Theorem 2 to the case
when G is star-shaped and has only one accessible vertex. This vertex can correspond
to either a transitive component Ei or a saddle point. The more difficult case where the
vertex corresponds to a transitive component is considered in Sections 3 and 4. In order to
prove Theorem 2 in this case we’ll introduce stopping times that will mark successive visits
by the process to the set γ = ∪kγk, each new stopping time is counted after the process
reaches a certain curve inside U = ∪kUk that is close to γ. One of the main ingredients of
the proof is a lemma that shows that the discretized process is sufficiently mixing. This
lemma will be proved in Section 4. The lemma, in turn, relies on the estimate of the time
it takes for the solution of (1) to leave the ergodic component and enter Uk for a given
k that will be also derived in Section 4. In Section 3 we prove the main theorem while
assuming that the lemma holds. The case where the vertex corresponds to a saddle point
is easier and the needed modification in the proof are discussed in Section 5. (This case
has been studied before in [10] but our approach allows to give a shorter proof). Finally
in Section 6 we describe several applications of Theorem 2 following [5].

2 Localization.

Here we reduce the proof of our main result to the case where G is star-shaped, that is,
there is a vertex V such that each edge Ik joins V with another vertex Vk. All vertices ex-
cept V will correspond to elliptic equilibrium points and so they will be inaccessible ([10]).

Let D(L) denote the domain of the operator L. We need the following lemma.
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Lemma 2.1. For any function f ∈ D(L) and any T > 0 we have

Ex[f(h(Xε
T ))− f(h(Xε

0))−
∫ T

0

Lf(h(Xε
s ))ds]→ 0 as ε→ 0, (7)

uniformly in x ∈M .

An analogous lemma was used in the monograph of Freidlin and Wentzell [10] to
justify the convergence of the process Y ε

t to the limiting process on the graph. The main
idea, roughly speaking, is to use the tightness of the family Y ε

t , and then to show that
the limiting process (along any subsequence), is a solution of the martingale problem,
corresponding to the operator L.

The main difference between our case and that of [10] is the presence of ergodic
components. However, all the arguments used to prove the main theorem based on (7)
remain the same. Thus, upon referring to Lemma 3.1 of [10], it is enough to prove our
Lemma 2.1 above.

Recall that for each vertex V we have the star-shaped graph GV (see Section 1), and
the coordinates on its edges I1, ..., IrV are denoted by h1, ..., hrV . The lengths of the edges
are |mk|, 1 ≤ k ≤ rV . Let γ′k, 1 ≤ k ≤ rV , be the curves defined by

γ′k = {x ∈ Uk : |hk(x)− hk(Ak)| = |mk|/3}.

Note that a separate sequence of curves is defined for each vertex.
We inductively define the following sequence of stopping times. Let η0 = 0. IfXε

ηi
∈ γk,

then ηi+1 is the first time following ηi when the process visits one of the curves γ′k (possibly,
with different k). If Xε

ηi
∈ γ′k, then ηi+1 is the first time following ηi when the process

visits one of the curves γk (possibly, with different k and V ). If neither Xε
ηi
∈ γk nor

Xε
ηi
∈ γ′k is the case for any (V, k) (which is only possible if i = 0), then η1 is defined to

be first time Xε
t visits either one of the curves γk or γ′k (for some V and k).

By applying the results of [12] it is easy to see that for each δ and T there exists N
such that

Px(ηN < T ) < δ.

Therefore, by the strong Markov property of Xε
t , it suffices to prove that

Ex[f(h(Xε
min(η1,T )))− f(h(Xε

0))−
∫ min(η1,T )

0

Lf(h(Xε
s ))ds]→ 0 as ε→ 0 (8)

uniformly in x. We can assume, without loss of generality that x does not belong to
a periodic component, since otherwise (8) follows from the classical averaging principle
([12]). Therefore, x projects to a vertex V that corresponds to one of the sets Ei or to a
saddle point. In this case we can construct an auxiliary surface M ′, as follows. Let M0

be the set of points in M that can be connected to x by a curve that does not cross any
of the curves γ′k, 1 ≤ k ≤ rV . The graph corresponding to the unperturbed dynamics
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on M0 is star-shaped, but M0 is not compact. Its boundary is the union of the curves
γ′k, 1 ≤ k ≤ rV . Take domains D1,...,DrV diffeomorphic to discs. On each disc we take
a vector field preserving the circles centered at the origin, so that the dynamics on each
of the circles is a rotation. The domains and the vector fields can be chosen in such a
way that they can be glued to γ′1,...,γ′rV so that the vector field on the resulting surface is
smooth and incompressible. The resulting surface will be denoted by M ′. For example,
if M is the surface depicted in Figure 3 and V is the vertex corresponding to E1, then M ′

will be a torus depicted in Figure 5. Similarly, if V corresponds to a saddle point, then
M ′ will be a sphere.

Figure 5: Transition from the surface depicted in Figure 3 to a star-shaped one.

The coefficients of the operator LD can also be continued from M0 to M ′ as smooth
functions. The graph corresponding to the dynamics on M ′ is star-shaped, as required,
and all the vertices of the graph other than V are inaccessible. Clearly, if (8) holds for
M ′, then it also holds for the original surface with x that gets mapped to V .

It remains to prove (8) for the process on M ′. Note that (8) is different from (7) in
that now we have min(η1, T ) instead of T . Let us show that (7) in fact implies (8) for
processes (on any surface and in particular) on M ′.

Assume that (7) holds for the process on M ′. Then the process h(Xε
t ) converges

weakly to the limiting diffusion process on the star-shaped graph G′ corresponding to M ′.
Let τ = min(η1, T ) and τ be the corresponding stopping time on C([0, T ],G′) (the

space of continuous functions with values in G′). In other words, τ(h(Xε
t )) = τ . Note
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that the function

g(ω) = f(ω(τ))− f(ω(0))−
∫ τ

0

Lf(ω(s))ds, ω ∈ C([0, T ],G′),

is bounded and continuous almost surely with respect to the measure induced by the
limiting process and the measures induced by the processes h(Xε

t ). The integral of g with
respect to the limiting measure is equal to zero, since L is the generator of the limiting
process. Therefore, the weak convergence implies that (8) holds. Thus it remains to prove
the following lemma.

Lemma 2.2. Suppose that the graph G is star-shaped. Then for any function f ∈ D(L)
and any T > 0 we have

Ex[f(h(Xε
T ))− f(h(Xε

0))−
∫ T

0

Lf(h(Xε
s ))ds]→ 0 as ε→ 0, (9)

uniformly in x ∈M .

3 Proof of the Main Result

In this section we prove Lemma 2.2. In order to fix our ideas we consider the case where
V corresponds to a component E of positive measure. The modifications needed in the
case when V corresponds to a saddle point are discussed in Section 5.

The proof of Lemma 2.2 will rely on several other lemmas. Below we shall introduce
a number of processes, stopping times, and sets, which will depend on ε. However, we
shall not always incorporate this dependence on ε into notation, so one must be careful
to distinguish between the objects which do not depend on ε and those which do.

Let γk = γk(−ε1/2) if mk < 0 and γk = γk(ε
1/2) if mk > 0. Let γ =

⋃r
k=1 γk. Recall

that γ =
⋃r
k=1 γk is the boundary of U .

Let σ be the first time when the process Xε
t reaches γ and τ be the first time when

the process reaches γ.

Lemma 3.1. For each function f ∈ D(L) we have

sup
x∈M
|Ex[f(h(Xε

σ))− f(h(Xε
0))−

∫ σ

0

Lf(h(Xε
s ))ds]| → 0 as ε→ 0. (10)

Proof. If the supremum is restricted to the set M \Cl(E), then the statement follows from
the averaging principle inside a periodic component (see [12, 10]). The statement with
the supremum taken over Cl(E) immediately follows from Lemma 4.3 proved in Section 4
if one takes into account that f(h(x)) = const for x ∈ Cl(E). (The proof of Lemma 4.3
does not rely on (10).)

We also need the following lemma that concerns the behavior of the process inside the
periodic component.
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Lemma 3.2. There is a constant K independent of ε such that

sup
x∈U

Exσ < K. (11)

Moreover, for each k = 1, ..., r,

lim
dist(x,E)↓0,x∈U

Exσ = 0 (12)

uniformly in ε.

Proof. Both statements follow from [10]. (A more precise statement on the asymptotics
of Exσ when x is a function of ε and H(x) −H(Ak) → 0 can be found in Lemma 4.4 of
[14].)

We inductively define the following two sequences of stopping times. Let σ0 = σ. For
n ≥ 0 let τn be the first time following σn when the process reaches γ. For n ≥ 1 let σn
be the first time following τn−1 when the process reaches γ.

We can consider the following discrete time Markov chains ξ1
n = Xε

σn and ξ2
n = Xε

τn

with the state spaces γ and γ, respectively. Since the generator of Xε
t is non-degenerate,

both chains satisfy the Doeblin condition. Therefore there are unique invariant measures
ν and µ (which depend on ε) on γ and γ for the chains ξ1

n and ξ2
n, respectively.

Given a stopping time σ∗ such that σ∗(ω) ∈ {σ0(ω), σ1(ω), ...} for each ω, we denote
by mx

σ∗ the measure on γ induced by Xε
σ∗ starting at x, that is

mx
σ∗(A) = Px(Xε

σ∗ ∈ A), A ∈ B(γ).

The following lemma will be proved in Section 4.

Lemma 3.3. For each δ > 0 and all sufficiently small ε there is a stopping time σ∗ =
σ∗(δ, ε, x) defined on an extension of the probability space, such that Exσ∗ ≤ δ and

sup
x∈γ

Var(mx
σ∗(dy)− ν(dy)) ≤ δ, (13)

where Var is the total variation of the signed measure.

Proof of Lemma 2.2. Let f ∈ D(L), T > 0, and η > 0 be fixed. We would like to show
that the absolute value of the left hand side of (9) is less than η for all sufficiently small
positive ε.

First, we replace the time interval [0, T ] by a larger one, [0, σ̃], where σ̃ is the first of
the stopping times σn, which is greater than or equal to T , that is

σ̃ = min
n:σn≥T

σn.
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Using the Markov property of the process, the difference can be rewritten as follows

|Ex[f(h(Xε
σ̃))− f(h(Xε

0))−
∫ σ̃

0

Lf(h(Xε
s ))ds]−

Ex[f(h(Xε
T ))− f(h(Xε

0))−
∫ T

0

Lf(h(Xε
s ))ds]| =

|ExEXε
T
[f(h(Xε

σ))− f(h(Xε
0))−

∫ σ

0

Lf(h(Xε
s ))ds]|.

The latter expression can be made smaller than η/3 for all sufficiently small ε due to (10).
Therefore, it remains to show that

|Ex[f(h(Xε
σ̃))− f(h(Xε

0))−
∫ σ̃

0

Lf(h(Xε
s ))ds]| <

2η

3
(14)

for all sufficiently small ε.
Let Fk be the σ-algebra of events determined by the time σk, and define

αk =

∫ σk+1

σk

Lf(h(Xε
s ))ds.

Since f(h(x)) = const for x ∈ γ, the expectation in the left hand side of (14) can be
rewritten as

Ex[f(h(Xε
σ̃))− f(h(Xε

0))−
∫ σ̃

0

Lf(h(Xε
s ))ds] =

Ex[f(h(Xε
σ))− f(h(Xε

0))−
∫ σ

0

Lf(h(Xε
s ))ds] + Ex

ñ∑
k=0

αk,

where ñ is a certain stopping time with respect to the filtration {Fk}. The absolute value
of the first term on the right hand side can be made smaller than η/3 due to (10). Define

βk =
∞∑
n=0

Ex(αk+n|Fk).

Below we will prove that the series converges almost surely and for each δ > 0 and all
sufficiently small ε

sup
k≥0
|βk| ≤ δ Px − almost surely. (15)

Assume first that (15) holds. Note that Ex(αk − βk + βk+1|Fk) = 0, and thus(
n∑
k=0

(αk − βk + βk+1),Fn+1

)
, n ≥ 0

14



is a martingale. Note that

Ex
ñ∑
k=0

αk = Ex
ñ∑
k=0

(αk − βk + βk+1) + Ex(β0 − βñ+1).

The first term on the right hand side is equal to zero by the optional sampling theorem,
while the absolute value of the second term can be made smaller than η/3 by choosing
δ = η/6 in (15). It remains to prove (15).

Applying the strong Markov property with respect to the stopping time σ, we see that
(15) will follow if we prove that

sup
x∈γ

∣∣∣∣∣
∞∑
n=0

Exαn

∣∣∣∣∣ ≤ δ (16)

for all sufficiently small ε. We need the fact that

Eνα0 = 0 (17)

which is proved below. First let us show that (16) holds if we assume that (17) is true. Ob-
serve that supx∈γ Exαn converges to zero exponentially fast as n→∞ (with the exponent
that may depend on ε) since the measure on γ induced by Xε

σn converges exponentially
to the invariant measure. Hence the series in (16) converges absolutely uniformly in x.

By the strong Markov property with respect to the stopping time σ∗, taking (17) into
account, ∣∣∣∣∣

∞∑
n=0

Exαn

∣∣∣∣∣ ≤ ||Lf ||C(M)|Exσ∗|+ Var(mx
σ∗ − ν) sup

y∈γ

∣∣∣∣∣
∞∑
n=0

Eyαn

∣∣∣∣∣ ,
where σ∗ is the same as in Lemma 3.3. Choose a small number δ′ � δ. Taking the
supremum in x on both sides and applying Lemma 3.3 with δ′ in the right hand side of
(13) we obtain

sup
x∈γ

∣∣∣∣∣
∞∑
n=0

Exαn

∣∣∣∣∣ ≤ δ′||Lf ||C(M) + δ′ sup
x∈γ

∣∣∣∣∣
∞∑
n=0

Exαn

∣∣∣∣∣ .
This immediately implies (16) since an arbitrarily small δ′ can be taken. It remains to
prove (17), which is the subject of Lemma 3.4 below.

Lemma 3.4. For each ε > 0, we have Eν
∫ σ1

0
Lf(h(Xε

s ))ds = 0.

Proof. Since the process Xε
t is ergodic and the measure λ on M is the invariant measure,

by the law of large numbers

lim
t→∞

Eν

∫ t
0
Lf(h(Xε

s ))ds

t
=

∫
M

Lf(h(x))dλ(x). (18)

15



At the same time, since the Markov chain Xε
σn , n ≥ 0, on γ is ergodic and has invariant

measure ν, by the law of large numbers,

lim
n→∞

σn
n

= Eνσ1

almost surely with respect to the initial distribution ν, and therefore the limit in the left
hand side of (18) is equal to

Eν
∫ σ1

0
Lf(h(Xε

s ))ds

Eνσ1

.

It remains therefore to show that the right hand side of (18) is equal to zero.
For hk ∈ Ik, define

gk(hk) =

∫
γk(hk)

1

|∇H|
dl.

Then representing M = E
⋃

Cl(
⋃r
k=1 Uk) and replacing the integral over each Uk by an

integral over Ik, we obtain∫
M

Lf(h(x))dλ(x) = λ(E)Lf(0) +
r∑

k=1

∫
Ik

gk(hk)Lkf(hk)dhk.

Note that from (3) and (4) and the Stokes formula it follows that (gkak)
′ = gkbk. Therefore∫

Ik

gkLkfdhk =

∫
Ik

(gkakf
′′ + gkbkf

′)dhk =

∫
Ik

(gkakf
′)′dhk = −pVk lim

hk→0
f ′(hk),

where the last equality follows from (5). The result now follows from (6).

4 Exit from the ergodic component. Lemma on ap-

proaching the invariant measure

4.1 A general perturbation result.

We make use of the following result proved in [20].
Let Γ be a self-adjoint nonnegative unbounded operator with discrete spectrum on

a separable Hilbert space H. Let λj be the eigenvalues of Γ and ej be the associated
orthonormal eigenfunctions. Let Hm(Γ) be the space of vectors of the form ψ =

∑
j cjej

such that
||ψ||2Hm(Γ) =

∑
j

|cj|2(λj + 1)m <∞.

Let L be a self-adjoint operator on H such that

||Lψ||H ≤ Const||ψ||H1(Γ) and ||eiLtψ||H1(Γ) ≤ B(t)||ψ||H1(Γ)
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for some continuous function B(t). For each ε, let the function ϕε(t) solve the equation

dϕε
dt

=
i

ε
Lϕε − Γϕε, ϕε(0) = ψ.

Such a solution exists and is unique in the class of functions ϕ(t) satisfying

ϕ(t) ∈ L2([0, T ], H1(Γ)) ∩ C([0, T ],H), ϕ′(t) ∈ L2([0, T ], H−1(Γ)),

(see Remark 2 on page 649 of [3]). (In our application, below, the equation is parabolic
and the existence of solutions and their smoothness away from t = 0 does not pose any
problem.) Let V be the closed subspace of H generated by the eigenfunctions of L which
lie in H1(Γ). Let P : H → H denote the orthonormal projection to V.

Proposition 4.1. ([20], Theorem 2.4) For each T, τ, η > 0 there exists ε0 = ε0(T, τ, η)
such that for each ψ ∈ H with ||ψ||H ≤ 1 we have

mes{t ≤ T : ||(1− P )ϕε(t)||2H > η} ≤ τ

when ε ≤ ε0.

We will use the following corollary of this proposition. Let M be a compact manifold
with a smooth measure λ. Let Gv

t be the flow generated by an incompressible vector field v.
Let E ⊂M be an open connected invariant set whose boundary consists of a finite number
of piece-wise smooth hypersurfaces Sk, k = 1, ..., r. We assume that there are finitely many
non-intersecting invariant sets E1, ..., Em ⊆ E such that λ(E \ (E1∪ ...∪Em)) = 0 and the
flow (Ei, G

v
t , λ) is ergodic for each i. Consider the process Xε

t with the generator 1
ε
Lv+LD

where LD is self-adjoint non-degenerate elliptic operator of the second order. Let us fix
k ∈ {1, ..., r}. Let uε(t, y) be the probability that the process starting at y ∈M does not
reach Sk before time t.

Lemma 4.2. Under the above assumptions, for each k, the L1(E)-norm of uε(t, ·) tends
to zero as ε ↓ 0 for each t > 0.

Proof. Let us take an arbitrary Riemannian metric on M . This allows us to introduce
the corresponding Sobolev spaces Hs(M), s ∈ R. Note that uε(t, y) is the solution of the
following parabolic equation

∂uε(t, y)

∂t
=

(
LD +

1

ε
Lv

)
uε, y ∈M \ Sk,

uε(0, y) = 1, y ∈M \ Sk, uε(t, y) = 0, t > 0, y ∈ Sk.
We apply Proposition 4.1 with T = t, H = L2(M), Γ = −LD, L = −iLv, where Γ and L
are the operators on H with the domains H2

0 (M \ Sk) and H1
0 (M \ Sk), respectively.

Then H1(Γ) = H1
0 (M \ Sk) is the standard Sobolev space and the norms in these two

spaces are equivalent. Let us show that each eigenfunction ϕ of L in H1
0 (M \ Sk) is equal

to zero on E.
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Since ϕ is an eigenfunction, ϕ(Gv
tx) = eiktϕ(x) for some k and all t. Therefore

|ϕ|(Gv
tx) = |ϕ(x)|, and by ergodicity there are constants ai, such that |ϕ(x)| = ai for

x ∈ Ei, i = 1, ...,m. Let us combine the sets Ei into the groups F1, ..., Fr (r ≤ m) so that
the values of |ϕ(x)| are constant on each Fi and distinct for different i ∈ {1, ..., r}. The
value of |ϕ(x)| on Fi will be denoted by bi.

We thus have the function ϕ that belongs to H1
0 (M \ Sk), such that |ϕ| takes a finite

number of values on E. We claim that |ϕ| takes only one value on E.
For h0 > 0, let Eh0 = {x ∈ E, dist(x, ∂E) > h0}. Let gi(x) = χFi

(x). Let w be a
smooth vector field on M with the length of w(x) less than or equal to one for each x.
Let Gw

h (x) be the flow generated by the vector field w.
Then for some positive constant K that depends on b1, ..., br, a positive constant K1

and each h ∈ (0, h0),∫
Eh0

|gi(Gw
hx)− gi(x)|dλ(x) ≤ K

∫
Eh0

||ϕ(Gw
hx)| − |ϕ(x)||2dλ(x) ≤

≤ K

∫
Eh0

|ϕ(Gw
hx)− ϕ(x)|2dλ(x) ≤ KK1h

2||ϕ||2H1(E).

Similarly, if j,N are positive integers such that 1 ≤ j ≤ N , then∫
Eh0

|gi(Gw
jh
N

x)− gi(Gw
(j−1)h

N

x)|dλ(x) ≤ KK1
h2

N2
||ϕ||2H1(E).

Therefore,∫
Eh0

|gi(Gw
hx)− gi(x)|dλ(x) ≤

N∑
j=1

∫
Eh0

|gi(Gw
jh
N

x)− gi(Gw
(j−1)h

N

x)|dλ(x) ≤

KK1
h2

N
||ϕ||2H1(E).

Taking the limit as N → ∞, we see that
∫
Eh0
|gi(Gw

hx) − gi(x)|dλ(x) = 0. Since w and
h were arbitrary, this easily implies that gi is a constant on Eh0 . Since h0 can be taken
to be arbitrarily small, this implies that gi is constant on E for each i, and therefore |ϕ|
takes only one value on E.

We now can proceed with the proof of the fact that ϕ is zero on E. There is a sequence
of C∞(M) functions fn, such that the zero set of fn is a co-dimension 2 submanifold and
fn → ϕ in H1(M). Indeed, since ϕ ∈ H1

0 (M \Sk), it can be approximated by C∞ functions
since C∞ is dense in H1

0 (M \ Sk). Furthermore, by the Sard Lemma, an arbitrarily small
complex constant can be added to a C∞ function to make sure that its zero set becomes
a co-dimension 2 submanifold, thus proving the existence of the sequence fn.

Note that ||(|fn|)||H1(M) ≤ ||fn||H1(M) since the zero set of fn has co-dimension 2.
Since the embedding of H1(M) into H3/4(M) is compact, there is a subsequence fnm and
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a function g ∈ H3/4(M) such that |fnm| → g in H3/4(M). Since |fnm | → |ϕ| in L2(M),
we conclude that g = |ϕ|.

Let tr : H3/4(M) → L2(Sk) be the restriction of a function onto the part of the
boundary. Since tr is a continuous operator, we have tr|fnm| → tr|ϕ| in L2(Sk). On the
other hand, tr|fnm| = |trfnm| → |trϕ| in L2(Sk) since | · | (taking the absolute value) is
a continuous mapping of L2(Sk) into itself. Therefore tr|ϕ| = |trϕ|. Since trϕ = 0, we
have tr|ϕ| = 0, and since |ϕ| is constant on E, the constant must equal zero. Therefore,
ϕ = |ϕ| = 0 on E.

We have thus demonstrated that all the eigenfunctions vanish on E. Therefore Propo-
sition 4.1 implies that

∫
E

(uε(t, y))2dλ(y) < η for a large set of times. Since uε is a de-
creasing function of time it follows that ||uε(t, ·)||L2(E) tends to 0 and hence ||uε(t, ·)||L1(E)

tends to 0.
Remark. It is proved in [19] that for a typical vector field v on a surface the associated
operator Lv has no non-constant L1-eigenfunctions on E. In order to apply Proposition
4.1 one needs to check a weaker condition that there are no H1-eigenfunctions. The proof
of Lemma 4.2 shows that this weaker condition holds for all vector fields satisfying the
assumptions of Theorem 2 (in fact, for all the vector fields without saddle connections).

4.2 Analysis of the exit time.

We start this section by proving several lemmas that describe the behavior of the process
in and near the ergodic component. The last one of these lemmas gives a bound on the
time it takes for the process that starts in Cl(E) to reach γk that will be needed for the
proof of Lemma 3.3.

Let us show that if the process starts at x ∈ Cl(E), then it reaches γ sufficiently fast.

Lemma 4.3. We have the following limit

lim
ε↓0

sup
x∈Cl(E)

Exσ = 0.

Proof. For t > 0 and x, y ∈ M , let mx
t be the measure induced by Xε

t starting at x and
px(t, y) be the density of mx

t with respect to the measure λ. The main result of [7] implies
that px(t, y) is uniformly bounded in ε, x, y for each t > 0. In particular, for each δ > 0
there is k(δ) such that px(δ/2, y) ≤ k(δ). Let uε(t, y) be the probability that the process
starting at y ∈ E does not leave E before time t. By Lemma 4.2, the L1(E)-norm of
uε(δ/2, ·) tends to 0 as ε ↓ 0. Therefore,

Px(σ > δ) ≤
∫
E
px(δ/2, y)uε(δ/2, y)dλ(y) ≤ k(δ)||uε(δ/2, ·)||L1(E) → 0 as ε ↓ 0.

Since δ was arbitrary, the Markov property now implies the statement of the lemma.
Let λ be the normalized measure λ on E . Let σk be the first time when the process

reaches γk. We next show that if the process starts with the distribution λ, then it reaches
γk sufficiently fast.
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Lemma 4.4. For each k = 1, ..., r, and δ > 0 we have the following limit

lim
ε↓0

Pλ(σ
k > δ) = 0. (19)

Moreover, for each k = 1, ..., r and δ > 0 there are δ′ ∈ (0, δ) and a stopping time
η = η(ε) ∈ [δ′, δ] such that

Pλ(X
ε
η ∈ γk) ≥ 1− δ (20)

for all sufficiently small ε.

Proof. Let uε(t, y) be the probability that the process starting at y does not reach γk
before time t. Thus the probability that the process starting with λ does not reach γk
before time δ is

Pλ(σ
k > δ) =

∫
E
uε(δ, y)dλ(y).

We can apply Lemma 4.2 to conclude that the last integral tends to zero. This proves
the first part of the lemma.

The second part follows from the first part and and two additional facts:
(a) For each δ′, the distribution of Xε

δ′ starting with distribution λ has density with
respect to λ that is bounded by 1/λ(E).

(b) Let δ > 0. Then for all sufficiently small δ′ and ε we have

Pλ(X
ε
δ′ 6∈ E) ≤ δ.

Now (a) immediately follows from the invariance of λ for the process Xε
t . Observe

that for each κ > 0 we have Pλ(dist(Xε
δ′ , E) > κ)→ 0 uniformly in ε as δ′ ↓ 0. This, the

first statement of the lemma, and the invariance of λ immediately imply (b).
Next, we consider the process starting at x ∈ Cl(E) rather than with the initial

distribution λ. First, we need the following simple facts

Lemma 4.5. (a) For each δ > 0 there is δ′ ∈ (0, δ) and a stopping time η = η(ε, x) ∈ [δ′, δ]
such that

sup
x∈Cl(E)

Px(Xε
η 6∈ Cl(E)) ≤ δ

for all sufficiently small ε.
(b) There is a constant c > 0 such that for each δ > 0 we have

sup
x∈γk

Px(inf{t ≥ 0 : Xε
t ∈ γk} > δ) ≤ 1− c

for all sufficiently small ε.
(c) There is a positive constant c and nontrivial subcurves Jk ⊂ γk, k = 1, ..., r, such

that for each k and each x ∈ γk the measure induced by Xε
σ on γ has a component with

density bounded from below by c on Jk.
(d) We have the limit limε↓0 supx∈γk Exσ = 0.
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(e) There is c > 0 such that for each δ > 0, each k, all sufficiently small ε (depending
on δ) and each x ∈ γk, there is a stopping time η = η(ε, x) ∈ [0, δ] with the property
that Xε

η belongs to γk with positive probability and the measure induced by Xε
η on γk has

a component with density bounded from below by c on Jk.

Proof. Observe that supx∈Cl(E) Px(dist(Xε
δ′ , E) > κ) → 0 uniformly in ε as δ′ ↓ 0. There-

fore (a) follows from (12). Statement (d) also immediately follows from (12).
Statements (b) and (c) follow from the proof of Lemma 2.3 of [6]. The main idea

in that lemma was to introduce new coordinates (roughly speaking, dividing H by
√
ε

and subtracting the fast rotation from the angle variable) so that the generator becomes
uniformly elliptic in ε away from the critical points of H. The boundedness of density
from below is then known (see [15]).

Finally, (e) immediately follows from (b), (c), (d) and the Markov property of the
flow.

Lemma 4.6. For each k = 1, ..., r, and δ̄ > 0 we have the following limit

lim
ε↓0

sup
x∈Cl(E)

Px(σk > δ̄) = 0.

Proof. The Markov property together with part (a) of Lemma 4.5 allow us to reduce the
statement of the lemma to the following: there is c > 0 such that for each δ̂ > 0 we have

sup
x∈Cl(E)

Px(σk > δ̂) ≤ 1− c (21)

for all sufficiently small ε.
Indeed, suppose that (21) holds. Fix κ > 0. Take l such that (1− c)l < κ/2. Take δ <

min(κ/(2l), δ̄/l). Let δ′ be given by Lemma 4.5(a). Define stopping times η1, . . . , ηj, . . .
as follows. If σk < δ′ let η1 = σk, otherwise let η1 be the first time after δ′ such that
Xη1 ∈ Cl(E). Next, if ηj is already defined let ηj+1 = σk if σk < ηj + δ′ and let ηj+1 be the
first time after ηj + δ′ such that Xηj+1

∈ Cl(E). Lemma 4.5(a) implies that

P(ηl > δ̄) < lδ <
κ

2
.

On the other hand (21) with δ̂ = δ′ gives

P(ηl < σk) < (1− c)l < κ

2
.

Hence P(σk > δ̄) < κ. Since κ is arbitrary the lemma follows. It remains to prove (21).
Let Jj be the subcurves from Lemma 4.5. Denote by λj the uniform distribution on

Jj. We claim that there is a constant c̄ > 0 such that for each j, k and all sufficiently
small ε we have

Pλj

(
σk <

δ̂

2

)
> c̄. (22)
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Indeed, by (20) there is δ′ ∈ (0, δ̂/2) and a stopping time η = η(ε) ∈ [δ′, δ̂/2] such that

Pλ(X
ε
η ∈ γk) ≥ 1− δ̂/2. (23)

From (19) and part (e) of Lemma 4.5 it follows that there is a stopping time η′ ∈ [0, δ′]
such that the measure induced by Xε

η′ (starting with λ) has a component with density
on Jj with respect to λj that is bounded from below by c > 0. Since c can be chosen

independently of δ′, by taking a sufficiently small δ̂ we can ensure that δ̂/2 < c, and
therefore c̄ := 1 − δ̂/(2c) > 0. By the strong Markov property of the process Xε

t with
respect to η′,

Pλ(X
ε
η ∈ γk) ≤ 1− cPλj

(
σk ≥ δ̂

2

)
,

and therefore (22) follows from (23).
From Lemma 4.3 and part (e) of Lemma 4.5 it follows that there is a stopping time

η ∈ [0, δ̂/2] with the property that the measure induced by Xε
η (starting from x) has a

component with density with respect to λj bounded from below by a positive constant
on Jj for some j. This, together with (22), implies (21).

Let τ k be the first time when the process reaches γk (observe that τ k > σk when the
process starts in Cl(E)).

Lemma 4.7. For each k = 1, ..., r, and δ > 0 we have the following limit

lim
ε↓0

sup
x∈Cl(E)

Px(τ k > δ) = 0.

Proof. As in the proof of Lemma 4.6, the statement will follow if we show that there is
c > 0 such that for δ > 0 we have

sup
x∈Cl(E)

Px(τ k > δ) ≤ 1− c

for all sufficiently small ε. This follows from Lemma 4.6, part (b) of Lemma 4.5, and the
Markov property of the process.

Proof of Lemma 3.3. Due to (11) and the Markov property of the process, it is sufficient
to prove that for each δ > 0 there is a stopping time σ such that

Px(σ ≤ δ) ≥ 1− δ (24)

and (13) holds with σ instead of σ∗.
For k = 1, ..., r, let σk0 , σ

k
1 , ... be the subsequence of σ0, σ1, ... defined by the condition

that Xε
σk
n
∈ γk for each n. Let qk = ν(γk). Note that for each k

νk(A) =
ν(A)

qk
, A ∈ B(γk) (25)
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is the invariant measure for Xε
σk
n

(see [4]).
Let m be a random variable independent of Xε

t taking values 1, ..., r with probabilities
qk, k = 1, ..., r. Consider the Markov chain Y k

n = Xε
σk
n
, n ≥ 0, with the state space γk. We

have exponentially fast in n convergence of the distributions of Y k
n to the invariant mea-

sure since part (c) of Lemma 4.5 implies that Y k
n satisfies the Doeblin condition uniformly

in ε. Let N be such that the distribution of Y k
n is δ-close to the invariant measure for

each k. Note that N can be chosen independently of ε. Let σ = σmN , and thus Xε
σ = Y m

N .
The fact that σ satisfies (24) now follows from Lemma 4.7 and (12).

Remark. In a companion paper [5] we need a slightly stronger version of Lemma 4.7.
Namely, let γ̃k be the set of points in Uk whose distance from γk is equal to εα, where
α ∈ [1/4, 1/2]. Let τ̃ k be the first time when the process reaches γ̃k. We claim that
Lemma 4.7 holds with τ k replaced by τ̃ k.

Let us sketch the proof of this fact. Similarly to the arguments above, it is sufficient
to show that there is c > 0 such that for each δ > 0 we have

sup
x∈Cl(E)

Px(τ̃ k > δ) ≤ 1− c (26)

for all sufficiently small ε. We claim that

Eνk τ̃
k → 0 as ε ↓ 0 (27)

where νk is the measure on γk defined in (25). Indeed let µ̃k be the invariant measure for
Xτ̃km

where τ̃ km are consecutive visits to γ̃k. Equation (15) of [6] reads

lim
ε↓0

Eνk τ̃ k

Eµ̃kσk
=
λ(M − Uk)
λ(Uk)

.

(In [6] this result is proved for M = T2, but the same argument works for arbitrary
surfaces since it only relies on the ergodicity of the process Xε

t , the asymptotic closeness
of γ̃k and γk and the fact that each of these curves separates the manifold into two disjoint
domains.) Hence (27) follows from part (d) of Lemma 4.5.

In view of (27), in order to see that (26) holds, it is sufficient to note that
(a) νk has a component with density (with respect to the Lebesgue measure) bounded

from below by a positive constant on Jk, and
(b) By Lemma 4.6 and part (e) of Lemma 4.5, for each δ > 0 and x ∈ Cl(E) there is a

stopping time η ≤ δ such that the distribution of Xε
η has a component with density that

is bounded from below, uniformly in x, by a positive constant on Jk.

5 Saddle points.

In the case when V corresponds to a saddle point the result has already been proved
in [10]. We also note that the proof presented in Section 3 also works in this case with
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significant simplifications since the results of Section 4 become trivial. This simplifies the
original argument of [10] by avoiding some of the more technical steps in their proof.

6 Extensions and applications.

In this section we describe several applications of Theorem 2 following [5].
First, we note that the assumption that LD is self-adjoint can be removed. Namely, if

we do not assume self-adjointness, then LD can be written in the following form in local
coordinates (x, y) on Uk such that ω = dxdy:

LD(f) = Lβ(f) +
1

2
div(α∇f).

In this case (4) has to be modified as follows.

bk(hk) =
1

2

(∫
γk(hk)

1

|∇H|
dl

)−1 ∫
γk(hk)

2〈β + u,∇H〉+ α ·H ′′

|∇H|
dl, (28)

while (3) and (5) remain unchanged.

Theorem 3. Theorem 2 remains valid in the dissipative case provided that (4) is replaced
by (28).

Proof. The derivation of Theorem 3 from Theorem 2 was done in [5] for the case of the
torus, but the proof relied only on the facts that the result was known in the conservative
case (β = 0) and that G had only one accessible vertex. As was explained in Section 2,
the general graphs can be reduced to the star-shaped ones, so we can derive Theorem 3
from Theorem 2 following the argument of [5].

Next we consider the random processes Xκ,ε
t with the generator

1

ε
Lv(f) + Lβ(f) +

κ
2

div(α∇f)

where κ is a small parameter. We assume that the initial distribution of the process does
not depend on ε and κ. Let Y κ

t denote the limiting process on G (in the limit ε ↓ 0).
We claim that Y κ

t has a limit as κ ↓ 0. To describe this limit, define for each edge Ik
containing an accessible vertex V ,

ψV,k =

∫
γk

〈β,∇H〉
|∇H|

dl

and

ψk(hk) =

(∫
γk(hk)

1

|∇H|
dl

)−1 ∫
γk(hk)

〈β,∇H〉
|∇H|

dl.
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We assume that ψV,k 6= 0 for each accessible vertex and each k.

Given an edge Ik and a vertex V on this edge, let s(V, k) = 1 if ψV,k > 0 and hk > 0

on Ik, and let s(V, k) = 0 otherwise. Denote q(V, k) = s(V, k)|ψV,k|.
Let Yt be the strong Markov process on G such that:
(a) Inside an edge Ik the process moves deterministically according to the equation

Ẏt = ψk(Yt).

(b) If Yt reaches a vertex V and s(V, k) = 0 for all the edges containing V , then Yt
stays at V indefinitely.

(c) If there exists edges such that s(V, k) = 1, then Yt leaves V instantaneously if V
corresponds to a saddle. If V corresponds to a transitivity component Ei, then Yt stays
at V for a time η which has exponential distribution with parameter∑

k q(V, k)

λ(Ei)
,

where the sum is over the edges containing V.
(d) When Yt leaves V , it chooses one of the edges Ik, where s(V, k) = 1, with probability

q(V, k)∑
k q(V, k)

independently of η.

Theorem 4. The measure on C([0,∞),G) induced by the process Y κ
t converges weakly

to the measure induced by the process Yt with the initial distribution h(X0).

Proof. Arguing as in Section 2, we can reduce the statement to the case where G has one
only vertex in which case the result was proved in [5].

Theorem 4 says that if we perturb an incompressible vector field v on M by a small
dissipative vector field εβ, then (after a viscosity type regularization), the system exhibits
intermittent behavior. Namely, the limiting motion is deterministic on a finite or infinite
number of time segments separated by random delays. Moreover, the consecutive deter-
ministic segments are chosen at random. In the case of M being the torus considered in
[5], the graph G is a tree, and hence the process Yt visits each point at most once, and
converges to a random limit as t→∞. In contrast, if G has loops, then Yt may visit some
parts of the graph infinitely many times allowing for an infinite sequence of transitions
between the intervals with deterministic and random behavior.
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