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We consider sums of independent identically distributed random variables whose distributions have d+ 1 atoms. Such

distributions never admit an Edgeworth expansion of order d but we show that for almost all parameters the Edgeworth

expansion of order d− 1 is valid and the error of the order d− 1 Edgeworth expansion is typically of order n−d/2.

1 Introduction

Let X be a random variable with zero mean and variance σ2. Let Sn =

n∑
j=1

Xj where Xj are independent

identically distributed and have the same distribution as X. The Central Limit Theorem says that for each z

lim
n→∞

P
(

Sn

σ
√
n
≤ z

)
= N(z)

where

N(z) =

∫ z

−∞
n(y)dy and n(y) =

1√
2π
e−y2/2.

A classical problem in probability theory is computing higher order approximations to P
(

Sn

σ
√
n
≤ z

)
. In

particular, the order r Edgeworth series of Sn is an expression of the form

Er(z) = N(z) + n(z)
r∑

k=1

Pk(z)

nk/2

where Pk are polynomials such that the characteristic function ϕ(t) = E(eitX) and the Fourier transform Êr of
Er satisfy

ϕ

(
t

σ
√
n

)n

− Êr(t) = o
(
n−r/2

)
.

In particular,

E1(z) = N(z) + n(z)
E(X3)

6σ3
√
n
(1− z2),

E2(z) = N(z) + n(z)

[
E(X3)

6
√
nσ3

(1− z2) +
E(X4)− 3σ4

24nσ4
(3z − z3)− E(X3)2

72nσ6
(15z − 10z3 + z5)

]
.

We say that Sn admits an order r Edgeworth expansion if for all z

lim
n→∞

nr/2
[
P
(

Sn

σ
√
n
≤ z

)
− Er(z)

]
= 0. (1)
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Recall that a lattice random variable is a discrete random variable taking values on a set of points of the
form a+ nh, n ∈ Z, where h > 0, a ∈ R. It is known that Sn admits the first order Edgeworth expansion if and
only if X is non-lattice (see [12]). The problem of higher order expansion is more complicated. For example,
a sufficient condition for Sn to admit the order r Edgeworth expansion is that E(|X|r+2) <∞ and X has a
density. But this condition is far from necessary. We refer the reader to [13, Chapter XVI] for discussion of these
and related results. We also note that [2, 5] discusses a weak Edgeworth expansion where the LHS of (1) is
convolved with smooth compactly supported functions.

In this paper, we consider a case which is opposite to X having a density, namely we suppose that X has a
discrete distribution with d+ 1 atoms where d ≥ 2. d = 2 is the simplest non-trivial case since the distributions
with two atoms are lattice, and as a result, they do not admit even the first order Edgeworth expansion.

Thus we suppose that X takes values a1, . . . , ad+1 with probabilities p1, . . . , pd+1, respectively. Since X
should have zero mean we suppose that our 2(d+ 1)−tuple (a,p) belongs to the set

Ω = {pi > 0, p1 + · · ·+ pd+1 = 1, p1a1 + · · ·+ pd+1ad+1 = 0}.

It is easy to see that Sn never admits the order d Edgeworth expansion. Indeed,

Pa,p(Sn ≤ z) =
∑

mi≥0,
∑

mi=n∑
miai≤z

n!

m1! . . .md+1!
pm1
1 . . . p

md+1

d+1 . (2)

The Local Central Limit Theorem (see [18, Theorem 2.1.1]), applied to the time homogeneous Zd-random walk
which jumps to ei from the origin 0 with probability pi for i = 1, . . . , d and stays at 0 with probability pd+1,
gives us that for all ε there is n0 ∈ N such that for all n ≥ n0 and all m ∈ Zd∣∣∣∣∣P(Tn = m)− 1√

(2πn)d detΓ
e−

(m−nq).Γ−1(m−nq)
2n

∣∣∣∣∣ ≤ ε

nd/2
(3)

where Tn is the position of the random walk after n steps, Γ is the associated covariance matrix and
q = (p1, . . . , pd). Also, if m1, . . .md,md+1 are integers such that m1 + · · ·+md +md+1 = n and mi ≥ 0, then,
taking m = (m1, . . . ,md), we have

P(Tn = m) =
n!

m1! . . .md+1!
pm1
1 . . . p

md+1

d+1 .

As a result, if ∑
miai = n

∑
aipi +O(

√
n),

then in (3), the exponent of e is O(1), and hence, for sufficiently large n,

nd/2P(Tn = m) = nd/2
n!

m1! . . .md+1!
pm1
1 . . . p

md+1

d+1

is uniformly bounded from below. Accordingly, from (2), it follows that Pa,p(Sn ≤ z) has jumps of order n−d/2.
On the other hand, Ed(z) is a smooth function of z. So, it can not approximate both Pa,p(Sn ≤ z − 0) and
Pa,p(Sn ≤ z + 0) at the points of jumps without making an error of O(n−d/2). This means that it is not true
that Pa,p(Sn ≤ z) = Ed(z) + o(n−d/2) for all z, showing that the order d Edgeworth expansion fails.

However, in this paper, we show that for typical (a,p) this failure of the order d Edgeworth expansion
happens just barely. We present two results in this direction. For the first result, let

bj = aj − a1, for j = 2, . . . , d+ 1.

Then, the characteristic function of X, ϕ, satisfies

ϕ(s) = eisa1ψ(s) where ψ(s) = p1 + p2e
isb2 + · · ·+ pd+1e

isbd+1 .

Set
d(s) = max

j∈{2,...,d+1}
dist(bjs, 2πZ).

We say that a is β-Diophantine if there is a constant K such that for |s| > 1,

d(s) ≥ K

|s|β
.

It follows from the classical Khinchine-Groshev Theorem (see e.g. [17, Theorem 1.1] or [23]) that almost every
a is β-Diophantine provided that β > 1

d−1 .
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Theorem 1.1. If a is β-Diophantine and

2

(
R− 1

2

)
β < 1 (4)

then

lim
n→∞

nR
[
Pa,p

(
Sn

σ
√
n
≤ z

)
− Ed−1(z)

]
= 0

uniformly in z ∈ R.

Thus, for almost every a the order (d− 1) Edgeworth expansion approximates the distribution of Sn

σ
√
n

with

error O(nε−d/2) for any ε.

Note that Theorem 1.1 applies for all βs, and in particular, for βs which are much larger than 1
d−1 . However,

if β is large, then the statement of the theorem can be simplified. Namely, let r be the integer such that
r < 2R ≤ r + 1. (Note that (4) can be rewritten as 2R < 1

β + 1. So, provided that 2R is sufficiently close to

1
β + 1 we can take r =

〈
1
β

〉
+ 1 where ⟨s⟩ denotes the largest integer which is strictly smaller than s.) Then,

Pa,p

(
Sn

σ
√
n
≤ z

)
= Ed−1(z) + o

(
1

nR

)
= Er(z) + o

(
1

nR

)
+O (Ed−1(z)− Er(z)) .

Since r+1
2 > R the first error term dominates the second and we obtain the following result.

Corollary 1.2. Suppose that a is β-Diophantine, r = 1 +
〈

1
β

〉
, and r < 2R < 1

β + 1. Then

lim
n→∞

nR
[
Pa,p

(
Sn

σ
√
n
≤ z

)
− Er(z)

]
= 0

uniformly in z ∈ R.

Theorem 1.2 shows that for almost every a and for r ∈ {1, . . . , d− 1}, the order r Edgeworth expansion is valid.
Our next results show that

Pa,p

(
Sn

σ
√
n
≤ z

)
− Ed(z) (5)

is typically of order O(n−d/2) but the O(n−d/2) term has wild oscillations. To formulate this result precisely,
we suppose that our 2(d+ 1)-tuple is chosen at random according to an absolutely continuous distribution P
on Ω. Thus, (5) becomes a random variable.

Theorem 1.3. There exists a smooth function Λ(a,p) such that for each z the random variable

ez
2/2 nd/2

Λ(a,p)

[
Ed(z)− Pa,p

(
Sn

σ
√
n
≤ z

)]
converges in law to a non-trivial random variable X (defined below in Lemma 1.4) whose distribution is
independent of z and P.

The formulas for the normalizing factor Λ(a,p) and the limiting random variable X are quite complicated
and the next few pages are devoted to their definitions.

The normalization is defined as follows:

Λ(a,p) =
|ad+1 − a1|

(2π)d+
1
2

√
det(Da,p) σ(a,p)

(6)

where σ(a,p) denotes the standard deviation of the distribution of the random variable taking value aj with
probability pj and Da,p is a (d− 1)× (d− 1) matrix defined as follows.
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The matrix Da,p

Fix p1, . . . , pd+1 and consider a map

ζ(y) =

∣∣∣∣∣
d+1∑
j=1

pje
iyj

∣∣∣∣∣
2

where y = (y1, . . . , yd+1) ∈ Rd+1. Let Y be a random variable taking values yj with probability pj . Then, for
small y we have

E
(
eiY
)
= 1− E(Y 2)

2
+ iE(Y ) +O

(
∥y∥3

)
.

Hence,
ζ(y) = 1−E(Y 2) +E(Y )2 +O

(
∥y∥3

)
= 1− V (Y ) +O

(
∥y∥3

)
(7)

where V (·) is the variance.
Next, consider the quadratic form given by Q(y,y) = V (Y (y)). Let x,a ∈ Rd+1 be fixed. In order to

maximize s 7→ ζ(x+ sa), we want to minimize s 7→ Q(x+ sa,x+ sa). We have

Q(x+ sa,x+ sa) = Q(x,x) + 2sQ(x,a) + s2Q(a,a).

It follows that the minimum is achieved at s∗ = −Q(a,x)
Q(a,a) and its value is

D(x,x) = Q(x,x)− Q(x,a)2

Q(a,a)
=
Q(x,x)Q(a,a)−Q(a,x)2

Q(a,a)

=
V (Y (x))V (X)− Cov2(X,Y (x))

V (X)

where X is the random variable taking values aj with probability pj . Note that D(x,x) > 0 on the subspace
x1 = xd+1 = 0 since Cov2(X,Y (x)) = V (X)V (Y (x)) iff Y (x) = c1X + c2. Note that the RHS takes (d+ 1)
different values if c1 ̸= 0 and it takes a single value if c1 = 0. On the other hand, the LHS takes at most d
different values on {x1 = xd+1 = 0} and it takes a single value only at 0. This implies that Q(x) ̸= 0 unless
x = 0 , and hence, Q is non degenerate. Then Da,p is the (d− 1)× (d− 1) positive definite matrix such that
−4Da,p is the Hessian of Rd−1 ∋ x̃ 7→ ζ(0, x̃, 0). The formula for Da,p will be proven in Section 6 (see (56)).

We note that the infinitesimal computation described above is relevant because we will show, in the course
of proving Theorem 1.3, that the main contribution to the error term come from the resonant points where the
Taylor expansion could be used. See Section 6 for more details.

To define X , we need some notation. Let M be the space of pairs (L, χ) where L is a unimodular lattice in
Rd and χ is a character, that is, a homomorphism χ : L → T.

The Haar measure on M
The Haar measure µ onM can be defined in two equivalent ways. First, note that χ is of the form χ(w) = e2πiχ̃(w)

for some linear functional χ̃ ∈ (Rd)∗. SLd(R) acts on Rd ⊕ (Rd)∗ by the formula

A(w, χ̃) = (Aw, χ̃A−1).

Observe that if A(w, χ̃) = (ŵ, χ̂) then
χ̃(w) = χ̂(ŵ). (8)

The above action of SLd(R) induces the following action of SLd(R)⋉ (Rd)∗ on M

(A, χ̃)(L, χ) = (AL, e2πiχ̃ · (χ ◦A−1)).

This action is transitive because SLd(R) acts transitively on unimodular lattices and (Rd)∗ acts transitively on
characters. This allows us to identify M with

(SLd(R)⋉Rd)/(SLd(Z)⋉Zd)

and so M inherits the Haar measure from SLd(R)⋉Rd.
The second way to define the Haar measure is to note that the space M of unimodular lattices is naturally

identified with SLd(R)/SLd(Z), and so, it inherits the Haar measure from SLd(R). Next, for a fixed L the set
of homomorphisms χ : L → T is a d dimensional torus. So, it comes with its own Haar measure. Now, if we
want to compute the average of a function Φ(L, χ) with respect to the Haar measure then we can first compute
its average Φ̄(L) in each fiber and then integrate the result with respect to the Haar measure on the space of
lattices. In the proof of Lemma 1.4 given in Section 10, the averaging inside a fiber will be denoted by Eχ and
the averaging with respect to the Haar measure on the space of lattices will be denoted by EL.
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The random variable X

Given a vector w ∈ Rd, we denote by y(w) its first coordinate and by x(w) its last d− 1 coordinates. We also
denote by ∥ · ∥ the standard Euclidean norm.

Lemma 1.4. For almost every pair (L, χ) ∈ M with respect to the Haar measure the following limit exists

X (L, χ) = lim
R→∞

∑
w∈L\{0}, ∥w∥≤R

sin(2πχ(w))

y(w)
e−∥x(w)∥2

. (9)

In this formula and below, we identify T with segment [0, 1) equipped with addition modulo one, and thus,
the characters χ(w) are (after this identification) real valued.

In particular, the proof of Lemma 1.4 shows that for almost every L, whenever w ̸= 0, y(w) ̸= 0 (see Section
10) and that each individual summand in (9) is finite almost everywhere on M. In order to simplify the notation,
we will abbreviate expressions such as (9) by

X (L, χ) =
∑

w∈L\{0}

sin(2πχ(w))

y(w)
e−∥x(w)∥2

(10)

even though (10) does not converge absolutely.

If we assume that the pair (L, χ) is distributed according to the Haar measure on M then X , defined by
(9), becomes a random variable. This is the variable mentioned in Theorem 1.3. Note that the distribution of
X depends neither on P nor on z.

Next, we describe how we can use the second representation of Haar measure to describe X . Let w1, . . . ,wd

be the shortest spanning set of L, i.e., w1 is the shortest non zero vector in L and, for j > 1, wj is the shortest
vector in L that is linearly independent of w1, . . . ,wj−1. Given m = (m1, . . . ,md) ∈ Zd, let

(y,x)(m) := m1w1 + · · ·+mdwd ∈ L (11)

where y ∈ R and x ∈ Rd−1. Let θj = χ(wj). Then θj are uniformly distributed on T and independent of each
other. Set

θ(m) := m1θ1 + · · ·+mdθd. (12)

Now, X (see definition in Lemma 1.4) can be rewritten as

X =
∑

m∈Zd\{0}

sin(2πθ(m))

y(m)
e−||x(m)||2 (13)

where L is uniformly distributed on the space of lattices, (y,x)(m) is defined by (11), and (θ1, . . . θd) is uniformly
distributed on Td and independent of L. We will use the representation (13) in Sections 8 and 9 in our proofs
and in Section 10 when establishing the convergence of X .

Theorems 1.1 and 1.3 have analogues in case we are interested in probability that Sn belongs to a finite
interval. In particular, our results have applications to Local Limit Theorems.

Theorem 1.5. Let z1(n) and z2(n) be two uniformly bounded sequences such that |z1(n)− z2(n)|nd/2 → ∞.
Then the random vector

nd/2

Λ(a,p)

(
ez

2
1/2

[
Ed(z1)− Pa,p

(
Sn

σ
√
n
≤ z1

)]
, ez

2
2/2

[
Ed(z2)− Pa,p

(
Sn

σ
√
n
≤ z2

)])
(14)

converges in law to a random vector (X (L, χ1),X (L, χ2)) where X (L, χ) is defined by (10) and the triple
(L, χ1, χ2) is uniformly distributed on (SLd(R)/SLd(Z))× Td × Td.

Here and below the uniform distribution of (L, χ1, χ2) means that L is uniformly distributed on the space of
lattices, and for a given lattice, χ1 and χ2 are chosen independently and uniformly from the space of characters.
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Theorem 1.6. Let z1(n) < z2(n) be two uniformly bounded sequences such that ln = z2(n)− z1(n) → 0.
(a) If ln ≥ Cnε−d/2 for some ε > 0 then

Pa,p(z1 <
Sn

σ
√
n
< z2)

lnn(z1)
→ 1

almost surely.
(b) If lnn

d/2 → ∞ then
Pa,p(z1 <

Sn

σ
√
n
< z2)

lnn(z1)
⇒ 1

(here and below “⇒” denotes the convergence in law).

(c) If ln =
c|ad+1−a1|
σ(a,p)nd/2 then H(a,p)

[
Pa,p(z1 <

Sn

σ
√
n
< z2)

lnn(z1)
− 1

]
⇒ Y where

H(a,p) = (2π)d
√

det(Da,p)

and

Y(L, χ, c) = 1

c

∑
w∈L\{0}

sin(2πχ(w))− sin(2π[χ(w)− cy(w)])

y(w)
e−∥x(w)∥2

,

L, χ are as in Theorem 1.3 and Da,p is from (6).

Remark 1. The normalization in Theorem 1.6(c) comes from the following computation. Denote ∆n(z) =

Ed(z)− P
(

Sn

σ
√
n
≤ z

)
. Then, Theorem 1.3 can be informally restated as

∆n(z) ≈
Λ(a,p)

√
2π n(z)

nd/2
X .

Then under the assumption of part (c) of Theorem 1.6 we have

∆n(z2)−∆n(z1)

ln
≈ Λ(a,p)

√
2π

lnnd/2
[n(z2)X2 − n(z1)X1].

Since
Λ(a,p)

√
2π

lnnd/2
=

1

cH(a,p)
we can rewrite the above equation as

cH(a,p)
∆n(z2)−∆n(z1)

lnn(z1)
≈ n(z2)

n(z1)
X2 −X1.

Thus, the proof of Theorem 1.6 proceeds by describing the asymptotics of the joint distributions of nd/2∆n(z1)
and nd/2∆n(z2) while Theorem 1.3 gives the marginal distributions.

The intuition behind the results of Theorem 1.6 is the following. Call yn δ-plausible if P(Sn = yn) ≥ δn−d/2.
The discussion following (2) shows that for each δ there are about C(δ)nd/2 δ-plausible values. Therefore,
if ln ≪ n−d/2 then the interval [z1(n), z2(n)] would typically contain no plausible values. Hence, we should
not expect a Local Limit Theorem (LLT) to hold on that scale. Theorem 1.6 shows that as soon as interval
[z1(n), z2(n)] contains many plausible values then an LLT typically holds for this interval.

Recall that

Pa,p(Sn ∈ [z1, z2]) =
∑

mi≥0,
∑

mi=n
z1≤

∑
miai≤z2

n!

m1! . . .md+1!
pm1
1 . . . p

md+1

d+1 .

So, in Theorem 1.6, we just count the number of visits of a random linear form
∑
miai to a finite interval

with weights given by multinomial coefficients. It is also interesting to consider counting with equal weight. In
this case the analogue of Theorem 1.6(c) is obtained in [19] while for longer intervals only partial results are
available, see [10, 15].

The layout of the paper is the following. Theorem 1.1 is proven in Section 2. The proof is a minor modification
of the arguments of [13, Chapter XVI]. The bulk of the paper is devoted to the proof of Theorem 1.3. In Section
3, we provide an equivalent formula for X . This formula looks more complicated than (10) but it is easier to
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identify with the limit of the error term. Section 4 contains preliminary reductions. Namely, we show that the
integration in the Fourier inversion formula could be restricted to a finite domain. In Section 6, we show that
the main contribution to the error term comes from resonances where the characteristic function of Sn is close
to 1 in absolute value. The proof relies on the asymptotic analysis of the resonant term performed in Section 5.
Several technical estimates used in our analysis are established in Section 7. In Section 8, we use dynamics on
homogenuous spaces in order to show that the contribution of resonances converges to (10) completing the proof
of Theorem 1.3. The proofs of Theorems 1.5 and 1.6 are similar to the proof of Theorem 1.3. The necessary
modifications are explained in Section 9. Finally, Section 10 contains the proof of Lemma 1.4.

As a notational remark, in the paper the constants denoted by c, C, or other implied constants may change
from line to line or even within the same line.

2 Edgeworth Expansion under Diophantine conditions.

Theorem 1.1 is a consequence of Theorem 2.1 and Theorem 2.2 below.
Note that the characteristic function of X is given by

ϕ(s) = p1e
isa1 + · · ·+ pd+1e

isad+1 (15)

and recall that d(s) = max
j∈{2,...,d+1}

dist(bjs, 2πZ) where bj = aj − a1.

Lemma 2.1. There exists a positive constant c such that

|ϕ(s)| ≤ 1− c d(s)2. (16)

Proof . Since

1− |ϕ(s)| = 1− |ϕ(s)|2

1 + |ϕ(s)|
≥ 1− |ϕ(s)|2

2
,

it suffices to show that
|ϕ(s)|2 ≤ 1− 2c d(s)2. (17)

Note that
|ϕ(s)|2 =

∑
j

p2j + 2
∑
j<k

pjpk cos((aj − ak)s).

Taking a constant c̄ such that cos(t) ≤ 1− c̄ t2 for |t| ≤ π and letting c = c̄(minj pj)
2 we obtain

|ϕ(s)|2 ≤ 1− 2c
∑
j<k

dist2((aj − ak)s, 2πZ)

proving (17). □

Theorem 2.2. If the distribution of X has d+ 2 moments and its characteristic function ϕ satisfies

|ϕ(s)| ≤ 1− K

|s|γ
(18)

and R < d
2 is such that (

R− 1

2

)
γ < 1 (19)

then

lim
n→∞

nR
[
P
(

Sn

σ
√
n
≤ z

)
− Ed−1(z)

]
= 0. (20)

In particular, if X is discrete with d+ 1 atoms a = (a1, . . . , ad+1) , a is β−Diophantine and
(
R− 1

2

)
β < 1

2 ,
then (20) holds.

Theorem 2.2 follows easily from the estimates in [13, ChapterXVI] but we provide the proof here for
completeness.
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Proof . Denoting

∆̄n = P
(

Sn

σ
√
n
≤ z

)
− Ed−1(z)

we get, from the estimate (3.13) in [13, Chapter XVI], that for each T

|∆̄n| ≤
1

π

∫ T
σ
√

n

− T
σ
√

n

∣∣∣∣∣ϕn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds+ C

T
. (21)

Choose T = BnR with B = C
ε . Then,

C
T = ε

nR . Take a small δ and split the integral in the RHS of (21) into two
parts.

1

π

∫ δ

−δ

∣∣∣∣∣ϕn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds+ 1

π

∫
δ<|s|<BnR−1/2/σ

∣∣∣∣∣ϕn(s)− Êd−1(sσ
√
n)

s

∣∣∣∣∣ ds. (22)

From the proof of Theorem 2 in Section 2 and Theorem 3 in Section 4 of [13, Chapter XVI], we have that the
first integral of (22) is O

(
n−d/2

)
.

Also,
∫
|s|>δ

∣∣∣ Êd−1(sσ
√
n)

s

∣∣∣ ds has exponential decay as n→ ∞. Put

J = {s : δ < |s| < Bσ−1nR−1/2}.

Thus, we only need to estimate∫
J

∣∣∣∣ϕn(s)s

∣∣∣∣ ds ≤ 1

δ

∫
J

|ϕn(s)| ds ≤ C

δ

∫
J

exp
(
−b n1−(R− 1

2 )γ
)
ds (23)

where the last inequality is due to (18). By (19) the integral decay faster than any power of n. The result follows.
□

Remark 2. The fact that the Edgeworth expansion of order (d− 1) holds for almost every a is obtained in
[1, Section 4] (with a weaker error bound). [5] shows, among other things, that a Diophantine condition with
any exponent is sufficient for obtaining a weak Edgeworth expansion for sufficiently smooth functions. [6, 14]
obtain similar results for dependent random variable including finite state Markov chains. The relation between
the Edgeworth expansions and Diophantine approximations are utilized in [1, 3, 4] to show that Edgeworth
expansions hold for almost every member of several multi-parameter families.

3 Change of variables.

Here, we deduce Theorem 1.3 from:

Theorem 1.3* For each z the random variable

nd/2
[
Ed(z)− Pa,p

(
Sn

σ
√
n
≤ z

)]
converges in law to X̂ where

X̂ (a, p,L, χ) = e−z2/2 |ad+1 − a1|
2σ(a, p)

√
2π3

∑
w∈L\{0}

sin 2πχ(w)

y(w)
e−4π2x(w)Da,p·x(w) , (24)

(L, χ) is distributed according to µ, the Haar measure on M, a = (a1, . . . , ad+1), p = (p1, . . . , pd+1) and (a, p) ∈ Ω
are distributed according to P, (a, p) and (L, χ) are independent, and Da,p and σ(a, p) are defined immediately
after (6).

We note that the convergence of (24) for almost every (L, χ) follows* from Lemma 1.4, see Step 1 in the
proof of Theorem 1.3 below.

∗Lemma 1.4 shows that the convergence holds if the sum in (24) is understood as a limit as R → ∞ of the sums restricted to
the domain ∥Aw∥ ≤ R where A is the matrix given by (26). However, the proof of Lemma 1.4 shows that this sum could also be
understood as the limit of sums over domains ∥w∥ ≤ R.
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Proof of Theorem 1.3 assuming Theorem 1.3*. We divide the proof into three steps.

Step 1. We will show that ez
2/2 X̂

Λ(a,p) has the same distribution as X (see (9)). To this end, we rewrite the

sum in (24) as

1

(2π)d−1 det(
√
Da,p)

∑
w∈L\{0}

sin(2πχ(w))

y(w)/((2π)d−1 det(
√
Da,p))

e−4π2∥
√

Da,p x(w)∥2

. (25)

Let A be the linear map such that

A(y,x) =

(
y

(2π)d−1
√

det(Da,p)
, 2π

√
Da,p x

)
. (26)

Put (L̄, χ̄) = A(L, χ). Then, using (8), (25) can be rewritten as:

1

(2π)d−1 det(
√
Da,p)

∑
w̄∈L̄\{0}

sin(2πχ̄(w̄))

y(w̄)
e−||x(w̄)||2 .

Since det(A) = 1, the pair (L̄, χ̄) is distributed according to the Haar measure on M. Thus, using (6),

X̂ (a, p,L, χ) = e−z2/2Λ(a, p)
∑

w̄∈L̄\{0}

sin(2πχ̄(w̄))

y(w̄)
e−||x(w̄)||2

where (L̄, χ̄) is distributed according to the Haar measure on M. So, from (9) ez
2/2 X̂

Λ(a,p) and X have the same

distribution.

Step 2. Denote

ΩM
κ = {(a,p) ∈ Ω : ∀i κ ≤ pi, |ai| ≤M ∀i ̸= j |ai − aj | ≥ κ}, (27)

∆n = Ed(z)− P
(

Sn

σ
√
n
≤ z

)
, ∆̃n = ez

2/2 ∆n

Λ(a,p)
.

We claim that it is enough to prove Theorem 1.3 under the assumption that P has smooth density supported on
ΩM

κ for some κ andM. Indeed, let p be the original density of P. Let f : R → R be a smooth compactly supported
function. Given ε there exists a smooth density p̃ supported on some ΩM

κ such that ∥p̃− p∥L1 ≤ ε
2∥f∥∞

.

If Theorem 1.3 holds for smooth compactly supported densities then we can find n0 ∈ N such that for
n ≥ n0 ∣∣∣∣∫∫ f

(
nd/2∆̃n

)
p̃ da dp− E(f(X ))

∣∣∣∣ ≤ ε

2
.

Since ∣∣∣∣∫∫ f
(
nd/2∆̃n

)
p̃ dadp−

∫∫
f
(
nd/2∆̃n

)
p da dp

∣∣∣∣ ≤ ||p− p̃||L1 ||f ||L∞ ≤ ε

2

it follows that ∣∣∣∣∫∫ f
(
nd/2∆̃n

)
p dadp− E(f(X ))

∣∣∣∣ ≤ ε.

Since ε is arbitrary, Theorem 1.3 follows for an arbitrary L1 density.

Step 3. By Step 2, we can and will assume that (a,p) is distributed according to a smooth density supported
on ΩM

κ for some κ and M. Let f be a smooth compactly supported test function. Divide ΩM
κ into small cubes

{Qj} such that if (aj ,pj) denotes the center of Qj , then for each j, each (a,p) ∈ Qj and each ∆ ∈ R we have∣∣∣∣f ( ∆

Λ(a,p)

)
− f

(
∆

Λ(aj ,pj)

)∣∣∣∣ ≤ ε.

Such a partition exists since Λ is continuous and bounded away from 0 on ΩM
κ . Then∫∫

f
(
nd/2∆̃n

)
p da dp =

∫∫
ΩM

κ

f

(
ez

2/2n
d/2∆n

Λ(a,p)

)
p da dp
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=
∑
j

∫∫
Qj

f

(
ez

2/2 nd/2∆n

Λ(aj ,pj)

)
p da dp+ δ(n)

where |δ(n)| ≤ ε for large n.
Applying Theorem 1.3* in the case where (a,p) is distributed according to P conditioned on Qj , we get

lim
n→∞

∫∫
Qj

f

(
ez

2/2 nd/2∆n

Λ(aj ,pj)

)
p da dp = P(Qj)E

(
f

(
ez

2/2 X̂
Λ(aj ,pj)

))

=

∫∫
Qj

E

(
f

(
ez

2/2 X̂
Λ(a, p)

))
p da dp+ δj

where |δj | ≤ εP(Qj).
By Step 1, ∫∫

Qj

E

(
f

(
ez

2/2 X̂
Λ(a, p)

))
p da dp = P(Qj)E(f(X )).

Summing over j we conclude that for large n∣∣∣∣∫∫ f
(
nd/2∆̃n

)
p da dp− E(f(X ))

∣∣∣∣ ≤ 3ε.

Since ε is arbitrary, Theorem 1.3 follows. □

Remark 3. The argument of Step 3 provides the following extension of Theorem 1.3:
The triple

(
nd/2∆̃n(a,p),a,p

)
converges in law as n→ ∞ to the triple (X , a, p) where X has the

distribution described in Theorem 1.3, and (a, p) is distributed according to P and is independent from X .

Remark 4. The argument of Step 2 shows that it suffices to prove Theorem 1.3* in the case P has smooth
density supported on ΩM

κ for some κ and M.

Sections 4–8 are devoted to the proof of Theorem 1.3*. Note that similarly to (13) we have

X̂ = e−z2/2 |ad+1 − a1|
2σ(a, p)

√
π3

∑
m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2x(m)Da,p·x(m).

Remark 5. The statements of Theorems 1.3 and 1.3* look similar, however, there is an important distinction.
Namely, the proof of Theorem 1.3* is constructive. In the course of the proof, given n, a and z, we construct
a lattice L(a, n) and a character χ(a,p, n, z) such that the expression n−d/2X (a,p,L(a, n), χ(a,p, n, z)) well-
approximates the error in the Edgeworth expansion. We believe that such a construction could be made for more
general distributions where the Edgeworth expansion fails, and this will be a subject of a future investigation.
So, the difference between Theorems 1.3 and 1.3* is that in the first case, we have only an approximation in
law, while in the second case, we are able to obtain an approximation in probability.

4 Cut off.

Here we begin the proof of Theorem 1.3∗. By Remark 4, we may and will assume that P has a smooth density
supported on ΩM

κ for some κ and M. Moreover, all constants, including the implied ones in O-estimates, may
depend on d, κ,M and P.

As in the previous section, let

∆n = Ed(z)− Fn(z) where Fn(z) = Pa,p

(
Sn

σ
√
n
≤ z

)
.

Denote by vT (x) =
1
π · 1−cosTx

Tx2 and let V(s, T ) =
(
1− |s|

T

)
1|s|≤T be its Fourier transform.�

We use the approach of [13, Section XVI.3]. Let T2 = σn2d+6. Note that σ = σ(a,p) is random. Since we
assume that (a,p) ∈ ΩM

κ , σ is uniformly bounded, and bounded away from 0. So, T2 = O(n2d+6) uniformly in
(a,p), i.e., there exist constants c, C > 0 such that lim

n→∞
T2/n

2d+6 ∈ (c, C).

†We use
∫
eisxf(s) ds as definition of the Fourier transform of f ∈ L1 as in [13, Chapter XVI].
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Decompose
−∆n = [Fn − Ed] ⋆ vT2(z) + [Fn − Fn ⋆ vT2 ] (z)− [Ed − Ed ⋆ vT2 ] (z). (28)

To estimate the last term, we split

[Ed − Ed ⋆ vT2
] (z) =

∫
|x|≤1

[Ed(z)− Ed(z − x)] vT2
(x)dx+

∫
|x|≥1

[Ed(z)− Ed(z − x)] vT2
(x)dx. (29)

The first integral in (29) equals to∫
|x|≤1

E ′
d(z)x vT2(x)dx−

∫
|x|≤1

E ′′
d (y(z, x))

2
x2vT2(x)dx = −

∫
|x|≤1

E ′′
d (y(z, x))

2

(
1− cosT2x

πT2

)
dx

= O
(

1

T2

)
= O(n−(2d+6))

where the first equality uses that vT is even.
Since both Ed and cosine are bounded the second integral in (29) is bounded by

C

∫
|x|≥1

dx

T2x2
=
C

T2
= O(n−(2d+6)).

Thus, the last term in (28) is O(n−(2d+6)). Here and below, the constant C do not depend on the choice of
(a,p).

To estimate the second term in (28), we split the integral in Fn ⋆ vT2 into regions {|x| ≥ 1/
√
T2} and

{|x| ≤ 1/
√
T2}. The contribution of {|x| ≥ 1/

√
T2} is bounded by

C

∫ ∞

1/
√
T2

dx

T2x2
=

C√
T2

= O(n−(d+3)).

On the other hand ∫
|x|≤1/

√
T2

[Fn(z)− Fn(z − x)] vT2
(x)dx = 0

unless there is a point of increase of Fn inside the interval

J2 =
[
z − 1/

√
T2, z + 1/

√
T2

]
.

The probability that J2 contains a point of increase of Fn is bounded by∑
m1+···+md+1=n

P(Bm) (30)

where

Bm :=

{
m1a1 + · · ·+md+1ad+1

σ
√
n

∈
[
z − 1/

√
T2, z + 1/

√
T2

]}
.

Note that Bm =
{∣∣m · a− σz

√
n
∣∣ ≤ σ

√
n/T2

}
. Since σ is bounded on ΩM

κ there is a constant L = L(M,κ)

such that Bm ⊂ B̄m :=
{∣∣m · a− σz

√
n
∣∣ ≤ L

√
n/T2

}
. To estimate P(B̄m) we consider the following variables

on ΩM
κ :

ζ = (a1, . . . , ad+1, p1, . . . , pd−1).

Since ζ is distributed according to the bounded density it suffices to estimate the Lesbegue measure of B̄m in
these coordinates. Without loss of generality we may assume that m1 is the maximal among (m1, . . . ,md+1),
whence m1 > n/(d+ 1). Then for large n we have that∣∣∣∣ ∂∂a1 [m · a− σz

√
n
]∣∣∣∣ = ∣∣∣∣[m1 − z

√
n
∂σ

∂a1

]∣∣∣∣ ≥ n

2d
.

The last inequality follows because the second term is O(
√
n). Accordingly, for each fixed value of

(a2, . . . , ad+1, p1, . . . , pd−1) the measure of a1 such that ζ ∈ B̄m belongs to the segment of length O(
√
n/T2)
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is O(
√

1/nT2). Hence, each term in (30) is O
(

1√
nT2

)
, and so, the sum is O

(
nd

√
nT2

)
. Thus, with probability

1−O
(

1
n7/2

)
, we have that −∆n = ∆n,2 +O

(
T

−1/2
2

)
where

∆n,2 =
1

2π

∫ T2

−T2

[
ϕn
(

t
σ
√
n

)
− Êd(t)

]
it

V(t, T2)e−itzdt

=
1

2π

∫ T2
σ
√

n

− T2
σ
√

n

e−iszσ
√
n ϕn(s)− Êd(sσ

√
n)

is
V(s, n, T2)ds ,

V(s, n, T )=1−
∣∣∣ sσ√n

T

∣∣∣ and ϕ(s) is the characteristic function of X given by (15).

Let T1 = σK1n
d/2 for some constant K1 > 0, and define

∆n,1 =
1

2π

∫ T1
σ
√

n

− T1
σ
√

n

e−iszσ
√
n ϕn(s)− Êd(sσ

√
n)

is
V(s, n, T2) ds.

Note that T1 = O(nd/2) with the implied constant independent of (a,p) ∈ ΩM
κ . Let Γn = ∆n,2 −∆n,1. Put

J1 = [T1/(σ
√
n), T2/(σ

√
n)] and

Γ̃n =
1

2π

∫
|s|∈J1

e−iszσ
√
n ϕn(s)

is
V(s, n, T2) ds .

Note that, due to the exponential decay of Êd,

|Γ̃n − Γn| ≤ C

∫
|s|∈J1

|Êd(sσ
√
n)|

|s|
ds ≤ C

∫
|s|∈J1

e−ncs2σ2

|s|
ds ≤ C e−cT 2

1 log |T2/T1|.

Hence, there exists ε > 0 such that Γn = Γ̃n +O
(
e−εT 2

1

)
.

Further, note that T1/(σ
√
n) and T2/(σ

√
n) do not depend on (a,p). Thus, Γ̃n is an integral over the union

of the two intervals J1 and −J1 whose lengths are independent of (a,p).

The main result of Section 4 is the following.

Proposition 4.1. ∥∥Γ̃n

∥∥
L2 ≤ C√

T1nd/2
. (31)

The proof of Proposition 4.1 relies on the following estimates.

Lemma 4.2. For each integer l there is a constant C = C(l) such that

E
(∣∣ϕn−l(s)

∣∣) ≤ C

nd/2

for all |s| ≥ 1.

Lemma 4.3. If I is a finite interval with length of order 1 and l be an integer then∫
I

|ϕn−l(s)| ds = O
(

1√
n

)
(where the implicit constant depends on l and on the length of I but not on its location).

Lemmas 4.2 and 4.3 will be proven in Section 7 and Section 5, respectively.
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Proof of Proposition 4.1. Note that V is an even function in s and ϕ(s) = ϕ(−s). Therefore, the complex
conjugate of Γ̃n is

Γ̃n =
1

2π

∫
|s|∈J1

eiszσ
√
n ϕ

n
(s)

−is
V(s, n, T2) ds

=
1

2π

∫
|−s|∈J1

ei(−s)zσ
√
n ϕ

n
(−s)
is

V(−s, n, T2) ds

=
1

2π

∫
|s|∈J1

e−iszσ
√
n ϕn(s)

is
V(s, n, T2) ds = Γ̃n.

To estimate the L2-norm of Γ̃n, we write

E(Γ̃2
n) =

1

4π2
E

(∫
|s|∈J1

e−iszσ
√
n ϕn(s)

is
V(s, n, T2) ds

)2

= − 1

4π2

∫∫
|s1|,|s2|∈J1

E
(
e−i(s1+s2)zσ

√
nϕn(s1)ϕ

n(s2)
) Vn(s1) ds1

s1

Vn(s2) ds2
s2

where

Vn(s) = V(s, n, T2) = 1−
∣∣∣∣sσ√nT2

∣∣∣∣ = (1− |s|
n2d+

11
2

)
(32)

is independent of σ , and 0 ≤ Vn ≤ 1 on J1.
We split this integral into two parts.

(1) In the region where |s1 + s2| ≤ 1, we use Lemma 4.3 to estimate the integral by

E

(∫
|s1|∈J1

|ϕn(s1)|
∫ 1−s1

−1−s1

|ϕn(s2)|
ds2
|s2|

ds1
|s1|

)
= O

(∫
|s1|∈J1

1√
ns21

E (|ϕn(s1)|) ds1
)
. (33)

Plugging the estimate of Lemma 4.2 into (33) and integrating we see that the contribution of the first region

to E(Γ̃2
n) is O

(
1

T1nd/2

)
.

(2) Consider now the region where |s1 + s2| ≥ 1.
Recall that on Ω,

p1 + · · ·+ pd+1 = 1, and p1a1 + · · ·+ pd+1ad+1 = 0. (34)

We use the 2d-dimensional coordinates (a1,ν) where ν := (p1, p3, . . . , pd, b2, . . . , bd+1).
Then there exists a compactly supported density ρ = ρ(a1,ν) such that the contribution of the second

region is ∫∫
|s1|,|s2|∈J1

|s1+s2|≥1

(∫∫
g(s1, s2, a1,ν) ρ da1 dν

)
Vn(s1) ds1

s1

Vn(s2) ds2
s2

where

g(s1, s2, a1,ν) = e−i(s1+s2)zσ
√
nein(s1+s2)a1ψn(s1)ψ

n(s2).

To estimate this integral, we integrate by parts with respect to a1. Note that for each k we have

eisna1 =

[
1

isn

d

da1

]k
eisna1 .

Fix a large k (for example, we can take k = 8d+ 25). The integration by parts amounts to applying
(

d
da1

)k
to

e−i(s1+s2)zσ
√
nρ[ψ(s1)ψ(s2)]

n which leads to terms formed by products of{(
d

da1

)k1 [
e−i(s1+s2)zσ

√
n
]}

,

{(
d

da1

)k2

[ρ]

}
, and

{(
d

da1

)k3

[ψ(s1)ψ(s2)]
n

}
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where k1 + k2 + k3 = k. Note that all of the above expressions depend implicitly on a1 because p2 and pd+1

depend on a1 due to the second equation in (34). Rewriting that equation in the form

a1 +

d+1∑
j=2

pjbj = 0 ,

we obtain
∂pj
∂a1

= −1/bj , j = 2 or d+ 1. We also observe that when we integrate by parts, the boundary terms

vanish because ρ is smooth and has compact support.
Thus, the contribution of the above term to the integral is bounded by the expectation of

C

∫∫
|s1|,|s2|∈J1

|s1+s2|≥1

n(k1/2)+k3

|s1 + s2|k−k1nk

∣∣ϕn−k3(s1)
∣∣ ∣∣ϕn−k3(s2)

∣∣ds1
|s1|

ds2
|s2|

.

To estimate the above integral we consider two cases, k1 ≥ k − 3 and k1 < k − 3.
In the first case, we use trivial bounds |s1| ≥ 1, |s2| ≥ 1, |s1 + s2|k−k1 ≥ 1 and

∣∣ϕn−k3(s2)
∣∣ ≤ 1, and Lemma

4.2 to estimate� E(
∣∣ϕn−k3(s1)

∣∣) to obtain the upper bound:

C

nd/2+k−k1/2−k3

∫∫
|s1|,|s2|∈J1

ds1 ds2 ≤ C|J1|2

n(d+k−3)/2
≤ CT 2

2

n(d+k−1)/2
=

CT 2
2

n9d/2+12
≤ C√

T1nd/2
.

Since T1 = O(nd/2), T2 = O(n2d+6) and k = 8d+ 25, we have the last inequality. In the second case, we observe

that |s1 + s2|k−k1 ≥ |s1 + s2|3. We divide the integration region into two parts.
(a) |s1 + s2| ≥ 0.1|s2|. In this case the integrand is bounded by

C

|s1||s2|4
∣∣ϕn−k3(s1)

∣∣ .
Using Lemma 4.2 to estimate the expectation of the last term and then performing the integration, we obtain
the bound

n3/2 lnn

nd/2T 3
1

=
1

nd/2T1
× n3/2 lnn

T 2
1

.

The second factor is smaller than 1 since T 2
1 = K2

1σ
2nd and d ≥ 2.

(b) |s1 + s2| ≤ 0.1|s2|. In this case si’s are of the same order:

1

2
≤
∣∣∣∣s1s2
∣∣∣∣ ≤ 2.

Accordingly, the integrand is bounded by

1

s21
|s2 + s1|−3

∣∣ϕn−k3(s1)
∣∣ ∣∣ϕn−k3(s2)

∣∣ .
To perform the integration over s2, we divide the domain of integration into segments Il(s1) of length of order
1, so that there exists c, C > 0 such that on Il,

c|l| ≤ |s2 + s1| ≤ C|l|.

Using Lemma 4.3 on each segment, we obtain∫
s2∈J2,|s1+s2|<0.1s2

|ϕn−k3(s2)|
|s1 + s2|3

ds2 ≤
∑
l

C

l3
√
n
≤ C√

n
(35)

where the constant C does not depend on s1. We now perform the integration over s1. Using Lemma 4.2 we
bound the expectation of the integral by

C

nd/2

∫
|s1|≥T1/(σ

√
n)

ds1
s21

=
C
√
n

nd/2T1
. (36)

Multiplying the bounds of (35) and (36), we obtain that the integral over region (b) is also within the bounds
of Proposition 4.1. □

‡Here we use the fact that Lemma 4.2 applies to any absolutely continuous distribution of (a,p). In particular, it applies to the
integration with respect to the (normalized) Lebesgue measure.
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Proposition 4.1 shows that (by taking K1 sufficiently large) the contribution from Γ̃n to the L2−limit of
nd/2∆n can be made arbitrarily small. On |s| ≤ T1/σ

√
n, due to (32), we have

V(s, n, T2) =
(
1− |s|

n2d+
11
2

)
.

Hence, ∆n,1 = ∆̂n + o(n−3d/2) where

∆̂n :=
1

2π

∫
|s|≤T1/σ

√
n

ϕn(s)− Êd(sσ
√
n)

is
e−iszσ

√
nds. (37)

In summary, the analysis of Section 4 shows that nd/2∥∆̂n −∆n∥L2 → 0 as n→ ∞. Hence, we only need to

analyze nd/2∆̂n for large n.

5 Contribution of resonant intervals.

5.1 Definition of resonant intervals.

Denote

sk =
2πk

|bd+1|
and let Ik be the segment of length 2π

|bd+1| centered at sk. Let K2 be a constant such that K2 ≫ K1. Due to the

results of the previous section, it is sufficient to study

∆̂n =
∑

|k|≤K2n(d−1)/2

Ĩk

where

Ĩk =
1

2πi

∫
Ik

e−iszσ
√
n ϕn(s)− Êd(sσ

√
n)

s
1|s|≤T1/σ

√
nds.

Ĩ0 = o(n−d/2) due to [13, Section XVI.2]. Next, Êd(sσ
√
n) decays exponentially with respect to n outside of I0.

So, its contribution to Ĩk is negligible for k ̸= 0. Accordingly,

∆̂n =
∑

0<|k|≤K2n(d−1)/2

Ik + o

(
1

nd/2

)
where

Ik =
1

2πi

∫
Ik

e−iszσ
√
n ϕn(s)

s
1|s|≤T1/σ

√
n ds.

Write
s̄k = argmax

s∈Ik
|ϕ(s)|, ϕ(s̄k) = rke

iϕk .

Call the interval Ik resonant if rnk ≥ n−100d and call it non-resonant otherwise. By definition, if the interval
Ik is non-resonant, then Ik = O(n−100d). Since there are O(n(d−1)/2) number of intervals (both resonant and
non-resonant), the total contribution of the non-resonant intervals is at most O(n−(199d+1)/2) which is negligible.
So, from now on, we focus only on the contribution of the resonant intervals.

5.2 Asymptotics of the resonant terms.

The following lemma is similar to the results of [8, Section 5.2].

Lemma 5.1. Suppose that
rnk ≥ n−100d (38)

and

± T1
σ
√
n
̸∈ Ik. (39)

Then

Ik =
1

i
√
2πnσ

rnk
s̄k
e−z2/2 einϕk−is̄kzσ

√
n

(
1 +O

(
ln3 n√
n

))
.
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Proof . Let eis̄kaj = ei(ϕk+βj(k)) with |βj(k)| ≤ π. Then

rk =

d+1∑
j=1

pj cosβj(k), (40)

and
d+1∑
j=1

pj sinβj(k) = 0. (41)

From (38), we have

rk ≥ 1− C lnn

n
. (42)

(42) along with (40) give
d+1∑
j=1

pjβj(k)
2 ≤ C lnn

n
, (43)

and hence, |βj(k)| ≤ C
√

lnn
n . Combining this with (41) we obtain

d+1∑
j=1

pjβj(k) = O

(
ln3/2 n

n3/2

)
. (44)

Next, by the definition of s̄k,
∂
∂δ

∣∣∣
δ=0

ϕ(s̄k + δ) is perpendicular to ϕ(s̄k) and whence

∑
j

pjaj sinβj(k) = 0. (45)

Let s ∈ Ik, then s = s̄k + δ for some δ. Using Taylor expansion,

ei(s̄k+δ)aj

= eiϕkeiβj(k)

(
1 + iajδ −

a2jδ
2

2

)
+O

(
δ3
)

= eiϕk

(
cosβj(k) + i sinβj(k) + iδaj cosβj(k)− δaj sinβj(k)

)
− eiϕk (cosβj(k) + i sinβj(k))

a2jδ
2

2
+O

(
δ3
)
.

Thus,

ϕ(s̄k + δ)

=

d+1∑
j=1

pje
i(s̄k+δ)aj = eiϕkrk + eiϕk

d+1∑
j=1

pj cosβj(k)

(
iajδ −

a2jδ
2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)

= rke
iϕk

(
1− σ2δ2

2

)
+ iδeiϕk

d+1∑
j=1

pjaj(cosβj(k)− 1)− δ2

2
eiϕk

d+1∑
j=1

pja
2
j (cosβj(k)− rk) +O

(
ln3/2 n

n3/2
+ δ3

)
(46)

where we have used (41), (44), (45) as well as

p1a1 + · · ·+ pd+1ad+1 = 0 and p1a
2
1 + · · ·+ pd+1a

2
d+1 = σ2.

The main term in (46) is the first one since

| cosβj(k)− rk| ≤ | cosβj(k)− 1|+ |1− rk| = O
(
βj(k)

2 +
lnn

n

)
.
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Hence, using (43), we obtain

ϕ(s̄k + δ) = rke
iϕk

(
1− σ2δ2

2

)
+O

(
(δ + δ2)

lnn

n

)
+O

(
ln3/2 n

n3/2
+ δ3

)

= rke
iϕk

(
1− σ2δ2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)
.

In summary,

ϕ(s̄k + δ) = rke
iϕk

(
1− σ2δ2

2

)
+O

(
ln3/2 n

n3/2
+ δ3

)
. (47)

Next, split Ik = I ′k ∪ I ′′k where I ′k is the part of Ik where

{
|δ| ≤ C lnn√

n

}
and I ′′k = Ik \ I ′k. Note that, if (42)

holds, then Lemma 2.1 shows that s̄k is close to sk. So, the set

{
|δ| ≤ C lnn√

n

}
is completely contained in Ik.

Lemma 2.1 also shows that for s ∈ I ′′k , |ϕ(s)|n ≤ n−c lnn. So, the contribution of I ′′k to Ik is negligible.

Next, on I ′k the error term in (47) is O
(

ln3 n
n3/2

)
. Hence, the contribution to Ik from I ′k is

rnk
2πis̄k

ei(nϕk−
√
nσzs̄k)

∫
|δ|<C lnn/

√
n

(
1− σ2δ2

2
+O

(
ln3 n

n3/2

))n

(1 +O(δ)) e−iσzδ
√
ndδ

=
rnk

2πis̄k
ei(nϕk−

√
nσzs̄k)

∫
|δ|<C lnn/

√
n

e−σ2δ2n/2−iσδ
√
nzeO(ln

3 n/
√
n) (1 +O(nδ4 + δ)

)
dδ

=
rnk

2πis̄k
ei(nϕk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))∫
|δ|<C lnn/

√
n

e−σ2δ2n/2−iσδ
√
nz dδ.

Making the change of variables σδ
√
n = t, we can rewrite the last expression as

rnk e
−z2/2

2πis̄kσ
√
n
ei(nϕk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))∫
|δ|<Cσ lnn

e−(t+iz)2/2 dt

=
rnk e

−z2/2

2πis̄kσ
√
n
ei(nϕk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))∫
R
e−(t+iz)2/2 dt

=
rnk e

−z2/2

√
2πis̄kσ

√
n
ei(nϕk−

√
nσzs̄k)

(
1 +O

(
ln3 n√
n

))
.

This completes the proof of the lemma. □

5.3 Proof of Lemma 4.3

Proof . Note that if |ϕn(s)| ≤ n−100d then |ϕn−l(s)| ≤ n−50d and if |ϕn(s)| ≥ n−100d then |ϕ(s)| ≥ 1− C lnn
n ,

and hence, |ϕ−l(s)| ≤ 2. Therefore

|ϕn−l(s)| ≤ 2|ϕn(s)|+ 1

n50d
. (48)

Thus it suffices to prove the result for l = 0. We can cover I by a finite number of intervals Ik. For the intervals
where rnk < n−100d, we have ∑

rnk<n−100d

∫
Ik

|ϕn(s)| ds ≤ C
|I|
n100d

.

For resonant intervals where rnk ≥ n−100d and k ̸= 0, the proof of Lemma 5.1 shows that

∑
rnk≥n−100d

∫
Ik

|ϕn(s)| ds ≤ C

∫
|δ|<C lnn/

√
n

(1− cδ2)n dδ +O
(
n−c lnn

)
= O

(
1√
n

)
.

Finally, the case k = 0 is analyzed in [13, Section XVI.2]. □
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6 Simplifying the error term.

As noted above, in the resonant case, Lemma 2.1 gives d(s̄k) ≤ C
√

lnn
n . In particular, dist(bd+1s̄k, bd+1sk) ≤

C
√

lnn
n because bd+1sk ∈ 2πZ. So, ξk := s̄k − sk satisfies

|ξk| ≤ C

√
lnn

n
.

Since d(sk) = d(s̄k) +O(sk − s̄k), we also have d(sk) ≤ C
√

lnn
n .

Noting that bjsk =
2πkbj
|bd+1| we define ηj,k =

2πkbj
|bd+1| + 2πlj,k, for j = 2, . . . , d+ 1 , where lj,k is the unique integer

such that

−π < 2πkbj
|bd+1|

+ 2πlj,k ≤ π. (49)

Then, ηd+1,k = 0 and the foregoing discussion gives

|ηj,k| ≤ C

√
lnn

n
. (50)

Define the random vector
Xk =

√
nηk

where ηk is the vector with components (η2,k, . . . , ηd,k), and let

Yk =
k

n(d−1)/2
.

Also, for the remainder of the paper, we fix a constant α:

α =
1

2(d− 1)
. (51)

The main result of Section 6 is the following.

Proposition 6.1. Let ∆̃n(δ,K) :=

|bd+1|e−z2/2

nd/2σ
√
2π3

∑
k∈S(n,δ,K)

sin
(

2πnd/2

|bd+1| (
√
na1 − zσ)Yk + (

√
nq+ zσω) ·Xk

)
Yk

e−XkDa,p·Xk

where
S(n, δ,K) = { k > 0 | δ < Yk < K, |Yk|α∥Xk∥ < 2K+1 } (52)

and the vectors ω = (ω2, . . . ,ωd) and q = (q2, . . . ,qd) satisfy

ωm =
2
∑d+1

l=1 plpm(bl − bm)∑d+1
j=1

∑d+1
l=1 plpj(bl − bj)2

, qm = pm , m = 2, . . . , d. (53)

Then, given ε we can find δ,K such that

P
(
|∆̂n − ∆̃n(δ,K)| > ε/nd/2

)
< ε.

Before proving this, we obtain an approximation for rk and use it to obtain an approximation for Ik.

Sublemma 1. There exists a (d− 1)× (d− 1) matrix Da,p such that

rk = 1− ηkDa,p · ηk +O(∥ηk∥3) . (54)
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Proof . Writing r2k = ψ(s̄k)ψ(s̄k), s̄k = sk + ξk and substituting ηj,k + bjξk for bj s̄k, we obtain,

r2k =

d+1∑
j=1

p2j + 2
∑

l>j,j ̸=1

plpj cos[(bl − bj)ξk + ηl,k − ηj,k] + 2pd+1p1 cos bd+1ξk + 2

d∑
j=2

pjp1 cos(bjξk + ηj,k).

Therefore,

r2k = 1−
∑

l>j,j ̸=1

plpj [(bl − bj)ξk + ηl,k − ηj,k]
2 − pd+1p1b

2
d+1ξ

2
k −

d∑
j=2

pjp1(bjξk + ηj,k)
2 +O

(
ξ3k +

d∑
l=2

η3l,k

)
.

Note that the implied constants here and below can be chosen to be independent of (a,p) ∈ ΩM
κ .

Taking η1,k = b1 = 0, we can write the above as

r2k = −ξ2k
∑
l>j

plpj(bl − bj)
2 − 2ξk

∑̂
plpj(bl − bj)(ηl,k − ηj,k) + 1−

∑̂
plpj(ηl,k − ηj,k)

2 +O

(
ξ3k +

d∑
l=1

η3l,k

)

where the sum in
∑̂

is taken over the pairs (l, j) such that l > j and (l, j) ̸= (d+ 1, 1).
Since r2k is approximated by a quadratic polynomial in ξk (the unknown) we can approximate ξk by

determining argmax r2k(ξ), obtaining

ξk = −
∑̂

plpj(bl − bj)(ηl,k − ηj,k)∑
l>j plpj(bl − bj)2

+O
(
∥ηk∥2

)
= −

∑d+1
j=1

∑d+1
l=1 plpj(bl − bj)ηj,k

1
2

∑d+1
j=1

∑d+1
l=1 plpj(bl − bj)2

+O
(
∥ηk∥2

)
. (55)

We recall that b1 = 0 and η1,k = ηd+1,k = 0. Substituting back we find rk in terms of ηj,k only. Namely,

r2k = 1−
∑̂

plpj(ηl,k − ηj,k)
2 +

[∑̂
plpj(bl − bj)(ηl,k − ηj,k)

]2∑
l>j plpj(bl − bj)2

+O

(
d∑

l=1

η3l,k

)
.

Put R =
[∑

l>j plpj(bl − bj)
2
]−1

. Then,

r2k = 1 +
∑̂

plpj
[
plpj(bl − bj)

2R− 1
]
(ηl,k − ηj,k)

2

+
∑

l>j,m>m̄
(l,j)̸=(m,m̄)

(l,j),(m,m̄)̸=(d+1,1)

plpjpmpm̄(bl − bj)(bm − bm̄)R(ηl,k − ηj,k)(ηm,k − ηm̄,k) +O

(
d∑

l=1

η3l,k

)

:= 1− 2

d∑
l,j=2

Dl,j(a,p)ηl,kηj,k +O

(
d∑

l=1

η3l,k

)
. (56)

Thus,

rk = 1−
d∑

l,j=2

Dl,j(a,p)ηl,kηj,k +O

(
d∑

l=1

η3l,k

)
= 1− ηkDa,p · ηk +O(∥ηk∥3)

where Da,p is the (d− 1)× (d− 1) matrix with

[Da,p]i,j = Di,j(a,p) , (57)

proving (54). □
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Lemma 6.2. The matrix Da,p defined by (57) satisfies

Ik =
e−z2/2

i
√
2πnσ

(1− ηkDa,p · ηk +O(∥ηk∥3))n

s̄k
einϕk−iskzσ

√
n (1 + o(1))

where ηk = (η2,k, . . . , ηd,k).

Proof . Follows directly from Lemma 5.1 and (54). □

We next consider the Ik at the two ends. Let B(a,p) be the contribution of these boundary terms, i.e. from

k such that ± T1
σ
√
n
∈ Ik. By Lemma 4.3,

B(a,p) ≤ C

T1
.

Recalling that T1 = K1σn
d/2, we see that we can make nd/2B(a,p) as small as we wish by taking K1 large. So,

from now on, we ignore these terms.

Lemma 6.3. Let
Ik,l = Ik1|k|αn1/4∥ηk∥∈[2l,2l+1].

For all sufficiently large K > 0, there is a constant c̃ such that

E

 ∑
0<|k|<Kn(d−1)/2

∑̂
l

|Ik,l|

 = O
(

1

nd/2
2K(d−1) exp

(
−c̃22K

))

where the sum in
∑̂

is over l satisfying l > K and 2l < Kkα
√
lnn

n1/4 .

Remark 6. We could restrict to l satisfying l > K and 2l < Kkα
√
lnn

n1/4 since, by the discussion at the beginning
of Section 6, it is enough to consider the intervals satisfying (50) and we can take K > C where C is the constant
from (50).

The proof of the above lemma will be given in Section 7. Theorem 6.3 shows that we should focus on the
contribution of Ik,l with

0 < |k| < K2n
(d−1)/2 and l ≤ K2.

Next, we prove a result that allows us to simplify ∆̂n even further. Recall that we are dealing with resonant
k, that is, we assume that rnk ≥ n−100d.

Lemma 6.4. (a) sk = sk − ω · ηk +O(∥ηk∥2) where ω = ω(a,p) is the 1× (d− 1) vector defined in (53).

(b) If ∥ηk∥ = O
(

lnn√
n

)
then nϕk = nska1 + np2η2,k + · · ·+ npdηd,k + o(1).

Proof . Since sk − sk = ξk part (a) follows by (55).
Recall that ϕ(s̄k) = rke

iϕk , and by (47)

ϕk = arg ϕ(sk) +O

(
|s̄k − sk|3 +

ln3/2 n

n3/2

)
.

Note that,
ϕ(sk) = eiska1(p1 + p2e

iη2,k + · · ·+ pde
iηd,k + pd+1).

Thus,

arg(ϕ(sk)) = ska1 + tan−1

(
p2 sin η2,k + · · ·+ pd sin ηd,k

p1 + p2 cos η2,k + · · ·+ pd cos ηd,k + pd+1

)
= ska1 +

d∑
l=2

plηl,k +O(∥ηk∥3)

since the denominator in the first line is 1 +O(∥ηk∥2). Part (b) now follows easily. □
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Proof of Proposition 6.1. First, we show that it is enough to consider Ik,l when

δn(d−1)/2 ≤ |k| < K2n
(d−1)/2 and l ≤ K2

for appropriately chosen δ and K2.
Recall from Section 5.1 that

∆̂n =
∑

0<|k|≤K2n(d−1)/2

Ik + o

(
1

nd/2

)
for K2 ≫ K1. By Theorem 6.3, the contribution of Ik,l with

0 < |k| < K2n
(d−1)/2 and l > K2

can be made arbitrarily small by choosing K2 large.
Next, we claim that the distribution of ηk has bounded density. Since (a,p) has a bounded density on§

ΩM
κ , the vector

b =

(
b2

|bd+1|
, . . . ,

bd
|bd+1|

)
has a bounded density on VM

κ :=
{
(x1, . . . , xd−1)|∀j κ(2M)−1 ≤ xj ≤ 2Mκ−1

}
. Let L denote the supremum

of the density of b. Since ηk is obtained by rescaling b by 2πk and taking mod 2π, its density is bounded by

L

2πk
×
⌈
4πMk

κ

⌉
≤ 4ML

κ
(58)

where the second factor on the LHS accounts for the multiplicity of the fractional part on VM
κ . Since the RHS

of (58) is independent of k, the claim follows.
Next, define

A1 = {(a,p)| Ik,l = 0 ∀k, l s.t. 0 < |k| < δn(d−1)/2 and l ≤ K2}.
Then

Ac
1 = {(a,p)| ∃k, l s.t. 0 < |k| < δn(d−1)/2, l ≤ K2, 1|k|αn1/4∥ηk∥∈[2l,2l+1) = 1}

= {(a,p)| ∃k s.t. 0 < |k| < δn(d−1)/2, |k|αn1/4∥ηk∥ < 2K2+1}.

Thus,

P(Ac
1) ≤

∑
0<|k|<δn(d−1)/2

P
(
|k|αn1/4∥ηk∥ < 2K2+1

)
(59)

≤
∑

0<|k|<δn(d−1)/2

C 2(K2+1)(d−1)

|k|(d−1)αn(d−1)/4
= O

(√
δ 2(K2+1)(d−1)

)
where α = [2(d− 1)]−1 (see (51)) and the probability estimate follows from ηk having a bounded density.

Hence, for K2 and δ such that
√
δ2(K2+1)(d−1) is small, we can approximate ∆̂n by the sum of Ik’s with

δ ≤ |k|n−(d−1)/2 < K2 and |k|αn1/4∥ηk∥ < 2K2+1.
Combining terms corresponding to k and −k, we obtain the following approximation to the distribution of

∆n for large n

|bd+1|e−z2/2

nd/2σ
√
2π3

∑
k∈S(n,δ,K)

sin(nϕk − skzσ
√
n)

Yk
e−XkDa,p·Xk

for appropriate choices of K and δ, and where S(n, δ,K) is defined in (52). The restriction Y > δ in S(n, δ,K)
comes from (59), the upper bound Y < K comes from (37), and the restriction |Yk|α∥Xk∥ < 2K+1 comes from
Lemma 6.3. We have also used Theorem 6.4(a) and the fact that |sk| > cδn(d−1)/2 in the region we consider to
replace s̄k by sk.

Recall (see (53)) that q := (p2, . . . , pd). Lemma 6.4(b) shows that

nϕk − skzσ
√
n = sk(na1 − zσ

√
n) + nq · ηk + zσ

√
nω · ηk + o(1)

=
2πnd/2

|bd+1|
(
√
na1 − zσ)Yk + (

√
nq+ zσω) ·Xk + o(1).

Therefore, for large n and K and δ such that
√
δ2(K+1)(d−1) is very small, the distribution of ∆̂n is well

approximated by ∆̃n(δ,K) completing the proof of the proposition. □

§Recall that ΩM
κ is defined by (27).
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7 Expectation of the characteristic function.

Proof of Lemma 4.2. As in the proof of Lemma 4.3, the inequality (48) shows that is suffices to consider the case
l = 0. Recall that d(s) = max2≤j≤d+1 d(bjs, 0) where the distance is computed on the torus R/(2πZ). Lemma
2.1 shows that there is a positive constant c such that

|ϕn(s)| ≤ e−cnd(s)2 . (60)

To prove the lemma we decompose E
(
e−cnd(s)2

)
into the pieces where d(s)

√
n is of order 2l for some

l ≤ (log2 n)/2.
Since P has a bounded density, the distribution of the (b2s, . . . , bd+1s) has bounded density on Td where

the bound is uniform for |s| ≥ 1. Hence

P(c1 ≤ d(s) ≤ c2) = O
(
cd2 − cd1

)
for all 0 ≤ c1 < c2 < 1 uniformly in |s| ≥ 1. Therefore,

E (|ϕn(s)|) ≤ CP

(
d(s) <

1√
n

)
+ C

(log2 n)/2∑
l=0

P
(
d(s)

√
n ∈ [2l, 2l+1)

)
e−c4l

≤ C

nd/2
+ C

(log2 n)/2∑
l=0

2dl

nd/2
e−c4l ≤ C

nd/2

where the constant C can be chosen uniformly for all |s| ≥ 1. This completes the proof. □

Proof of Lemma 6.3. Since, by (54), rk = 1− ηkDa,p · ηk +O(∥ηk∥3) where the implied constant is indepen-

dent of (a,p) ∈ ΩM
κ and |k|αn1/4∥ηk∥ ∈ [2l, 2l+1), we have

rk ≤ 1− c
4l

|k|2α
√
n
,

where c is independent of (a,p). Accordingly,

rnk ≤ Ce
− c22l

√
n

|k|2α .

Also, similarly to the proof of Lemma 4.2, we get

P(|k|αn1/4∥η∥ ∈ [2l, 2l+1)) ≤ C2l(d−1)√
|k|n(d−1)/4

.

Hence,

E(|Ik,l|) ≤
Ce

− c22l
√

n

|k|2α

√
n|k|

2l(d−1)√
|k|n(d−1)/4

=
C2l(d−1)e

− c22l
√

n

|k|2α

|k|3/2n(d+1)/4
.

Thus, ∑̂
l

E(|Ik,l|) ≤
C2K(d−1)e

− c22K
√

n

|k|2α

|k|3/2n(d+1)/4
.

Therefore, we need to estimate ∑
0<|k|<Kn(d−1)/2

C2K(d−1)e
− c22K

√
n

|k|2α

|k|3/2n(d+1)/4

=
C

nd/2

∑
0<|k|<Kn(d−1)/2

1

|k|

√
22K(d−1)n(d−1)/2

|k|
e
− c22K

√
n

|k|2α . (61)

Split the sum over

|k| ∈
[
Kn(d−1)/2

2q+1
,
Kn(d−1)/2

2q

)
(62)
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for q ∈ N. Then, for a fixed q we have

|k|2α = O

(
K

1
d−1

√
n

2
q

d−1

)
.

So, each term in the sum (61) is of order

2K(d−1)+(3q/2)

K3/2n(d−1)/2
exp

(
−c2

2K+ q
d−1

K
1

d−1

)
.

The number of terms in (62) is O
(
Kn(d−1)/2

2q

)
. Hence, the sum over k in (62) is

O

(
2K(d−1)+q/2

√
K

exp

(
−c2

2K+ q
d−1

K
1

d−1

))
=

O
(
2K(d−1)

√
K

exp

(
− c22K

K
1

d−1

))
×O

(
2q/2 exp

[
−
(
c2q/2√
K

)2/(d−1)
])

.

Since¶ ∑
q

2q/2 exp

[
−
(
c2q/2√
K

)2/(d−1)
]
≤ C

√
K (63)

we obtain the lemma upon taking c̃ < c/K
1

d−1 . □

8 Relation to homogeneous flows.

Given u ∈ Rd−1, v ∈ R consider the following function on the space M of unimodular lattices in Rd:

Z(L;u, v) =
∑

(y,x)∈L\{0}

sin 2π(u · x+ vy)

y
e−4π2xDa,p·x 1{δ<y<K, 2π yα∥x∥<2K+1}. (64)

Define γ =
(

b2
|bd+1| , . . . ,

bd
|bd+1|

)
. Introduce the following matrices

Hγ =

(
1 γ
0T Id−1

)
, Gt =

(
e−(d−1)t 0

0T etId−1

)
.

Then, we get

nd/2∆̃n(δ,K) =
|bd+1|e−z2/2

σ
√
2π3

Z(L(n,a);u, v), (65)

where

u =
√
nq+ zσω, v =

nd/2

|bd+1|
(
√
na1 − zσ), (66)

ω and q are given by (53), and L(n,a) is the unimodular lattice Zd Hγ G ln(n)
2

.

To see this, note that, for an arbitrary vector (k ,m2,k , . . . ,md,k) ∈ Zd,

(k ,m2,k , . . . ,md,k) Hγ G ln(n)
2

= (k ,m2,k , . . . ,md,k)

(
n−(d−1)/2

√
nγ

0T √
n Id−1

)
=

(
k

n(d−1)/2
,
√
nk γ +

√
n (m2,k , . . . ,md,k)

)
=
(
Yk , (2π)

−1Xk +
√
n (m2,k − ℓ2,k , . . . ,md,k − ℓd,k)

)
Proposition 8.1.
¶To see this, one can, for example compare the sum in (63) with the integral

∫ ∞

0

exp
(
−c(x/

√
K)2/(d−1)

)
dx = O

(√
K
)
.
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where Yk and Xk are as in Proposition 6.1 and lj,k are given by (49). Note that the second term has norm at
least

√
n unless mj,k = ℓj,k for j = 2, . . . , d. It follows that the only term which contributes to the RHS of (64)

is the term with mj,k = ℓj,k justifying (64) and (65).
Let wj(n,a) = (yj(n,a),xj(n,a)), j = 1, . . . , d with yj ∈ R and xj ∈ Rd−1 be the shortest spanning set of

L(n,a). Put
θj(n, (a,p)) = u · xj(n,a) + vyj(n,a), j = 1, . . . , d.

If (a,p) is distributed according to P then the distribution of the random vector

((a,p),L(n,a),θ(n, (a,p)))

converges to P× µ as n→ ∞, where µ is the Haar measure on

[SLd(R)/SLd(Z)]× Td.

If we restrict our attention only to ((a,p),L(n,a)) then the result is standard (see [20, Theorem 5.8], as
well as [11, 16, 21]). We refer the readers to [7, Theorem 3], [24] and the references therein for extensions to
[SLd(R)/SLd(Z)]× (Td)p under various conditions. Our proof of Proposition 8.1 follows the approach of the
proof of Proposition 5.1 in [9].

Proof . We need to show that for each bounded smooth test function f ,∫
Ω

f((a,p),L(n,a),θ(n, (a,p))) dP →
∫
Ω×M×Td

f((a,p),L,θ) dP dL dθ (67)

asn→ ∞. Write the Fourier series expansion of f with respect to θ

f((a,p),L(n,a),θ) =
∑

k=(k1,...,kd)∈Zd

fk((a,p),L(n,a)) e2πik·θ. (68)

Then, it is enough to prove (67) for individual terms in (68).
If k = 0 then by [20, Theorem 5.8] we can conclude that∫

Ω

f0((a,p),L(n,a)) dP →
∫
Ω×M×Td

f0((a,p),L) dP dL dθ

as n→ ∞.
Next, assume that k ̸= 0. Since Ω is 2d dimensional, we can use

(a1,ν) := (a1, (p1, p3, . . . , pd, b2, . . . , bd+1))

as local coordinates. In these coordinates, L is independent of a1. Hence, yj ’s and xj ’s are independent of a1.
Note that there exists a compactly supported density ρ = ρ(a1,ν) such that

Jn,k =

∫
fk e

2πik·θ dP =

∫ ∫
e2πi(v

∑
yjkj+zσ

∑
kjω·xj+

√
n
∑

kjq·xj)(fk ρ) da1 dν (69)

where we recall that v is defined in (66). Note that∫
Td×Ω×M

fk e
2πik·θ dθ1 . . . dθd dP dL = 0

because ∫
Td

e2πik·θdθ1 . . . dθd = 0.

Therefore, it is enough to prove that Jn,k converges to 0 as n→ ∞.
To this end, we use integration by parts as follows. Define

g(a1,ν) = e
2πi

n(d+1)/2 ∑
yjkj

|bd+1| a1
= ein

(d+1)/2ϕ(ν)a1
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where ϕ(ν) =
2π

∑
yjkj

|bd+1| , and

h(a1,ν) = (fk ρ)(a1,ν) e
−2πi

((
nd/2 ∑

yjkj
|bd+1| −4π

∑
kjω·xj

)
zσ(a1,ν)−

√
n
∑

kjq·xj

)
.

Then, the inner integral in (69) is
∫
g(a1,ν)h(a1,ν) da1 .

Let ε > 0. On the set Qk = {ϕ(ν) > ε}, we can write

g(a1,ν) da1 =
1

iϕ(ν)n(d+1)/2
deia1n

(d+1)/2ϕ(ν).

Integrating by parts on Qk (note that h has compact support) and using trivial bounds on Qc
k, we can conclude

that

|Jn,k| ≤ Cmax
ν

∣∣∣∣∣
∫

eia1n
(d+1)/2ϕ(ν)

iϕ(ν)n(d+1)/2

∂h

∂a1
(a1,ν) da1

∣∣∣∣∣+ CP({ϕ(ν) ≤ ε})

≤ C

εn(d+1)/2

∫
max
ν

∣∣∣∣ ∂h∂a1 (a1,ν)
∣∣∣∣ da1 + CP({ϕ(ν) ≤ ε})

for small enough ε. But
∂h

∂a1
(a1,ν) = O(nd/2),

and hence, the first term is Oε(1/
√
n). Therefore, first taking n→ ∞ and then taking ε→ 0 we have the required

result. □

Recall the definitions of (y,x)(m) and θ(m) given by (11) and (12), respectively. With this notation,
Proposition 8.1 implies that as n→ ∞ the distribution of nd/2∆̃n(δ,K) converges to the distribution of

X̂ (K,δ)(L, χ) := |ad+1 − a1|e−z2/2

2σ(a, p)
√
2π3

∑
m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2xDa,p·x1UK,δ

(70)

where�

UK,δ = {δ < |y(m)| < K, 2π |y(m)|α∥x(m)∥ < 2K+1} (71)

and (L, χ) ∈ M is distributed according to µ. Therefore, Theorem 1.3* follows from the result below.

Lemma 8.2. X̂ (K,δ) converges in law as K → ∞ and δ → 0 to the random variable X̂ given by (24).

Lemma 8.2, proven in Section 10, completes the proof of Theorem 1.3*.

9 Finite Intervals.

The proofs of Theorems 1.5 and 1.6 are similar to the proofs of Theorems 1.1 and 1.3 so we just explain the
necessary changes leaving the details to the readers.

Proof of Theorem 1.5. The random vector (14) can be approximated by (Z(1),Z(2)) where Z(i) are defined as
in (64) but with u and v replaced by

u(i) =
√
nq+ ziσω and v(i) =

nd/2

|bd+1|
(
√
na1 − ziσ)

respectively. Define θ(i) as in Proposition 8.1 but u and v replaced by u(i) and v(i).
To complete the proof, we prove an analogue of Proposition 8.1. Namely, we prove that the distribution of

((a,p),L(n,a),θ(1)(n, (a,p)),θ(2)(n, (a,p)))

converges to P× µ′ as n→ ∞ where µ′ is the Haar measure on [SLd(R)/SLd(Z)]× Td × Td.

∥Note that (70) contains an additional factor of 2 in the denominator comparing with (65). This is because in (70) the sum is over
all lattice vectors (see (71)) while in (65) we only consider the vectors with positive y coordinate.
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As in the proof of Proposition 8.1, we prove that for individual terms in the Fourier series of a smooth
function f on [SLd(R)/SLd(Z)]× Td × Td

∑
(k1,k2)∈Zd×Zd

fk1,k2((a,p),L(n,a)) e2πi[k1·θ(1)+k2·(θ(1)−θ(2))]

we have

Jn,k1,k2 :=

∫
Ω

fk1,k2((a,p),L(n,a))e2πi[k1·θ(1)+k2·(θ(1)−θ(2))] dP

n→∞−−−−→
∫
Ω×M×Td×Td

fk1,k2
((a,p),L)e2πi[k1·θ1+k2·(θ1−θ2)] dP dL dθ1dθ2.

The case k1 = k2 = 0 follows from [20, Theorem 5.8]. Note that

k2 · (θ(1) − θ(2)) = (z2(n)− z1(n))

(
nd/2

|bd+1|
∑

yjk2,j −
∑

k2,jω · xj

)
σ.

If k1 = 0 choose appropriate local coordinates in which σ is a coordinate. Integrating by parts with respect to
σ = σ(a,p) and using |z1(n)− z2(n)|nd/2 → ∞, we see that Jn,0,k2 → 0 as n→ ∞.

If k1 ̸= 0, then using the same local coordinates (a1,ν) as in the proof of Proposition 8.1, we can integrate
by parts to conclude that Jn,k1,k2

→ 0 as n→ ∞. The proof follows through because the leading term of

k1 · θ(1) + k2 · (θ(1) − θ(2)) is still n(d+1)/2ϕ(ν)a1. □

Proof of Theorem 1.6. To prove part (a) pick ε̄ < ε. Applying Theorem 1.1 we obtain that for almost every
(a,p)

P(a,p)

(
z1 ≤ Sn

σ
√
n
≤ z2

)
= Ed−1(z2)− Ed−1(z1) +O

(
n−(d−ε̄)/2

)
(72)

= n(z1)ln +O(l2n) +O(ln/
√
n) +O

(
n−(d−ε̄)/2

)
. (73)

According to the assumptions of part (a), the first term is much larger than the remaining terms proving the
result.

The proof of part (b) is similar except that we apply Theorem 1.5 instead of Theorem 1.1. So, we only get
convergence in law.

To prove part (c) we first prove the following analogue of Theorem 1.5 in the case where z2 = z1 +
c|ad+1−a1|

nd/2σ
:

nd/2

Λ(a,p)

(
ez

2
1/2

[
Ed(z1)− Pa,p

(
Sn

σ
√
n
≤ z1

)]
, ez

2
2/2

[
Ed(z2)− Pa,p

(
Sn

σ
√
n
≤ z2

)])
converges in law to a random vector (X̃1, X̃2)(L, θ, c) where

(X̃1, X̃2)(L, θ, c) =
∑

m∈Zd\{0}

e−∥x(m)∥2

y(m)

(
sin θ(m), sin(θ(m)− cy(m))

)
.

Once this convergence is established, the proof of part (c) is the same as the proof of part (b). The proof of

convergence is similar to the proof of Theorem 1.5 except that θ(1) and θ(2) are now not independent. Namely,
using the same notation as in the proof of Theorem 1.5 we have that

u(2) = u(1) +O
(
n−d/2

)
and v(2) = v(1) − c. (74)

By Proposition 8.1 (L(n,a),θ(1)(n,a)), converges as n→ ∞ to (L∗,θ∗) where (L∗,θ∗) is distributed
according to the Haar measure on SLd(R)/SLd(Z)× Td. Combining this fact with (74) we obtain that

(L(n,a),θ(1)(n,a),θ(2)(n,a)) converges as n→ ∞ to (L∗,θ∗, θ̂
∗
) where (L∗,θ∗) is distributed according to

the Haar measure on SLd(R)/SLd(Z)× Td and θ̂
∗
j = θ∗

j − cyj . This justifies the formula for (X̃1, X̃2). □
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10 Convergence of X .

We need some background information. Given a piecewise smooth compactly supported function g : Rd → R,
its Siegel transform is a function on the space of lattices defined by

S(g)(L) =
∑

w∈L\{0}

g(w).

An identity of Siegel, see ([19, Section 3.7] or [22, Lecture XV]) says that

EL(S(g)) =
∫
Rd

g(w)dw. (75)

In particular, if B is a (bounded) set in Rd with piecewise smooth boundary not containing 0 then

PL(L ∩B ̸= ∅) ≤ PL(S(1B)(L) ≥ 1) ≤ EL(S(1B)) = Vol(B). (76)

We shall use the following consequence of this result.

Lemma 10.1. Let β > d. Then for almost every lattice L, there exist C = C(L) such that for all w ∈ L \ {0}
it holds |y(w)| > C∥w∥−β .

Proof . For k ≥ 1 let Bk ∈ Rd denote the following set

Bk = {(x, y) ∈ Rd−1 ×R : ∥x∥ ∈ [k, k + 1), |y| < k−β} ,

and denote Dk = {L : L ∩Bk ̸= ∅}. By (76), PL(Dk) ≤ Kkd−1−β . Since β > d,∑
k

PL(Dk) <∞ .

So, by the Borel-Cantelli Lemma, for almost every L, there exists k0(L) such that L ∩Bk = ∅ for k ≥ k0. Since
L contains finitely many vectors satisfying ∥w∥ < k0, we can choose C(L) ≤ 1 so small that |y(w)| ≥ C∥w∥−β

for all non-zero w in the ball of radius k0. The result follows. □

Proof of Lemma 1.4. Let L+ = {w ∈ L : y(w) > 0}. Since

sin(2πχ(w))

y(w)

is even, and almost every lattice contains no vectors w with y(w) = 0 and w ̸= 0 (this follows immediately from
Lemma 10.1), it is enough to restrict the attention to w ∈ L+. Throughout the proof we fix two numbers ε > 0
and τ < 1 such that ε≪ (1− τ) ≪ 1.

By applying Lemma 10.1 with β = d+ 1, for almost all L we have∣∣∣∣∣∣
∑

w∈L+: ∥x(w)∥≥∥w∥ε

sin 2πχ(w)

y(w)
e−∥x(w)∥2

∣∣∣∣∣∣ ≤
∑

w∈L+

C∥w∥d+1e−∥w∥2ε

converges absolutely. Hence, it suffices to establish the convergence of

X̄R :=
∑

w∈L+: ∥x(w)∥≤∥w∥ε<Rε

sin 2πχ(w)

y(w)
e−∥x(w)∥2

.

Let Rj,k = 2k + j2τk, j = 0, . . . , ⌊2(1−τ)k⌋. To prove the convergence of X , we will show that almost all L and
almost all χ satisfy the two estimates below:

∀ sequences {jk}, X̄Rjk,k
converges as k → ∞, (77)

max
j

sup
Rj,k≤R<Rj+1,k

∣∣X̄R − X̄Rj,k

∣∣→ 0 as k → ∞. (78)



28 D. Dolgopyat and K. Fernando

To prove (77), let

Sj,k =
∑

w∈L+: ∥x(w)∥≤∥w∥ε, Rj,k≤∥w∥<Rj+1,k

sin 2πχ(w)

y(w)
e−∥x(w)∥2

.

Using that Eχ(sin(2π(χ(w)))) = 0 and for w1 ̸= ±w2,

Eχ(sin(2π(χ(w1))) sin(2π(χ(w2)))) = 0,

we see that Eχ(Sj,k) = 0 and

Varχ(Sj,k) =
∑

w∈L+: ∥x(w)∥≤∥w∥ε,Rj,k≤∥w∥<Rj+1,k

e−2∥x(w)∥2

2y2(w)

≤ 1

22k+1
Card(w : ∥x(w)∥ ≤ ∥w∥ε, Rj,k ≤ ∥w∥ < Rj+1,k)

≤ C(L)
22k

Vol(w : ∥x(w)∥ ≤ ∥w∥ε, Rj,k ≤ ∥w∥ < Rj+1,k)

≤ C̄(L)2(τ+ε(d−1)−2)k.

Hence, by Chebyshev’s inequality for each j

Pχ

(
|Sj,k| ≥ 2−(1−τ+ε)k

)
≤ C̄(L)2(ε(d+1)−τ)k.

Therefore
Pχ

(
∃j : |Sj,k| ≥ 2−(1−τ+ε)k

)
≤ C̄(L)2(1+ε(d+1)−2τ)k.

Thus, if ε is sufficiently small and τ is sufficiently close to 1 then Borel-Cantelli Lemma shows that for almost

every χ, if k is large enough, then for all j, |Sj,k| ≤ 2−(1−τ+ε)k, and thus,
∑
j

|Sj,k| ≤ 2−εk proving (77). Likewise,

sup
Rj,k≤R≤Rj+1,k

∣∣X̄R − X̄Rj,k

∣∣ ≤ ∑
w∈L+: ∥x(w)∥≤∥w∥ε,∥w∥∈[Rj,k,Rj+1,k)

1

|y(w)|
e−∥x(w)∥2

≤ C(L)2−kVol(w : ∥x(w)∥ ≤ ∥w∥ε, Rj,k ≤ ∥w∥ < Rj+1,k) ≤ C̄(L)2(τ+ε(d−1)−1)k

proving (78). Lemma 1.4 is established. □

Proof of Lemma 8.2. Given a domain U ∈ Rd let

X̄U (L, χ) =
∑

m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2xDa,p·x1U .

Then

X̂ (K,δ) =
|ad+1 − a1|e−z2/2

2σ(a, p)
√
2π3

X̄UK,δ

where UK,δ is given by (71). Let ΓR = ABR where BR is the ball of radius R centered at the origin and A is the
linear map given by (26). Lemma 1.4 (after the change of variables L 7→ AL) tells us that X̄ΓR

(L, χ) → X̄ (L, χ)
as R→ ∞ almost surely where X̄ = X̄Rd . Therefore it suffices to show that for each η there exist δ0 and K0

such if δ < δ0 and K ≥ K0 then

P
(∣∣∣X̄Γ2K/δ2

− X̄UK,δ

∣∣∣ > η
)
< η .

Note that UK,δ ⊂ Γ2K/δ2 (for sufficiently small δ) and so

X̄Γ2K/δ2
− X̄UK,δ

=
∑

m∈Zd\{0}

sin 2πθ(m)

y(m)
e−4π2xDa,p·x1Γ2K/δ2\UK,δ

. (79)

Below, we choose K so large and δ so small that

PL(A
c
K,δ) ≤ η/100 (80)
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where AK,δ is the set of lattices L satisfying the following conditions:
(i) the shortest non-zero vector in L is longer than 3δε;
(ii) w = (x, y) ∈ L then |y| ≥ max(K, 1/δ)∥w∥−(d+1);
(iii) L contains no vectors (x, y) with |y| ≤ δ and 2π ∥x∥ ≤ δ−1/2d.
It is easy to see using (76) that the measure of lattices not satisfying at least one of the above conditions

is small (cf. the proof of Lemma 10.1). We now estimate the contribution to (79) coming from six different
regions in Γ2K/δ2 \ UK,δ.

(1) Consider first the terms with ∥x∥ ≥ ∥w∥ε. Then for L ∈ AK,δ each term in the sum is bounded by

C∥w∥d+1e−c∥w∥2ε

. We now consider several cases depending on the restrictions on y.
(a) If |y| ≥ K then ∥w∥ ≥ K and so the sum over this region is bounded (in absolute value) by

W1a :=
∑

w∈L: ∥w∥≥K

C∥w∥d+1e−c∥w∥2ε

.

By the Siegel identity, (75), EL(W1a1AK,δ
) ≤ C̄e−c̄K2ε

and so the contribution coming from domain (1a) is
negligible in view of the Markov inequality.

(b) If δ < |y| < K, then 2π |y|α∥x∥ ≥ 2K+1 whence ∥x∥ ≥ 2K/(πKα). Denoting by W1b the contribution
from this region we obtain using property (ii) of the definition of AK,δ that

W1b ≤
∑

w∈L: ∥w∥≥2K/(πKα)

C∥w∥d+1e−c∥w∥2ε

.

Hence, by (75), EL(W1b1AK,δ
) ≤ C̄e−c̄22εK/Kεα

which shows that the contribution from the region (1b) is
negligible in view of the Markov inequality.

(c) If |y| ≤ δ , then ∥w∥ ≥ ∥x∥ ≥ δ−1/2d/(2π) because L ∈ AK,δ. Hence, if W1c denotes the contribution of

the terms from (1c), then, similarly to the case (1b), EL(W1c1AK,δ
) ≤ C̄e−c̄δ−ε/d

and the contribution of region
(1c) is negligible as well.

(2) Now we discuss the terms with ∥x∥ ≤ ∥w∥ε.
Again, we shall consider three cases
(a) |y| ≥ K. Note that in case (2) we have ∥x∥1/ε ≤ ∥w∥ ≤ ∥x∥+ |y|. Therefore |y| ≥ ∥x∥1/ε − ∥x∥ ≥

(∥x∥/2)1/ε for sufficiently large ∥x∥. So, ∥x∥ ≤ 2|y|ε. Thus taking the L2−norm and integrating first with
respect to χ we get the L2−norm of the terms in (2a) is bounded by

EL

 ∑
(x,y)∈L∩(Γ2K/δ2\UK,δ)∩{|y|≥K}

C

y2

 ≤ C

∫
∥x∥<2|y|ε,|y|≥K

1

y2
dw ≤ C

K1−εd

where the first inequality relies on (75).
(b) δ < |y| < K. In this case, ∥x∥1/ε < ∥x∥+K. Thus, K > ∥x∥1/ε − ∥x∥ ≥ (∥x∥/2)1/ε for sufficiently large

∥x∥. So, ∥x∥ ≤ 2Kε ≤ K , and hence, (x, y) ∈ UK,δ. So, the region (2b) does not contribute to our sum.
(c) |y| ≤ δ. In this case, ∥w∥ ≤ ∥x∥+ |y| ≤ 3δε. However, (ii) implies that ∥w∥ ≥ δ−2/(d+1). Hence, this case

is impossible.
Combining the six cases considered above, we obtain the result. □

Acknowledgements

We would like to express our gratitude to the anonymous referees for their diligent review of our manuscript and
for providing us with valuable feedback. Their insightful comments and suggestions have significantly contributed
to the improvement of the quality and clarity of the paper.

References

[1] Angst J., Poly G. “A weak Cramér condition and application to Edgeworth expansions.” Electron. J. Probab.
22 (2017) paper 59, 24 pp.



30 D. Dolgopyat and K. Fernando

[2] Barbour A. D. “Asymptotic expansions based on smooth functions in the central limit theorem.” Probab.
Theory Relat. Fields 72 (1986) 289–303.

[3] Bobkov, S. G. “Central limit theorem and Diophantine approximations.” J. Theoret. Probab. 31 (2018)
2390–2411.

[4] Bobkov S. G. “Khinchine’s theorem and Edgeworth approximations for weighted sums.” Ann. Statist. 47
(2019) 1616–1633.

[5] Breuillard E. “Distributions diophantiennes et theoreme limite local sur Rd.” Prob. Th. Related Fields 132
(2005) 39–73.

[6] Coelho Z., Parry W. “Central limit asymptotics for shifts of finite type.” Israel J. Math. 69 (1990) 235–249.

[7] Dettmann C. P., Marklof J., Strombergsson A. “Universal hitting time statistics for integrable flows.” J.
Stat. Phys. 166 (2017) 714–749.

[8] Dolgopyat D. “A Local Limit Theorem for sum of independent random vectors.” Electronic J. Prob. 21
(2016) paper 39.

[9] Dolgopyat D., Fayad B. “Deviations of ergodic sums for toral translations: Convex bodies.” GAFA 24 (2014)
85–115.

[10] Dolgopyat D., Fayad B. “Limit theorems for toral translations.” Proc. Sympos. Pure Math 89 (2015)
227–277.

[11] Eskin A., McMullen C. “Mixing, counting, and equidistribution in Lie groups.” Duke Math. J. 71 (1993)
181–209.

[12] Esseen C.-G. “Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian
law.” Acta Math. 77 (1945) 1–125.

[13] Feller W. An introduction to probability theory and its applications, Vol. II. 2nd ed. John Wiley & Sons,
New York-London-Sydney (1971) xxiv+669 pp.

[14] Fernando K., Liverani C. “Edgeworth expansions for weakly dependent random variables.” Ann. Inst. Henri
Poincare Probab. Stat. 57 (2021) 469–505.

[15] Kesten H. “Uniform distribution mod 1 part I”, Ann. of Math. 71 (1960) 445–471, part II: Acta Arith. 7
(1961/1962) 355–380.

[16] Kleinbock D. Y., Margulis G. A. “Bounded orbits of nonquasiunipotent flows on homogeneous spaces.”
AMS Transl. 171 (1996) 141–172.

[17] Kleinbock D. Y., Margulis G. A. “Logarithm laws for flows on homogeneous spaces.” Invent. Math. 138
(1999) 451–494.

[18] Lawler, G., Limic, V. Random Walk: A Modern Introduction, Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge (2010)

[19] Marklof J. “The n-point correlations between values of a linear form.” Erg. Th. Dynam. Sys. 20 (2000)
1127–1172.

[20] Marklof J., Strombergsson A. “The distribution of free path lengths in the periodic Lorentz gas and related
lattice point problems.” Ann. of Math. 172 (2010) 1949–2033.

[21] Shah N. A. “Limit distributions of expanding translates of certain orbits on homogeneous spaces.” Proc.
Indian Acad. Sci. Math. Sci. 106 (1996) 105–125.

[22] Siegel C. L. Lectures on the geometry of numbers, Springer, Berlin (1989) x+160 pp.

[23] Sprindzuk V. G. Metric theory of Diophantine approximations, Scripta Series in Math. V. H. Winston &
Sons, Washington D.C. (1979) xiii+156 pp.

[24] Strombergsson A. “Effective Ratner equidistribution for SL(2,R)⋉R2.” Duke Math. J. 164 (2015) 843–
902.


