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We consider sums of independent identically distributed random variables whose distributions have d + 1 atoms. Such
distributions never admit an Edgeworth expansion of order d but we show that for almost all parameters the Edgeworth

expansion of order d — 1 is valid and the error of the order d — 1 Edgeworth expansion is typically of order n=%2,

1 Introduction

n
Let X be a random variable with zero mean and variance o2. Let S, = ZXj where X; are independent
j=1
identically distributed and have the same distribution as X. The Central Limit Theorem says that for each z

. S, -
nh_}n;oP <a\/ﬁ < z) =N(z)

where

N(z) = /Z n(y)dy and n(y) = %e‘yzp.

o 2w

S,
A classical problem in probability theory is computing higher order approximations to IP’( \nf < z) In
on

particular, the order r Edgeworth series of .S, is an expression of the form

£:(2) = M(2) +n(z) Y0 2

k=1

where P, are polynomials such that the characteristic function ¢(t) = E(e”*¥) and the Fourier transform &, of

&, satisfy
t " < _ —r/2
(b(a\/ﬁ) —Er(t)—o(n )

E(X3)
603/n

In particular,

&1(2) = N(z) +n(2) (1-2%),

E(X3)
6y/no3

We say that S,, admits an order r Edgeworth expansion if for all z

lim n'/? {IP’( S < z) —6}(2)} =0. (1)

E(X*) — 304
24not

3)\2
(1—2%)+ (32 — 23) — %(1& —102% 4 2%)

E(z) =N(z) +n(z) [

n—00 a\/ﬁ
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Recall that a lattice random variable is a discrete random variable taking values on a set of points of the
form a 4+ nh,n € Z, where h > 0, a € R. It is known that S,, admits the first order Edgeworth expansion if and
only if X is non-lattice (see [12]). The problem of higher order expansion is more complicated. For example,
a sufficient condition for S,, to admit the order r Edgeworth expansion is that E(|X|""2) < co and X has a
density. But this condition is far from necessary. We refer the reader to [13, Chapter XVI] for discussion of these
and related results. We also note that [2, 5] discusses a weak Edgeworth expansion where the LHS of (1) is
convolved with smooth compactly supported functions.

In this paper, we consider a case which is opposite to X having a density, namely we suppose that X has a
discrete distribution with d 4+ 1 atoms where d > 2. d = 2 is the simplest non-trivial case since the distributions
with two atoms are lattice, and as a result, they do not admit even the first order Edgeworth expansion.

Thus we suppose that X takes values aq,...,aq41 with probabilities py,...,pgat1, respectively. Since X
should have zero mean we suppose that our 2(d + 1)—tuple (a, p) belongs to the set

Q={p; >0, p1+-+pit1 =1, piai+---+pari1aa41 =0}.

It is easy to see that S, never admits the order d Edgeworth expansion. Indeed,

n!
Pap(Sn < 2) = > 1 Pt (2)
>0, 3 mi=n 10 .. Mgyq!

S mia;<z
The Local Central Limit Theorem (see [18, Theorem 2.1.1]), applied to the time homogeneous Z-random walk

which jumps to e; from the origin 0 with probability p; for i = 1,...,d and stays at 0 with probability pgy1,
gives us that for all € there is ng € N such that for all n > ng and all m € Z?

1 (m-nq) T~ (m—nq) €
- e 2n < — 3
(27rn)4 detT ~ nd/2 (3)

where T, is the position of the random walk after n steps, I' is the associated covariance matrix and
a=(p1,---,pq). Also, if mq,...mg, mgs1 are integers such that m; + - +mg + mgy1 = n and m; > 0, then,
taking m = (my, ..., mq), we have

P(T, = m) —

|
n: m
P(T,=m)= ———p™ ...p, "
Tpg
myl. .. mgyq! +

As a result, if
Z mia; = nz aipi + O(v/n),
then in (3), the exponent of e is O(1), and hence, for sufficiently large n,

|
n: mMdg41

my
P1 - Pafy

n?P(T, = m) = n"/?—————
mi....Mg41:

is uniformly bounded from below. Accordingly, from (2), it follows that P, (S, < z) has jumps of order n~%/2.
On the other hand, £4(z) is a smooth function of z. So, it can not approximate both Pa (S, < z—0) and
Pap(Sn < 24 0) at the points of jumps without making an error of O(n~%2). This means that it is not true
that Pa (S, < 2) = E4(2) + o(n~%?) for all z, showing that the order d Edgeworth expansion fails.

However, in this paper, we show that for typical (a,p) this failure of the order d Edgeworth expansion
happens just barely. We present two results in this direction. For the first result, let

bj=a;—ay, forj=2,...,d+1.
Then, the characteristic function of X, ¢, satisfies
o(s) = eis‘llw(s) where (s) = py + poe®tz 4 ... +pd+1ei8bd+1.
Set
d(s) = je{zr,r}?ﬁ+1} dist(bjs, 27Z).
We say that a is S-Diophantine if there is a constant K such that for |s| > 1,

K
d(s) > —.
)= T
It follows from the classical Khinchine-Groshev Theorem (see e.g. [17, Theorem 1.1] or [23]) that almost every
a is S-Diophantine provided that 5 > d—il.
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Theorem 1.1. If a is S-Diophantine and
1
2 <R — 2) <1 (4)

then

. Sn
nh_{rgo nk {Pa,p <a\/ﬁ < z) — Edl(z)] =0
uniformly in z € R. O

Thus, for almost every a the order (d — 1) Edgeworth expansion approximates the distribution of US\% with

error O(n®~%?) for any e.

Note that Theorem 1.1 applies for all 8s, and in particular, for s which are much larger than ﬁ. However,

if B is large, then the statement of the theorem can be simplified. Namely, let r» be the integer such that
r < 2R <r+1. (Note that (4) can be rewritten as 2R < %4’ 1. So, provided that 2R is sufficiently close to

% + 1 we can take r = <%> + 1 where (s) denotes the largest integer which is strictly smaller than s.) Then,

[oRVAL

Pa, ( Sn_ z> —Eu1(2) 40 (,;) — £.(2) 40 <n1R) +O(Eanr(z) - E(2)).

Since % > R the first error term dominates the second and we obtain the following result.

Corollary 1.2. Suppose that a is S-Diophantine, r = 1 4 <%> ,and r < 2R < % + 1. Then

S
1 R n _— pr—
nllr)n n [}P’a’p (a\/ﬁ < z) Er(z)} 0

uniformly in z € R. O

Theorem 1.2 shows that for almost every a and for r € {1,...,d — 1}, the order r Edgeworth expansion is valid.
Our next results show that
S,
Pap | —= < -& 5
o (<) e ®)

is typically of order O(n~%?2) but the O(n~%?) term has wild oscillations. To formulate this result precisely,
we suppose that our 2(d 4+ 1)-tuple is chosen at random according to an absolutely continuous distribution P
on . Thus, (5) becomes a random variable.

Theorem 1.3. There exists a smooth function A(a, p) such that for each z the random variable

oo (3559

converges in law to a non-trivial random variable X (defined below in Lemma 1.4) whose distribution is
independent of z and P. O

The formulas for the normalizing factor A(a, p) and the limiting random variable X are quite complicated
and the next few pages are devoted to their definitions.
The normalization is defined as follows:

B lag+1 — a1
A(a,p) = (27)%*% \/det(Dap) o(a, p) (6)

where o(a,p) denotes the standard deviation of the distribution of the random variable taking value a; with
probability p; and Dap is a (d — 1) x (d — 1) matrix defined as follows.



4 D. Dolgopyat and K. Fernando

The matrix D,

Fix p1,...,p4+1 and consider a map

d+1 2

> “pje’Vs
Jj=1

where y = (y1,...,Ya+1) € R¥TL Let Y be a random variable taking values y; with probability p;. Then, for
small y we have

((y) =

E () =1- %YQ) +iB(Y)+ O (lylP) -
Hence,
() =1-EY*)+EY)*+O(lyl’) =1 -v¥)+O(llyl*) (7)

where V(+) is the variance.
Next, consider the quadratic form given by Q(y,y) = V(Y (y)). Let x,a € R¥*! be fixed. In order to
maximize s — ((x + sa), we want to minimize s — Q(x + sa,x + sa). We have

Q(x + sa,x + sa) = Q(x, %) + 25Q(x,a) + 5°Q(a, a).

It follows that the minimum is achieved at s* = —82:3 and its value is
_ Q(x,a)?  Q(x,x)Q(a,a) — Q(a, x)?
D) =Qx) = aGay = Qa.a)
V(Y (x)V(X) — Cov?(X,Y (x))
B V(X)

where X is the random variable taking values a; with probability p;. Note that D(x,x) > 0 on the subspace
x1 = xq41 = 0 since Cov?(X,Y(x)) = V(X)V(Y(x)) iff Y(x) = c1X + co. Note that the RHS takes (d+ 1)
different values if ¢; # 0 and it takes a single value if ¢; = 0. On the other hand, the LHS takes at most d
different values on {z7 = 2441 = 0} and it takes a single value only at 0. This implies that Q(x) # 0 unless
x =0, and hence, @) is non degenerate. Then D, p, is the (d — 1) x (d — 1) positive definite matrix such that
—4D, p, is the Hessian of R4~! 5 %~ ((0, %,0). The formula for D, , will be proven in Section 6 (see (56)).

We note that the infinitesimal computation described above is relevant because we will show, in the course
of proving Theorem 1.3, that the main contribution to the error term come from the resonant points where the
Taylor expansion could be used. See Section 6 for more details.

To define X, we need some notation. Let M be the space of pairs (£, x) where £ is a unimodular lattice in
R? and Y is a character, that is, a homomorphism y : £ — T.

The Haar measure on M

The Haar measure z on M can be defined in two equivalent ways. First, note that y is of the form x(w) = e2™X(W)
for some linear functional ¥ € (R%)*. SL4(R) acts on R? & (RY)* by the formula

A(w,x) = (Aw, xA™).

Observe that if A(w, X) = (W, x) then
X(w) = x(w). (8)
The above action of SLg(R) induces the following action of SL4(R) x (R?)* on M

(A, 0)(L,x) = (AL, e*™X - (xy 0o A7)).

This action is transitive because SLq(R) acts transitively on unimodular lattices and (R%)* acts transitively on
characters. This allows us to identify M with

(SLa(R) x RY)/(SL4(Z) x Z%)

and so M inherits the Haar measure from SLy4(R) x R?.

The second way to define the Haar measure is to note that the space M of unimodular lattices is naturally
identified with SLq(R)/SL4(Z), and so, it inherits the Haar measure from SL4(R). Next, for a fixed £ the set
of homomorphisms x : £ — T is a d dimensional torus. So, it comes with its own Haar measure. Now, if we
want to compute the average of a function ®(L, x) with respect to the Haar measure then we can first compute
its average ®(L£) in each fiber and then integrate the result with respect to the Haar measure on the space of
lattices. In the proof of Lemma 1.4 given in Section 10, the averaging inside a fiber will be denoted by E, and
the averaging with respect to the Haar measure on the space of lattices will be denoted by E,.
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The random variable X

Given a vector w € R?, we denote by y(w) its first coordinate and by x(w) its last d — 1 coordinates. We also
denote by || - || the standard Euclidean norm.

Lemma 1.4. For almost every pair (£, x) € M with respect to the Haar measure the following limit exists

. sin(27X(W))  _jixc(w)l12
(L) = Jim Z (y(w())e Ix(w)ll? ©)
weL\ {0}, [wl|<k

O

In this formula and below, we identify T with segment [0, 1) equipped with addition modulo one, and thus,
the characters x(w) are (after this identification) real valued.

In particular, the proof of Lemma 1.4 shows that for almost every £, whenever w # 0, y(w) # 0 (see Section
10) and that each individual summand in (9) is finite almost everywhere on M. In order to simplify the notation,
we will abbreviate expressions such as (9) by

XLo= > Welxmnz w0
wel\{0}

even though (10) does not converge absolutely.

If we assume that the pair (£, x) is distributed according to the Haar measure on M then X, defined by
(9), becomes a random variable. This is the variable mentioned in Theorem 1.3. Note that the distribution of
X depends neither on P nor on z.

Next, we describe how we can use the second representation of Haar measure to describe X'. Let wq,..., wy
be the shortest spanning set of £, i.e., w; is the shortest non zero vector in £ and, for j > 1, w; is the shortest
vector in £ that is linearly independent of wq,...,w;_1. Given m = (mq,...,mq) € 72, let

(y,x)(m) :=mywy + -+ mgwg € L (11)

where y € R and x € R, Let §; = x(w;). Then 6; are uniformly distributed on T and independent of each
other. Set

O(m) :=m16, + -+ + mgby. (12)

Now, X (see definition in Lemma 1.4) can be rewritten as

x= ¥ si2mO(m)) _jse(em)) 2 (13)
- y(m)
meZ4\{0}

where L is uniformly distributed on the space of lattices, (y,x)(m) is defined by (11), and (61, . .. 04) is uniformly
distributed on T? and independent of £. We will use the representation (13) in Sections 8 and 9 in our proofs
and in Section 10 when establishing the convergence of &'

Theorems 1.1 and 1.3 have analogues in case we are interested in probability that .S, belongs to a finite
interval. In particular, our results have applications to Local Limit Theorems.
Theorem 1.5. Let z;(n) and 2z3(n) be two uniformly bounded sequences such that |z;(n) — zo(n)|n®/?
Then the random vector

A?(”LZ/ ; <ez%/2 [gd(zl) Pu, (Jf;ﬁ < zlﬂ A2 [gd(@) ~Pa,p (J‘f;ﬁ < z2>D (14)

converges in law to a random vector (X (L,x1), X (L, x2)) where X(L,x) is defined by (10) and the triple
(L, X1, X2) is uniformly distributed on (SL4(R)/SL4(Z)) x T4 x T<. O

— OQ.

Here and below the uniform distribution of (£, x1, x2) means that £ is uniformly distributed on the space of
lattices, and for a given lattice, x; and x2 are chosen independently and uniformly from the space of characters.
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Theorem 1.6. Let z1(n) < 22(n) be two uniformly bounded sequences such that I, = zo(n) — z1(n) — 0.
(a) If 1, > Cn==%2 for some & > 0 then

Pa,p(zl < US\'}‘E < 22)
—1
lnn(zl)
almost surely.
(b) If 1,n%? — oo then
]P’a_,p(zl < 05\175 < Zg)
=1
lnn(2’1)
(here and below “=" denotes the convergence in law).
Pop(z1 < 25 < 2)
— clagti—ai| ap oy/n B
(o) If I, = o)l then H (a, p) () 1| = Y where

H(a,p) = (27r)d\/det(Da,p)

and
1 in(2 — sin(2 -
V(L x,c) = - Z sin(2my(w)) — sin(2m[x(w) Cy(W)Defnx(w)H? ,
€ wernoy y(w)
L, x are as in Theorem 1.3 and D, p, is from (6). O

Remark 1. The normalization in Theorem 1.6(c) comes from the following computation. Denote A, (z) =

Sn
Ei(z)—P < z ] . Then, Theorem 1.3 can be informally restated as
ovn

Aa,p)v2rn(z)

An(z) ~ nd/2

X.

Then under the assumption of part (c) of Theorem 1.6 we have

An(22) = Ap(z1) _ Ala,p)v2r

[n(zz)Xg — Il(Zl)Xl].

In T ndl?
A 2 1
Since (ngf =7 @p) we can rewrite the above equation as
Ap(z2) — Ap(z1) n(z2)
H ~ Xy — X,
cH(a,p)=—7 "5 n(z) 2

Thus, the proof of Theorem 1.6 proceeds by describing the asymptotics of the joint distributions of n%/2A,,(z1)
and n%?A,,(z) while Theorem 1.3 gives the marginal distributions. O

The intuition behind the results of Theorem 1.6 is the following. Call y,, 6-plausible if P(S,, = y,,) > én~%2.
The discussion following (2) shows that for each & there are about C(§)n?/? é-plausible values. Therefore,
if 1,, < n~%? then the interval [z1(n), z2(n)] would typically contain no plausible values. Hence, we should
not expect a Local Limit Theorem (LLT) to hold on that scale. Theorem 1.6 shows that as soon as interval
[21(n), z2(n)] contains many plausible values then an LLT typically holds for this interval.
Recall that ol
Pap(Sn € [21,22]) = Z m?iﬂl e
m; >0, > m;=n
21<Y> mia;<zp
So, in Theorem 1.6, we just count the number of visits of a random linear form > m;a; to a finite interval
with weights given by multinomial coefficients. It is also interesting to consider counting with equal weight. In
this case the analogue of Theorem 1.6(c) is obtained in [19] while for longer intervals only partial results are
available, see [10, 15].
The layout of the paper is the following. Theorem 1.1 is proven in Section 2. The proof is a minor modification
of the arguments of [13, Chapter XVI]. The bulk of the paper is devoted to the proof of Theorem 1.3. In Section
3, we provide an equivalent formula for X. This formula looks more complicated than (10) but it is easier to
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identify with the limit of the error term. Section 4 contains preliminary reductions. Namely, we show that the
integration in the Fourier inversion formula could be restricted to a finite domain. In Section 6, we show that
the main contribution to the error term comes from resonances where the characteristic function of S, is close
to 1 in absolute value. The proof relies on the asymptotic analysis of the resonant term performed in Section 5.
Several technical estimates used in our analysis are established in Section 7. In Section 8, we use dynamics on
homogenuous spaces in order to show that the contribution of resonances converges to (10) completing the proof
of Theorem 1.3. The proofs of Theorems 1.5 and 1.6 are similar to the proof of Theorem 1.3. The necessary
modifications are explained in Section 9. Finally, Section 10 contains the proof of Lemma 1.4.

As a notational remark, in the paper the constants denoted by ¢, C', or other implied constants may change
from line to line or even within the same line.

2 Edgeworth Expansion under Diophantine conditions.

Theorem 1.1 is a consequence of Theorem 2.1 and Theorem 2.2 below.
Note that the characteristic function of X is given by

B(s) = p1e™®™ + - 4 pagietH (15)

and recall that d(s) =  max }dist(bjs, 2nZ) where b; = a; — a1.

Lemma 2.1. There exists a positive constant ¢ such that

6(s)] <1 —cd(s)*. (16)

Proof. Since

1 Je)P | 1 el
L= 16 = T o 2 g

it suffices to show that
lp(s)]* < 1—2cd(s)*. (17)

Note that

6()> =D 07 +2>_ piprcos((a; — ax)s).

i<k

Taking a constant ¢ such that cos(t) < 1 —¢t? for |t| < m and letting ¢ = &(min; p;)? we obtain

lp(s)? <1 — 2chist2((aj —ag)s,27Z)

i<k
proving (17). O

Theorem 2.2. If the distribution of X has d + 2 moments and its characteristic function ¢ satisfies

and R < % is such that
1
<R - 2) y<1 (19)

lim nft {IP’ (JS;E < z) 5d_1(z)} =0. (20)

then

In particular, if X is discrete with d + 1 atoms a = (aq,...,a4+1), a is —Diophantine and (R — %) B<s
then (20) holds.

Theorem 2.2 follows easily from the estimates in [13, ChapterXVI] but we provide the proof here for
completeness.



8 D. Dolgopyat and K. Fernando

Proof. Denoting

ag\/N

An:P< 5 SZ) —8(1_1(2)

we get, from the estimate (3.13) in [13, Chapter XVI], that for each T'

-
A < l/"ﬁ ¢"(s) — Ea—1(s0/n) d8+9_ (21)
™ _0% S T

Choose T = Bn' with B = g Then, % = %. Take a small § and split the integral in the RHS of (21) into two

parts.
1 /9
-/ 2
TJ-s T Js<|s|<BnE-1/2/q

From the proof of Theorem 2 in Section 2 and Theorem 3 in Section 4 of [13, Chapter XVI], we have that the
first integral of (22) is O (n*d/Q).

Also, f|8|>5

9" (s) — 5d 1(savn) |

¢n($> — gd—l(sa\/ﬁ) (22)

J={s: 6 <|s| < Bo~tnf1/2},

Thus, we only need to estimate

/J QS%(S) ds = (15/J¢n(8)| ds < ?/Jexp (—bnlf(Rfé)W) ds (23)

where the last inequality is due to (18). By (19) the integral decay faster than any power of n. The result follows.
O

Remark 2. The fact that the Edgeworth expansion of order (d — 1) holds for almost every a is obtained in
[1, Section 4] (with a weaker error bound). [5] shows, among other things, that a Diophantine condition with
any exponent is sufficient for obtaining a weak Edgeworth expansion for sufficiently smooth functions. [6, 14]
obtain similar results for dependent random variable including finite state Markov chains. The relation between
the Edgeworth expansions and Diophantine approximations are utilized in [1, 3, 4] to show that Edgeworth
expansions hold for almost every member of several multi-parameter families. O

3 Change of variables.

Here, we deduce Theorem 1.3 from:

Theorem 1.3* For each z the random variable

oot (3559

converges in law to X where

s _ ‘Cld_;,_l — al\ SIHQTFX _4x2 Do ..
X(ap, Lx)=e =P (WD X(W) (24)
20(a,p)V2m ecz\{o} y(w)
(L, x) is distributed according to u, the Haar measure on M, a = (ay,...,044+1), » = (P1,-..,Pa+1) and (a,p) € Q

are distributed according to P, (a,p) and (L, x) are independent, and Da pand o(a p) are defined immediately
after (6).

We note that the convergence of (24) for almost every (£, y) follows* from Lemma 1.4, see Step 1 in the
proof of Theorem 1.3 below.

*Lemma 1.4 shows that the convergence holds if the sum in (24) is understood as a limit as R — oo of the sums restricted to
the domain |[[Aw|| < R where A is the matrix given by (26). However, the proof of Lemma 1.4 shows that this sum could also be
understood as the limit of sums over domains ||w| < R.
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Proof of Theorem 1.3 assuming Theorem 1.3*. We divide the proof into three steps.

Step 1. We will show that e* /2 A( 5y has the same distribution as X (see (9)). To this end, we rewrite the
sum in (24) as

1 ) sin(2mx(w)) o 47?lly/Day x(w)||? (25)
(2m)*tdet(y/Dap) |, oy ¥(W)/((2m)4= 1 det(y/Dap))

Let A be the linear map such that

Ay, x) = <(27T)d1 Y , 21/ Dap X) . (26)

det(Dq.p)

Put (

o

X) = A(L, x). Then, using (8), (25) can be rewritten as:

- L ) Sin(Q?X(W))e—Hx(wW_
(2m)d=1det(y/Da.p) weZ\(0) Yy

Since det(A) = 1, the pair (£, X) is distributed according to the Haar measure on M. Thus, using (6),

2

él?(a,p,ﬁ, X) = e_ZQ/ZA(CI,p) Z ME_HX(W)‘F

wel\{0} y(w)
where (£, y) is distributed according to the Haar measure on M. So, from (9) e?’/2 A(fp) and X have the same
distribution.
Step 2. Denote
OM ={(a,p) €Q:Vi k<p;, |ai| <M  Vi#j |ai—a;| > &}, (27)

S, ~ 2 A
Ap=E8i(2)—P|=<z), A,=e"/2 ",
R e
We claim that it is enough to prove Theorem 1.3 under the assumption that P has smooth density supported on
QM for some x and M. Indeed, let p be the original density of P. Let f : R — R be a smooth compactly supported
function. Given e there exists a smooth density p supported on some Q* such that ||p — pl/z1 < ﬁ
If Theorem 1.3 holds for smooth compactly supported densities then we can find ng € N such that for

n > ng
‘//f n*PA,) pdadp — E(f(X)| <

3

2

‘//f (n*A.,) pdadp - //f (nd/QAn)pdadp‘ <ol llflle < 5

J[[ (5024, ) paap - 55000 < <

Since ¢ is arbitrary, Theorem 1.3 follows for an arbitrary L' density.

Since

it follows that

Step 3. By Step 2, we can and will assume that (a, p) is distributed according to a smooth density supported
on QM for some k and M. Let f be a smooth compactly supported test function. Divide QM into small cubes
{Q;} such that if (a;, p;) denotes the center of Q;, then for each j, each (a,p) € Q; and each A € R we have

(am) (s ) =

Such a partition exists since A is continuous and bounded away from 0 on Q. Then

2 /2
//f d/QA pdadp // < /2n P20 >pdadp
M ,p)
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2 2N,
—Z// < oS >pdadp—|—5()
A(aj, p;)
where |§(n)| < e for large n.
Applying Theorem 1.3* in the case where (a, p) is distributed according to P conditioned on Q;, we get
L2 NN, > X
lim // ( /2l Cn )pdadp PQ)E | f|e/?——
n—yoo A(aj, p;) ! A(aj, p;)
2y X
= E|(f/[e/? pdadp + 9,
//j ( ( A(am))) ’

/ / E <f (/ A(jf p)>> pdadp = P(Q;)E(f(X)).

Summing over j we conclude that for large n

‘//f n'?A,) pdadp —E(f(X))

Since ¢ is arbitrary, Theorem 1.3 follows. O

where |0;] < eP(Q;).
By Step 1,

< 3e.

Remark 3. The argument of Step 3 provides the following extension of Theorem 1.3:
The triple (nd/ZAn(a, p),a, p) converges in law as n— oo to the triple (X,a,p) where X has the
distribution described in Theorem 1.3, and (a,p) is distributed according to P and is independent from X. [

Remark 4. The argument of Step 2 shows that it suffices to prove Theorem 1.3* in the case P has smooth
density supported on QM for some k and M. O

Sections 4-8 are devoted to the proof of Theorem 1.3*. Note that similarly to (13) we have

j(\ — 6722/2 |Cld+1 _ a1| sin 27’(9(1’1’1) 6747r2x(m)Da7p-x(m).
/73
20(a,p)Vr mez {0} y(m)
Remark 5. The statements of Theorems 1.3 and 1.3* look similar, however, there is an important distinction.
Namely, the proof of Theorem 1.3* is constructive. In the course of the proof, given n, a and z, we construct
a lattice £(a,n) and a character x(a, p,n,z) such that the expression n=%2X(a,p, L(a,n), x(a, p,n, z)) well-
approximates the error in the Edgeworth expansion. We believe that such a construction could be made for more
general distributions where the Edgeworth expansion fails, and this will be a subject of a future investigation.
So, the difference between Theorems 1.3 and 1.3* is that in the first case, we have only an approximation in
law, while in the second case, we are able to obtain an approximation in probability. O

4 Cut off.

Here we begin the proof of Theorem 1.3*. By Remark 4, we may and will assume that P has a smooth density
supported on QM for some k and M. Moreover, all constants, including the implied ones in O-estimates, may
depend on d, k, M and P.

As in the previous section, let

An = E4(2) — Fo(z) where Fo(2) =Pap <f;ﬁ < z) .

Denote by vp(z) = 2 - 122512 and let V(s,T) = <1 — %) 1jsj<r be its Fourier transform.

T

We use the approach of [13, Section XVI.3]. Let Ty = on??*6. Note that o = o(a, p) is random. Since we
assume that (a,p) € QM. ¢ is uniformly bounded, and bounded away from 0. So, T, = O(n??*6) uniformly in
(a,p), i.e., there exist constants ¢, C' > 0 such that lim T5/n??*6 ¢ (¢, C).

n—oo

TWe use [ €5 f(s)ds as definition of the Fourier transform of f € L' as in [13, Chapter XVI].
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Decompose
—A, = [F, — &) *xvp, (2) + [Fr — Fpxvp,] (2) — [Eq — Ea * v1,] (2). (28)
To estimate the last term, we split
[Eqd — Eq*vpy] (2) = / [Ea(2) — Ea(z — )] v, (z)dx + / [Ea(z) — Ea(z — )| vp, (z)d. (29)
|z[<1 |z|>1

The first integral in (29) equals to

/x|<1 Ea(2) v vr, (2)dw - / M%%Tg (z)dx = — /|x<1 & (y(z,2)) (1 - CosT2x> "

lz|<1 2 7TT2

=0 ( 1 > = o(nf(2d+6))

Ty

where the first equality uses that v is even.
Since both &£; and cosine are bounded the second integral in (29) is bounded by

C/ z _C = O(n~(24+6)),
\

] — =
z|>1 Tgm T2

Thus, the last term in (28) is O(n~(2¢+9)). Here and below, the constant C' do not depend on the choice of

(a,p)-
To estimate the second term in (28), we split the integral in F,, x vy, into regions {|z| > 1/y/T2} and
{|z| < 1/+/T5}. The contribution of {|z| > 1/v/T>} is bounded by

o0 dx C
o/ = —— =0O(n" ),
1 Te? VT ( )

On the other hand
/ [Fr(2) — Fn(z — 2)]vp, (z)dz =0
||<1/v/T2

unless there is a point of increase of F;, inside the interval
Jo = [,z —1/\/Ta, 2 + 1/\/T2] .

The probability that Jy contains a point of increase of F), is bounded by

> P(Bw) (30)

mi+-+mgyr1=n

where

Jmaar + -+ mar10441 -
asm.{ — e[ 1/@,z+1/@}}.

Note that By, = {‘m -a— az\/ﬁ| < cr\/n/Tg}. Since o is bounded on QM there is a constant L = L(M, k)

such that B, C B, = {|m -a— az\/ﬁ’ <L n/Tg} . To estimate P(B,,) we consider the following variables
on QM:

C=(a1,---,8441,DP1,+ -, Pd—1)-
Since ¢ is distributed according to the bounded density it suffices to estimate the Lesbegue measure of By, in

these coordinates. Without loss of generality we may assume that m; is the maximal among (m,...,m441),
whence my > n/(d + 1). Then for large n we have that

i[mw‘a—az ’I’L]

0(11

Y

n
2d’

-]

The last inequality follows because the second term is O(y/n). Accordingly, for each fixed value of
(ag,y...,a441,D1,--.,Pd—1) the measure of a; such that ¢ € B, belongs to the segment of length O(\/n/T5)
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d

is O(y/1/nTy). Hence, each term in (30) is O (ﬁ) and so, the sum is O ( ’;'LTQ) . Thus, with probability
1-0 ( L ), we have that —A,, = A, 2+ O (T{lp) where

772

i G e,

2r J_o, it
Ty A
1 ovn . n - &
- e—lszaﬁ (b (S) : d(SO’\/ﬁ) V(S, n, Tg)dS ’
2w ) _ 7\“2F 15

so\/n
T

V(s,n,T)=1—

Let T1 = 0 K1n%? for some constant K; > 0, and define

and ¢(s) is the characteristic function of X given by (15).

T ~
1 o "(s) — &

Api =+ e iszoVn 9" (s) .d(sa n) V(s,n,Ts) ds.
2 J_ 7} 18

Note that T} = O(n%?) with the implied constant independent of (a,p) € QM. Let T, = Ay — A, 1. Put

J1=[T1/(o+/n), Tz /(o+/n)] and

- 1 , n
r,=— e iSOV L(S) V(s,n,Ts) ds.
2 |s|eJ; 1S
Note that, due to the exponential decay of f:'d,
- [Ea(sov/n)| e o2
I, -T',| <C ———F——ds<C ————ds < Ce “1log|Ty/Ty]|.
BER |s] islen 8]

Hence, there exists € > 0 such that I'), = r,+0 (e*ETf).

Further, note that T1/(o+/n) and T /(0+/n) do not depend on (a, p). Thus, T',, is an integral over the union
of the two intervals J; and —J; whose lengths are independent of (a, p).
The main result of Section 4 is the following.

Proposition 4.1.
C

Tnlle < Voo (31)
O
The proof of Proposition 4.1 relies on the following estimates.
Lemma 4.2. For each integer [ there is a constant C' = C(I) such that
B (o '(s)]) < o
for all |s| > 1. O
Lemma 4.3. If [ is a finite interval with length of order 1 and [ be an integer then
Jeoras=o( )
1 vn
(where the implicit constant depends on [ and on the length of I but not on its location). O

Lemmas 4.2 and 4.3 will be proven in Section 7 and Section 5, respectively.



An error term in the CLT for discrete random variables 13

Proof of Proposition 4.1. Note that V' is an even function in s and ¢(s) = ¢(—s). Therefore, the complex
conjugate of I, is

- 1 _ "
L, =— ezszo'\/ﬁ L(S) V(S,H,TQ) ds
2 |s|en —18
= 1 el(=s)zavn ¢ (=9) (__S) V(—s,n,Ts) ds
2 |—s|eqy 18
1 . " -
= — eTisEoVn #7(s) (S) V(s,n,Ty) ds =T,.
2 |s|ey 18

To estimate the L2-norm of T,,, we write

18

royi ©"(5) ’
EI?) = 2E (/ e~V Z 270 V(s n, Th) d8>
Am Isles

S1 52

n |s]
= (1 - n2d+121> (32)

1 // —i(s1+s2)zoy/n n Vn(sl)dsl Vn(SQ) dsy
— E e 2(81TS82 (o4 ¢n(81>¢(52)
w ) )

where

Vn(’s) = V(Sa n7T2) =1- T2

is independent of o, and 0 <V,, <1 on J;.
We split this integral into two parts.

(1) In the region where |s1 + s2| < 1, we use Lemma 4.3 to estimate the integral by

o dSQ dSl) (/ )
E " n 1) _ o J . .
oo e [ e 35 e RS0 (33

Plugging the estimate of Lemma 4.2 into (33) and integrating we see that the contribution of the first region
to B(I2) is O (T d/z) .

(2) Consider now the region where |s; + s2| > 1.
Recall that on €2,

p1+-+pir1 =1, and pia; +---+ par1aq41 = 0. (34)
We use the 2d-dimensional coordinates (a1, v) where v := (p1,p3,...,Pd, b2, .., bas1)-
Then there exists a compactly supported density p = p(a;,r) such that the contribution of the second
region is
Vn dsy Vp d
// (// 51,82, a1,v) pday dv ) (51) 51 Vn(s2) dsy
[s1],]s2]€J1 So
|s14s2]|>1
where

9(31, Sg,al,l/) — e—z’(sl+32)zo\/ﬁein(s1+32)a1 wn(sl)wn(‘”).

To estimate this integral, we integrate by parts with respect to a;. Note that for each k& we have

k
isnai __ 1 d isnai
e = | e .
isn day

k
Fix a large k (for example, we can take k = 8d + 25). The integration by parts amounts to applying (ﬁi) to
e~ s1+52)20Vn ) (51 )4)(s9)]™ which leads to terms formed by products of

{( X ) [e-asﬁwm}}, {(j) [p]}, and {(j) [w<sl>w<82>]”}
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where k1 + ko + ks = k. Note that all of the above expressions depend implicitly on a; because ps and pg41
depend on a; due to the second equation in (34). Rewriting that equation in the form

d+1

a1 + ijbj =0,
=2

0
we obtain 827] = —1/b;, j =2 or d+ 1. We also observe that when we integrate by parts, the boundary terms
a

vanish because p is smooth and has compact support.
Thus, the contribution of the above term to the integral is bounded by the expectation of

(k1/2)+ks ds; d
n _ L. S1 as2
C B P O k3
//;ﬂ |52|€]1 |51 52|k klnk‘ (31)| ’ (52 ‘ |51| |52|

[s1+s2|>

To estimate the above integral we consider two cases, k1 > k— 3 and k; < k — 3.
In the first case, we use trivial bounds |s1| > 1, [sa| > 1, |s1 + s2/¥~% > 1 and |¢"’k3(32)| < 1, and Lemma
4.2 to estimate? ]E(|¢"_k3(51)|) to obtain the upper bound:

C Ol 2 OT2 OT2 C
d/2+k—k1/2—k ds1dsy < =5 S amenE T oedjaris = :
n VETE S sl lsaled n n n VT1ind/?

Since Ty = O(n%/?), Ty = O(n?¥*°) and k = 8d + 25, we have the last inequality. In the second case, we observe
that |s; + so|* 1 > |5 + 52|3. We divide the integration region into two parts.
(a) |s1 + s2| > 0.1|s2|. In this case the integrand is bounded by

C

[s1lls2|*

’¢n7k3(81)‘ )

Using Lemma 4.2 to estimate the expectation of the last term and then performing the integration, we obtain
the bound
n3/?Inn 1 n3/2Inn

= X
nd2TP ~ nieT T2

The second factor is smaller than 1 since T? = K?o?n? and d > 2.
(b) |s1 + s2| < 0.1|s2]. In this case s;’s are of the same order:

51

< <2

1
2
Accordingly, the integrand is bounded by

1
37‘52 + 51| @" T (s1)] @™ (s2)] -
1

To perform the integration over ss, we divide the domain of integration into segments I;(s1) of length of order
1, so that there exists ¢, C' > 0 such that on I,

cfll < sz + s1] < CJi.
Using Lemma 4.3 on each segment, we obtain

nk:352
/ [6" ds Zzs\f<\c} (35)

3
2€J2,|s1+52]<0.1s2 |51 +S2|

where the constant C' does not depend on s;. We now perform the integration over s;. Using Lemma 4.2 we
bound the expectation of the integral by
C ds Cy/n
/2 Tl = d/\Q/; : (36)
R e P Y CVD B B
Multiplying the bounds of (35) and (36), we obtain that the integral over region (b) is also within the bounds
of Proposition 4.1. O

THere we use the fact that Lemma 4.2 applies to any absolutely continuous distribution of (a, p). In particular, it applies to the
integration with respect to the (normalized) Lebesgue measure.
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Proposition 4.1 shows that (by taking K sufficiently large) the contribution from I',, to the L?—limit of
n%2A,, can be made arbitrarily small. On |s| < Ty /o+/n, due to (32), we have

El
V(SaanQ) = <1 o n2d+3 )7

Hence, A, = A, + o(n3%2) where

n T

27 Jys|<Ty jo/n is

A 1 ¢n(8) - é’d(SJ\/ﬁ) efisza\/ﬁds' (37)

In summary, the analysis of Section 4 shows that n%2||A, — A,|[2 = 0 as n — co. Hence, we only need to
analyze n%/?A,, for large n.

5 Contribution of resonant intervals.

5.1 Definition of resonant intervals.

Denote
21k
S =
b1l
and let I be the segment of length 27 centered at s,. Let Ko be a constant such that Ky > K;. Due to the

[bat1]
results of the previous section, it is sufficient to study

An = E Ik
|k|§K2n(d—1)/2

where

k=5
2mi Jp,

~ 1 _“(,nqb"s—é:dsan
z mivsovi 1) 8( 141 <0 s

Zo = o(n=%?) due to [13, Section XVI.2]. Next, E4(so\/n) decays exponentially with respect to n outside of Iq.
So, its contribution to Z is negligible for k& # 0. Accordingly,

. 1

0<|k|<Kaon(d=1)/2

where ) .
Ik: = efisza\/ﬁ ¢ (S)
2 Jp, s

]]‘\s|§T1/O'\/ﬁ ds.

Write
5, = argmax |p(s)|, o(5r) = rre'®r.
sely
Call the interval Iy, resonant if rj} > n~100d and call it non-resonant otherwise. By definition, if the interval
I} is non-resonant, then Z, = O(n~190%). Since there are O(n(¢~1/2) number of intervals (both resonant and
non-resonant), the total contribution of the non-resonant intervals is at most O(n~(1994+1)/2) which is negligible.

So, from now on, we focus only on the contribution of the resonant intervals.

5.2 Asymptotics of the resonant terms.
The following lemma is similar to the results of [8, Section 5.2].

Lemma 5.1. Suppose that

> p100d (38)
and
L ¢ I. (39)
ov/n
Then . ., 3
r 2 - ‘7 n°n
e 0!
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Proof. Let ¢+ = ¢H(#x+6i (k) with |B;(k)| < . Then

d+1
TR = ij cos B3 (k), (40)
j=1
and
d+1
ij sin 3;(k) = 0. (41)
j=1
From (38), we have
Clnn
Tk > 1- . (42)
n
(42) along with (40) give
s Clnn
> piBi(k)? < ==, (43)
j=1

and hence, |3;(k)| < Cy/2. Combining this with (41) we obtain

d+1 1n3/2
Z?WMM=0<YWf>- (44)
=

Next, by the definition of s, %’ (8 + 0) is perpendicular to ¢(5x) and whence

ijaj sin 3;(k) = 0. (45)
J
Let s € Ij, then s = 5;, + J for some §. Using Taylor expansion,
ei(§k+6)aj
o a?6?
= itk iPi(k) <1 +ia;6 — —J2 > +0(6°)
. , 252
= ¢ix (cos Bj(k) + isin B;(k) + ida; cos Bj(k) — da; sin Bj(k)> — €' (cos B; (k) + isin B (k)) ]2 +0(6%).
Thus,
¢(5k +6)
d+1 d+1 252 3/2
o . , aié 1
= ije’(ék+6)“f = e'Php) + Pk ij cos B (k) <iaj§ — 32 ) + O (n 3/2n + 63>
j=1 j=1 K
2¢2 d+1 2 d+1 3/2
— i o0 Sy 1o] . ) d i 2 ) In n 3
= rpe'k <1 - ) + ide'Px lejaj(cosﬁj(k) -1) - ?e k lejaj(cosﬁj(k) —r)+ O (W +6
j= j=

(46)
where we have used (41), (44), (45) as well as
prai+ -+ pay1aa41 =0 and prai +--- +pd+1a§+1 =0

The main term in (46) is the first one since

|cos B;(k) — r| <|cosBi(k) — 1|+ |1 — 1| = O (ﬂj(k)g N lnnn) .
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Hence, using (43), we obtain

B ; 0252 Inn n®?n
252 3/2
i o°d In*“n 4
=rLe ’°<1— 5 >+O<n3/2 +(5>-

) 242 1n3/2
$(5k +0) = et (1- 7 +0 =i - 2” +4° . (47)
2 n3/

Cl
}"} and I/ = I, \ I... Note that, if (42)
n

Clnn
vn

Lemma 2.1 also shows that for s € I}/, |¢(s)|" < n=¢"". So, the contribution of I}’ to Zj, is negligible.

Next, on I;, the error term in (47) is O <1n3 ”) . Hence, the contribution to Zj from I}, is

In summary,

Next, split I, = I;, U I}! where I}, is the part of I}, where {|5 <

holds, then Lemma 2.1 shows that s is close to s;. So, the set {|(5| < } is completely contained in Ij.

n3/2

no - 252 n3 n )
pcinonvioss) (1 A ( 5 ”)) (1+0(8) e~V ds
2mis |6|<CInn/y/n 2 n?/

rn
k ei(ngbkf\/ﬁazgk) /
2miSy |6|<CInn/v/n

n 3
— Tl?_ ei(n¢k—\/ﬁaz§k) (1 +0 (ln n)) / 6—0262n/2—i06\/ﬁz ds.
omisy, Vn 16|<Clnn/

Making the change of variables 0d+/n = t, we can rewrite the last expression as

n,—z%/2 1 3

g€ i(ner—v/noz5y) < <n n))/ —(t+i2)%/2
— K ————=¢€ 1 + O = € dt
QWZSkU\/H \/ﬁ |§|<Colnn

n,—z%/2 1 3
_ k€ inee—vmozsi) (14 o ( 22 —(t+i2)/2 gy
QMiBRon O\ ) LS

rre—"/2 i In®n
= k”  ilndr—vnozsy) (1 ) < >) .
V2mispo/n vn

This completes the proof of the lemma. O

o—0%6*n/2—icb\/mz O (In n/ /) (14 0O(né* +6)) do

5.3 Proof of Lemma 4.3

Proof. Note that if [¢"(s)| < n71%9 then |¢p"~!(s)] < n = and if |¢"(s)| > n 109 then |p(s)| > 1 — %,

and hence, |¢~!(s)| < 2. Therefore
n— n 1
6"~ ()] < 206" ()| + 5z (48)

Thus it suffices to prove the result for [ = 0. We can cover I by a finite number of intervals Ij. For the intervals
where 7} < n 1004 we have
]
> [ el < oo

n p—100d ¥ Ik
T <n

For resonant intervals where 1 > n~1004 and k # 0, the proof of Lemma 5.1 shows that

> [erwis<c |

rp>n—100d 2 I [6|<ClInn/y/n

(1—¢6*)"ds+ O (n=™") =0 <\}ﬁ> :

Finally, the case k = 0 is analyzed in [13, Section XVI.2]. 0
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6 Simplifying the error term.

lnn

As noted above, in the resonant case, Lemma 2.1 gives d(s;) < C . In particular, dist(bg4+15k, bat+15k) <

C ln" because byy1sy € 27Z. So, &, 1= 5, — Sy, satisfies

1
€] < Oy 2
n

Since d(sy) = d(5x) + (9( Sk — 5k), we also have d(sg) < C’\/@,

Noting that b;s; = b kb| we define n; , = fbﬂkb‘ + 27l p, for j = 2,...,d 4+ 1, where [; j, is the unique integer

such that

27kb;
< 2 2nl;, < . (49)
|bar1]
Then, 1441, = 0 and the foregoing discussion gives
Inn
<Oy —. (50)
n
Define the random vector
Xy, = V/nmy,
where 1, is the vector with components (12 k, - - ., N4,k ), and let
k
Vi = pd-1)/2°

Also, for the remainder of the paper, we fix a constant «:

1
0= (51)

The main result of Section 6 is the following.

Proposition 6.1. Let A, (5, K) :=

2mn/ (fal —20)Y;, + (v/nq + zow) - Xk)

|bd+1|6_ 2 Z sm( Tbart

e_XkDa,p'Xk:
”d/zar keS(n,s,K) i
where
S(n,6,K)={k>0|0<Yy <K, |Yp|®|| Xs] < 25T} (52)
and the vectors w = (wa,...,wy) and q = (qq, . .., qq) satisfy
2 m (b — b
Wy = lepzp L= bm) Am = Pm, m=2,...,d. (53)

d+1 ~d+1
Z i 1220 +1 pip;(br — bj)?
Then, given € we can find §, K such that

P <|An A6 K)| > s/nd/2) <e

O
Before proving this, we obtain an approximation for r; and use it to obtain an approximation for Zj.
Sublemma 1. There exists a (d — 1) x (d — 1) matrix D, p such that
i =1 =1 Dap - + OO0, [°) - (54)



An error term in the CLT for discrete random variables 19

Proof. Writing 77 = 9(5x)¢(5k), Sk = s + & and substituting n; x + b;& for b;5, we obtain,

dt1 d
rh=> 0 +2 > pipyeos(br = b;)Ek + ik — 1] + 2arapr cosbasi & +2 Y pip1 cos(bi&h +njk)-
J=1 1>5,j#1 Jj=2
Therefore,
d d
= > il = 0)& + mk — 0jk)® = parapibia&i — Y pipr(bi&k + k)7 + O (51?5 +> Uf,k) :
1>7,5#1 j=2 =2

Note that the implied constants here and below can be chosen to be independent of (a,p) € QM.
Taking 71, = b1 = 0, we can write the above as

r2 = —¢2 Zplpj(bl - 2§k2pzp] )Mk — k) szpj (mk —mjx)> + O (Ek + Z’?z k)

I1>] =1

where the sum in /i is taken over the pairs (I, j) such that [ > j and (I,j) # (d + 1, 1).
Since r,% is approximated by a quadratic polynomial in & (the unknown) we can approximate & by

determining argmax r%(¢), obtaining

€ = _ 2w (be = by) (e — k) o (Imel?)

Zl>j pipj(br — bj)?
d d
Z o Zl +11 pipj (b — bj)njk
d
ED D Bty Plpj(bl —bj)?

O ([lm.11?) - (55)

We recall that by = 0 and 11 x = fa+1,x = 0. Substituting back we find r; in terms of 7; , only. Namely,

[i pup; (b = bj) (e — ﬂj,k)} i

— d
2 2 3
e =1~ pip; (e — Mjk)” + + O Mk |-
2 v ! 215, Ppj (b = b;)? ; ’

—1
Put R — [ZM pip; (b — bﬂﬂ . Then,

re =1+ pip; [pipj(br — b))’ R— 1] (i — njx)?

d
+ > PipiPmPm (b1 = b3) (b — b ) ROk = 05.0) (e = M) + O (Z 77l3,k>

I>j,m>m =1

(1,3)#(m,m)
(1,9),(m,m)#(d+1,1)

d d
i=1-2Y " Di;(ap)mink+O <Z m%) : (56)

1,j=2 =1

Thus,

d d
re=1=" Di;(a,p)mn.+O (Z nik> — 1~ 0 Dap - 1 + OlImel?)

1,j=2 =1

where D, p is the (d — 1) x (d — 1) matrix with
[Dapli,j = Dij(a,p), (57)

proving (54). g
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Lemma 6.2. The matrix D, defined by (57) satisfies

722 n
e * /2 (1 =mDap -0y + O, l*)) pindr—iskzo\/A

I = 1+o0(1
g 2o Sk ( )
where 1, = (N2, - - - Nd,k)- O
Proof. Follows directly from Lemma 5.1 and (54). O

We next consider the Z; at the two ends. Let B(a, p) be the contribution of these boundary terms, i.e. from

T
k such that +—— € I,. By Lemma 4.3,
o\/n

NG

C
< —.
B(a,p) < T

Recalling that 77 = Kyon%?2, we see that we can make nd/zB(a, p) as small as we wish by taking K; large. So,
from now on, we ignore these terms.

Lemma 6.3. Let
Lot = Tidjgjont/ajn, f2t 2141

For all sufficiently large K > 0, there is a constant ¢ such that

= 1
E > Y, 1Tl =0 <nd/22K<d1> exp (522K)>

0<|k|<Kn(d=1)/2

where the sum in Y is over [ satisfying [ > K and 2! < % ;4“‘” O

Remark 6. We could restrict to [ satisfying [ > K and 2! < Kknli V/i“” since, by the discussion at the beginning
of Section 6, it is enough to consider the intervals satisfying (50) and we can take K > C where C' is the constant
from (50). O

The proof of the above lemma will be given in Section 7. Theorem 6.3 shows that we should focus on the
contribution of Zj, ; with
0< |k] < Kon@=D/2 and | < K.

Next, we prove a result that allows us to simplify A,, even further. Recall that we are dealing with resonant
k, that is, we assume that r}} > n—100d

Lemma 6.4. (a) 5, = s — w - 0, + O(||n4]|?) where w = w(a,p) is the 1 x (d — 1) vector defined in (53).
(b) If [Imy |l = O (IHTZ) then ngy = nspar + npano k. + -+ + npana,x + o(1). O

Proof. Since 35, — s, = & part (a) follows by (55).
Recall that ¢(5;) = rre’®*, and by (47)

%% n
¢r = arg ¢(s) + O <|§k — el + ng/g> .

Note that, _ _ _
¢(5k) — eZSkal (pl + p2€'“72‘k 4+ .. +pd6“7d,1« +pd+1)-
Thus,
S. + e + S. N
arg(o(on)) = span +tan? (P T b )
P1+p2cosng g+ -+ PaCcoSnNgk + Pdt1
d
— spar+ 3 o+ O(Imel)
1=2

since the denominator in the first line is 1 + O(||n,]|?). Part (b) now follows easily. O
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Proof of Proposition 6.1. First, we show that it is enough to consider Z;, ; when
onld=D/2 < k| < Kon(4=Y/2 and 1< Ky

for appropriately chosen ¢ and K.
Recall from Section 5.1 that

A 1
A= Y Tito (W>
0<|k|<Kaonld=1)/2
for K > K. By Theorem 6.3, the contribution of 7, ; with
0 < [k| < Kon™1/2 and 1> K,

can be made arbitrarily small by choosing K> large.
Next, we claim that the distribution of 1, has bounded density. Since (a,p) has a bounded density on®

QIJQ\/ s the vector
( >
|bd+1‘ ’ ' |bd+1|

has a bounded density on VM := {(@1,...,2a-1)Vj w(@M) " <z; < 2M/<fl} . Let L denote the supremum
of the density of b. Since 7, is obtained by rescaling b by 27k and taking mod 2, its density is bounded by

L {471'Mk—‘ < AML

(58)

— X
2k K K

where the second factor on the LHS accounts for the multiplicity of the fractional part on V;*. Since the RHS
of (58) is independent of k, the claim follows.

Next, define
Ay = {(a,p)| Ty = 0 Vk, I s.t. 0 < |k| < on'@D/2 and | < K>}.
Then
Ai = {(a, p)| Jk,l1st.0< |k| < 5n(d71)/2, | < Ko, llk\“n”“llnkHE[2Z721+1) = 1}
={(a,p)| Tk s.t. 0 < [k < 6nl=D/2 [k|*n!/ 4|, || < 2821}
Thus,

PUAH Y Pk < 2 (59)
0<|k|<dnld=1)/2
C 2(K2+1)(d—1)

< Z |k|(d=Dap(d-1)/4
0<|k|<dn(d=1)/2

-0 (\/32(K2+1)(d_1))

where o = [2(d — 1)]7! (see (51)) and the probability estimate follows from 7, having a bounded density.
Hence, for K> and § such that /622411 is gmall, we can approximate A,, by the sum of Z;’s with
§ < |kln=U=1/2 < Ky and [k|*nt/4||n,|| < 25+
Combining terms corresponding to k and —k, we obtain the following approximation to the distribution of
A, for large n
|basale /2
nd/20\/273 keS(n,8,K)

for appropriate choices of K and 0, and where S(n,d, K) is defined in (52). The restriction Y > ¢ in S(n, d, K)
comes from (59), the upper bound Y < K comes from (37), and the restriction |Y3|®|| Xz|| < 25+ comes from
Lemma 6.3. We have also used Theorem 6.4(a) and the fact that |sgx| > con(?=1/2 in the region we consider to
replace Si by sg.

Recall (see (53)) that q := (pa, ..., pq). Lemma 6.4(b) shows that

nér — skzo/n = sg(na; — zo/n) +nq - ny, + zov/nw -, + o(1)

Z sin(negy — §k20\/ﬁ)e—xwa,p-xk
Yy

2mn /2
= bari] (Vna; — 20)Yy + (vVnq + zow) - X + o(1).
d+1
Therefore, for large n and K and ¢ such that V62(E+AD(@=1) g very small, the distribution of A, is well
approximated by A, (d, K) completing the proof of the proposition. O

8Recall that QM is defined by (27).
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7 Expectation of the characteristic function.

Proof of Lemma 4.2. As in the proof of Lemma 4.3, the inequality (48) shows that is suffices to consider the case
I =0. Recall that d(s) = maxo<;<q+1 d(bjs,0) where the distance is computed on the torus R/(27Z). Lemma
2.1 shows that there is a positive constant ¢ such that
6" (5)] < emen ", (60)

To prove the lemma we decompose E(e*md(s)g) into the pieces where d(s)\/n is of order 2! for some
I < (logyn)/2.

Since P has a bounded density, the distribution of the (bys,...,bg;15) has bounded density on T where
the bound is uniform for |s| > 1. Hence

Pci <d(s) <c) =0 (cg - c‘f)
for all 0 < ¢1 < ¢g < 1 uniformly in |s| > 1. Therefore,

(logy n)/2

1
E (|¢"(s)]) < CP (d(s) < f) +C ) P (d(s)vne 2,2 et
n
1=0
(logy n)/2
C 240 C
S /2 +C a2 € = e
1=0
where the constant C' can be chosen uniformly for all |s| > 1. This completes the proof. 0

Proof of Lemma 6.3. Since, by (54), 7 = 1 — 0, Dap - 0, + O(|n4|*>) where the implied constant is indepen-
dent of (a,p) € QM and |k|*n'/*|n,| € [2%,2F), we have
4[
e
where c is independent of (a, p). Accordingly,

22l m
rp < Ce k1P,

Also, similarly to the proof of Lemma 4.2, we get

I(d—1
P(ef /Yl € [, 241) < 22
Hence,
Ce™ Cf;,lz‘f 9l(d—1) O2l(d71)6*%
E(|Zy,]) < VAl /TR = Tkpn@tn/a
Thus,
— CK(d-1) = L

ZEUIHD = |k|3/2n(d+1)/4
l

Therefore, we need to estimate

22K
C2K(d_1)€_ [k|2c

|k|3/2n(d+1)/4

>

0<|k|<Kn(d=1)/2

C 1 22K (d—1)p(d=1)/2 _ 22K ym
“wE 2 Ikl\/ Ca o

0<|k|<Kn(d=1)/2

Split the sum over

Kn(d-1/2 fpd-1)/2
e | Ko B
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1
Ka1
k2> = O (") .
9T
So, each term in the sum (61) is of order

9K (d—1)+(3q/2) 2E+as
—— 5 exXp| ———— | .

for ¢ € N. Then, for a fixed ¢ we have

K3/2p(d—1)/2 KT

Knld-1/2
29

o <2K(d—1>+q/z 22K+t
—— exXp| ——— =
VK K71
9K (d—1) 22K 21/2 2/(d—1)
O exp | — x O[22 exp |- ( > }
( VK p< Kdil>> P VK

The number of terms in (62) is O < ) Hence, the sum over k in (62) is

Sincel 2/d1)
24/2 B
ZQQ/Qexp l— (i/ﬁ) <CVK (63)
q
we obtain the lemma upon taking ¢ < ¢/K T O

8 Relation to homogeneous flows.

Given u € R4! v € R consider the following function on the space M of unimodular lattices in R¢:

sin2r(u-x+vY) _42xp. x
Z(L;u,v) = Z y e TRPar X s i amye x| <2K 1} (64)
(y,x)eL\{0}

Define v = (ijﬁ’ R %) . Introduce the following matrices

(1 ~ e @1 0

Hy = <0T Id—l) ’ G = ( 0" elly1)’

Then, we get

/2 A |basa]e*"/2

n“?A, (6, K) = WZ(E(n,a);u, v), (65)
where aj2

u=+nq+zow, v= L(\/ﬁal —20), (66)

[ba1]

w and q are given by (53), and £(n,a) is the unimodular lattice Z¢ Hy Gincn) -
2

To see this, note that, for an arbitrary vector (k,may,... ,max) € Z%,

—(d—1)/2 NG
o n n-y
(kj,mg)k,... ,md,k) H7 Gw —(k,mg,k,... ,md,k) ( OT \/ﬁfd1>

:
- (W’ﬁk'ﬁﬁ(m“"” ’md’k)>

= (Yi, 2m) "X +Vn(mog — Lok - - s mak — Lak))

Proposition 8.1.
o0
9To see this, one can, for example compare the sum in (63) with the integral / exp (—c(x/\/ K)Z/(d*U) dez =0 (\/ K) .
0
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where Y, and X, are as in Proposition 6.1 and [;; are given by (49). Note that the second term has norm at
least \/n unless m; = {; 1, for j = 2,...,d. It follows that the only term which contributes to the RHS of (64)
is the term with m; , = ¢; ;, justifying (64) and (65).
Let w;(n,a) = (y;j(n,a),x;(n,a)), j =1,...,d with y; € R and x; € R?~! be the shortest spanning set of
L(n,a). Put
0;(n,(a,p)) =u-x;(n,a) +vy;(n,a), j=1,...,d.

If (a, p) is distributed according to P then the distribution of the random vector

((a,p), L(n,a),6(n, (a,p)))
converges to P x 1 as n — 0o, where 1 is the Haar measure on
[SL4(R)/SLa(Z)] x T¢.
O

If we restrict our attention only to ((a,p),L(n,a)) then the result is standard (see [20, Theorem 5.8], as
well as [11, 16, 21]). We refer the readers to [7, Theorem 3], [24] and the references therein for extensions to
[SL4(R)/SL4(Z)] x (T%)? under various conditions. Our proof of Proposition 8.1 follows the approach of the
proof of Proposition 5.1 in [9].

Proof. We need to show that for each bounded smooth test function f,

[ 7((@p). £in,a). 000, (a,p))) aP 7((a.p). £.0) dP dL 6 (67)
Q QXM xTe
asn — oo. Write the Fourier series expansion of f with respect to 6

f((a,p), L(n,a),0) = > fi((a,p), L(n,a)) 7. (68)

k=(k1,....kq) €L

Then, it is enough to prove (67) for individual terms in (68).
If k = 0 then by [20, Theorem 5.8] we can conclude that

/ fo((a,p), L(n,a))dP — fo((a,p), L) dP dL d
Q QX M xTd

as m — 00.
Next, assume that k # 0. Since €2 is 2d dimensional, we can use

(a17y) = (a17 (p17p37 cee apdab27 .- '7bd+1))

as local coordinates. In these coordinates, £ is independent of a;. Hence, y;’s and x;’s are independent of a;.
Note that there exists a compactly supported density p = p(a1,v) such that

Jn,k _ /fk e27rik-9 dP = //627ri(vzyjijrchijwx]'Jr\/ﬁE qu.xj)(fk P) day dv (69)
where we recall that v is defined in (66). Note that
/ fi €270 qg, . dfydPdL =0
TdxQx M

because
/ 2049, ... dfy = 0.
']I‘d

Therefore, it is enough to prove that J,, x converges to 0 as n — oo.
To this end, we use integration by parts as follows. Define
(D250 g

glay,v)y =€ """ Taml "= ein TV 2o (w)a;
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where ¢(v) = =2k anq

[bay1|

n /QZyij

an0) = (ephan, e 2 (TR A s oot VEE k)

Then, the inner integral in (69) is [ g(a1,v)h(a1,v)da; .
Let € > 0. On the set Qx = {¢(v) > €}, we can write

_ 1 iayn(D/2 ()
g(al,u) da1 = Wde .

Integrating by parts on Qk (note that h has compact support) and using trivial bounds on @Y., we can conclude
that

d+1)/2

iain! o (v) oh
&
| S gt o

__cC
= @z |

|Jn,k| < C'max
v

+CP({¢(v) <e})

day + CP({¢(v) <¢})

Oh
87(11(@17 V)

for small enough €. But

h
P (an,) = (),
and hence, the first term is O (1/+/n). Therefore, first taking n — oo and then taking e — 0 we have the required
result. t
Recall the definitions of (y,x)(m) and #(m) given by (11) and (12), respectively. With this notation,

Proposition 8.1 implies that as n — oo the distribution of n%/2A,, (5 K) converges to the distribution of

. —ay|e=*/2 sin 270(m) 2
R (£, y) o= 1821 il SRR ity (70)
20(a,p)v2m3 mez {0} y(m)
wherel
U5 = {0 < [y(m)| < K, 2 [y(m)|*[x(m)|| < 25+ (71)

and (£, x) € M is distributed according to u. Therefore, Theorem 1.3* follows from the result below.
Lemma 8.2. X(%9) converges in law as K — 0o and § — 0 to the random variable X' given by (24). O

Lemma 8.2, proven in Section 10, completes the proof of Theorem 1.3%*.

9 Finite Intervals.

The proofs of Theorems 1.5 and 1.6 are similar to the proofs of Theorems 1.1 and 1.3 so we just explain the
necessary changes leaving the details to the readers.

Proof of Theorem 1.5. The random vector (14) can be approximated by (21, Z(2)) where Z() are defined as
in (64) but with u and v replaced by

nd/2

u? = /nq + ziow and v = ——(/nay — z0)
 Jbara|

respectively. Define 8 as in Proposition 8.1 but u and v replaced by u and v(®.
To complete the proof, we prove an analogue of Proposition 8.1. Namely, we prove that the distribution of

((a,p), L(n,),0" (n, (a,p)), 0 (n, (a,p)))

converges to P x u/ as n — oo where i/ is the Haar measure on [SLg(R)/SLq(Z)] x T4 x T4,

INote that (70) contains an additional factor of 2 in the denominator comparing with (65). This is because in (70) the sum is over
all lattice vectors (see (71)) while in (65) we only consider the vectors with positive y coordinate.
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As in the proof of Proposition 8.1, we prove that for individual terms in the Fourier series of a smooth
function f on [SL4(R)/SLa(Z)] x T x T4

Z fier 1 (2, p),ﬁ(ma)) e2m‘[k1.9(1>+k2.(0(1)_0(2>)]
(k1,k2)€Zdx 24

we have
nger s = / frerter (2, D), £(n, @))e2illr 0 e (0 =60 gp
Q

L, / fir ko (a, p), £)e2milka @11k (0126201 4P 4 19, 4D,
QXM XTEXTE

The case k; = ko = 0 follows from [20, Theorem 5.8]. Note that

ZyijJ‘ — Zk2’jw . Xj) g.

If k1 = 0 choose appropriate local coordinates in which ¢ is a coordinate. Integrating by parts with respect to
o = o(a,p) and using |21 (n) — z9(n)|n¥/? — oo, we see that J,, g, — 0 as n — oc.

If ky # 0, then using the same local coordinates (a1, V) as in the proof of Proposition 8.1, we can integrate
by parts to conclude that J,x, x, =0 as n — co. The proof follows through because the leading term of
ki - 00 +ky - (0W) — 0@ is still nd+D/2p(v)a,. O

nd/2

ks - (0(1) _ 0(2)) = (22(71) — Zl(n)) <|bd+1|

Proof of Theorem 1.6. To prove part (a) pick & < e. Applying Theorem 1.1 we obtain that for almost every
(a,p)

S, e
P <Zl =ovm S ZQ) = Euna2) = Eaa(20) + O (7 P) (72)

= (21l + O(12) + Ol /v/m) + O (n~(49/2) (73)

According to the assumptions of part (a), the first term is much larger than the remaining terms proving the
result.
The proof of part (b) is similar except that we apply Theorem 1.5 instead of Theorem 1.1. So, we only get

convergence in law.
c‘ad+1 —a1 | .

To prove part (c) we first prove the following analogue of Theorem 1.5 in the case where 2o = 21 + povyipe

i - (5 52) - (3552

converges in law to a random vector (X1, X3)(L, 0, ¢) where

o llx(m)|?

(X1, X)(L,6,¢) = Z T y(m)

meZ3\{0}

(sin 6(m), sin(f(m) — cy(m))) .

Once this convergence is established, the proof of part (c) is the same as the proof of part (b). The proof of
convergence is similar to the proof of Theorem 1.5 except that 6" and 6 are now not independent. Namely,
using the same notation as in the proof of Theorem 1.5 we have that

u® =u® 40 (n_d/2> and v =M — ¢, (74)

By Proposition 8.1 (L(n,a),0" (n,a)), converges as n — oo to (L£*,8*) where (£*,0%) is distributed
according to the Haar measure on SLg(R)/SL4(Z) x T?. Combining this fact with (74) we obtain that
(L(n,a),0V (n,a),0? (n,a)) converges as n — co to (E*,B*,@*) where (L£*,0%) is distributed according to
the Haar measure on SLq(R)/SL4(Z) x T¢ and 9; = 0] — cy;. This justifies the formula for (Xy, Xy). O
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10 Convergence of X.

We need some background information. Given a piecewise smooth compactly supported function g : R — R,
its Siegel transform is a function on the space of lattices defined by

weLl\{0}
An identity of Siegel, see ([19, Section 3.7] or [22, Lecture XV]) says that
Be(S(e) = [ g(wlaw. (75)
R
In particular, if B is a (bounded) set in R? with piecewise smooth boundary not containing 0 then
P(LNB#0) <P(S(1p)(£) 2 1) < EL(5(1p)) = Vol(B). (76)
We shall use the following consequence of this result.

Lemma 10.1. Let 8 > d. Then for almost every lattice £, there exist C = C(L) such that for all w € £\ {0}
it holds |y(w)| > C||w]|=*. O

Proof. For k > 1 let B, € R? denote the following set
By ={(x,9) e R x R: |[x]| € [k, k + 1), |y| < k~7},

and denote Dy, = {L: LN By, # 0}. By (76), Pz(Dx) < Kk9~1=P. Since 8 > d,

ZPL(Dk) < 0.

k

So, by the Borel-Cantelli Lemma, for almost every L, there exists k(L) such that £ N By = () for k > ko. Since
L contains finitely many vectors satisfying ||w|| < ko, we can choose C'(£) < 1 so small that |y(w)| > C|w|~#
for all non-zero w in the ball of radius kg. The result follows.

Proof of Lemma 1.4. Let LT = {w € L : y(w) > 0}. Since

sin(2my(w))
y(w)

is even, and almost every lattice contains no vectors w with y(w) = 0 and w # 0 (this follows immediately from
Lemma 10.1), it is enough to restrict the attention to w € £*. Throughout the proof we fix two numbers ¢ > 0
and 7 < 1 such that e < (1 —7) < 1.

By applying Lemma 10.1 with 5 = d + 1, for almost all £ we have

i 2 €
3 s 2mX(W) | a(w)l?| < S CfjwdttenwI?

\%%
wezt: aiziwe Y weL+

converges absolutely. Hence, it suffices to establish the convergence of
T e 3 S0 20 (W) (w2
, e (W)
weLt: [z(w)||<[wle<R

Let R; = 2k 4427k i =0,..., L2(1_T)kj. To prove the convergence of X', we will show that almost all £ and
almost all x satisfy the two estimates below:

Y sequences {ji}, /'\_’Rj converges as k — 0o, (77)

Kok

max sup ‘/'?R—A_’Rj}k — 0 as k — oo. (78)
J Rj,k§R<Rj+1,k
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To prove (77), let
S 2mX (W) —flaw)il?

S, =
ok y(w)

weLt: [la(w) | <[[wl, Ryn<lwll<Rjs1.

Using that E, (sin(2r(x(w)))) = 0 and for wy # £wso,

E, (sin(2m(x(w1))) sin(27(x(w2)))) = 0,
we see that E, (S} ;) =0 and

e2lx(w)|?

Var, (Sj) = >

2y%(w)
weLt: o (w) | <IIwle Ry 5 <[lwl|< Ry 41,k

1
< gy Card(w = z(w)| < lw]%, Ryk < [lw]| < Rjs1x)
C(£)
< 92k
< Cf(ﬁ)2(‘l’+€(d—1)—2)k‘.

Vol(w : [[z(w)|| < [[w]|%, Rjr < W] < Rjt1k)

Hence, by Chebyshev’s inequality for each j
P (18541 2 270779%) < Oejaler v ok,

Therefore
Py (371 IS5l > 2707 < Oyptatarn 2k,

Thus, if ¢ is sufficiently small and 7 is sufficiently close to 1 then Borel-Cantelli Lemma shows that for almost
every X, if k is large enough, then for all j, |S; | < 2~(1=7+)* "and thus, Z IS k| < 27°F proving (77). Likewise,
J

_ _ 1 )
<Su<p XR - XRJ-,,J S Z m e ||:c(w)|\
Rjp SRRy weLt: o(w) || <Iwl 1wl €[R k0 By 11.5)

< C(L)27 " Vol(w : [|a(w)|| < Wl Ryx < W]l < Rjsap) < C(£)207 (07070
proving (78). Lemma 1.4 is established. O

Proof of Lemma 8.2. Given a domain U € R< let

_ sin27f(m) _,. 2, x
XU(£>X) = Z y(m() )6 o Dap ]].u.
meZ\{0}

Then )
PES) _ g1 —agle /2 o

X
20(a,p)Vv2m3 tics

where Uk 5 is given by (71). Let I'r = ABRr where Bp is the ball of radius R centered at the origin and A is the
linear map given by (26). Lemma 1.4 (after the change of variables £ — AL) tells us that X, (L, x) — X (£, x)
as R — oo almost surely where X = Apa. Therefore it suffices to show that for each 7 there exist 6y and K,
such if § < §p and K > Kj then

P (| 0 — Hises

>n)<n.

2K /52

Note that U 5 C T'yx 52 (for sufficiently small J) and so

S S sin270(m) _, . 2.p .«
XF — XMK,S = Z #e 4 Du,p ]]-F

y(m)

oK /52 oK 52 \UK 5"

mezZ\{0}

Below, we choose K so large and ¢ so small that

P (™A 5) <n/100 (80)
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where 2 5 is the set of lattices £ satisfying the following conditions:
(i) the shortest non-zero vector in £ is longer than 36°;
(ii) w = (x,y) € L then |y| > max(K,1/8)||w]~@+D;
(iii) £ contains no vectors (x,y) with |y| < ¢ and 27 ||x|| < §~
It is easy to see using (76) that the measure of lattices not satisfying at least one of the above conditions
is small (cf. the proof of Lemma 10.1). We now estimate the contribution to (79) coming from six different
regions in FQK/52 \UK,(;.

1/2d

(1) Consider first the terms with ||x|| > ||w||®. Then for £ € Ax s each term in the sum is bounded by
C|lw||4+te=<IwI™  We now consider several cases depending on the restrictions on y.
(a) If |y| > K then ||w| > K and so the sum over this region is bounded (in absolute value) by

Wiy = Z CHWHdJrlefcuwH%'
weLl: [|[wl|>K

By the Siegel identity, (75), Ez(Wiala, ;) < Ce=?K" and so the contribution coming from domain (1a) is
negligible in view of the Markov inequality.
(b) If § < |y| < K, then 27 |y|*|x|| > 2K+! whence ||x|| > 25 /(7rK®). Denoting by Wy, the contribution
from this region we obtain using property (ii) of the definition of A 5 that
Wi < Z C«HdeJrlechwHZe'
WEL: [lw|[>2K /(nK®)

Hence, by (75), Ex(Wiplay, ;) < Ce=2""/K** which shows that the contribution from the region (1b) is
negligible in view of the Markov inequality.
(c) If |y| < 4, then ||w]|| > |x|| > 6~/2?/(2r) because L € Ak 5. Hence, if W, denotes the contribution of

the terms from (1c), then, similarly to the case (1b), Ex (Wi lg, ;) < Ce ™ """ and the contribution of region
(1c) is negligible as well.

(2) Now we discuss the terms with ||x|| < ||wl]|¢.

Again, we shall consider three cases

(a) |y| > K. Note that in case (2) we have ||x||*/¢ < ||w]|| < x|+ |y|. Therefore |y| > ||x||*/c — ||x|| >
(|]x]|/2)'/¢ for sufficiently large ||x||. So, ||x|| < 2|y|°. Thus taking the L?—mnorm and integrating first with
respect to y we get the L2—norm of the terms in (2a) is bounded by

C 1 C
B > ¥ fc/l 2V S

2
x||<2|yls,ly|>K Y
(x»y)€£ﬂ(F2K/52\UK,S)Q{MZK} <2yl vl

where the first inequality relies on (75).

(b) 6 < |y| < K. In this case, ||x||*/¢ < ||x|| + K. Thus, K > ||x||*/¢ — ||x|| > (||x]|/2)*/¢ for sufficiently large
Ix|l. So, ||x|| < 2K¢ < K, and hence, (x,y) € Uk 5. So, the region (2b) does not contribute to our sum.

(c) ly| < 8. In this case, [|w]| < ||x]| + |y| < 36°. However, (ii) implies that ||w| > 6=2/(¢+1) Hence, this case
is impossible.

Combining the six cases considered above, we obtain the result. O
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