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1. Introduction.

In this paper we develop a symbolic dynamics approach to a problem
of studing of dimensional characteristics of the set of bounded geodesics on
manifolds of negative curvature.

Recall that an orbit of a flow on a non-compact manifold is called bounded
if it is confined to a compact set. A bounded geodesic is a bounded orbit of
the geodesic flow.

The problem under consideration goes back to the classical theorem of
Jarnik and Besicovitch which states that the set of badly approximable num-
bers on the segment [0, 1] has Hausdorff dimension equal to 1. Recall that
a real number x is called badly approximable if for any rational p

q
one has

|x− p

q
| > C(x)

q2 . The equivalent definitions are the following: x is badly approx-

imable if the partial convergents of its continued fraction kj(x) are bounded
or if the closure of the x-orbit by the Kuzmin-Gauss map x → { 1

x
} does not

contain 0.
The above-mentioned result can be reformulated in another way. Con-

sider the modular surface Q on the Poincare model of the Lobachevsky plane.
A geodesic on Q is bounded if and only if both its endpoints are badly ap-
proximable. Thus the Jarnik-Besicovitch theorem is equivalent to the fact
that the Hausdorff dimension of the set of bounded geodesics on the unit
tangent bundle to Q equals 3.

This result was generalized to the manifolds of the constant negative cur-
vature having finitely generated fundamental groups by Patterson [Pt], Stra-
mann [St], Fernandez & Melian [FM] and Bishop & Jones [BJ] and to cofinite
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manifolds of (variable) non-positive curvature by Dani ([D1], [D2]). In all
cases considered the Hausdorff dimension of the set of bounded geodesics
is equal to the Hausdorff dimension of the set of recurrent geodesics, i.e.
those whose forward and backward rays spend each an infinite time in some
compact region.

Note that the set of bounded geodesics has zero Liouville-Patterson mea-
sure by the ergodicity of the geodesic flow. However, the above mentioned
statement is not so surprising because geodesic flows on manifolds of nega-
tive curvature have an abundance of invariant measures so that the set of
non-typical points for any of them is quite large.

Another generalization of the Jarnik-Besicovitch theorem comes from
the third definition of badly approximable number. Namely, one may ask
whether, for an arbitrary Anosov system on a compact manifold it is true
that the dimension of the set of orbits whose closure does not contain some
point (or a small set of points A) equals the dimension of the phase space.
This question also makes sense in the non-compact case if we restrict our-
selves to the set of recurrent points (since a non-recurrent trajectory has no
either backward or forward limit points). The affirmative answer was given
in [D3] for the algebraic automorphism of the torus in the case of a countable
set A.

It is interesting, therefore, to know how large the set A so that this
theorem remains true. Two of the simplest cases are described in this paper.
We start with the analysis of one-dimensional piecewise expanding maps.
Theorem 2. Let f be a piecewise expanding map of an interval I and
suppose A ⊂ I has Hausdorff dimension less than 1. Then the Hausdorff di-
mension of the set of points whose f -orbits do not have limit points belonging
to A equals 1.

As was observed by Manning ([M]), for studying such kinds of sets it is
useful to have a nice symbolic representation because then the orbits not
visiting some region have simple enough symbolic description. However in
our case even the construction of an infinite Markovian partition is quite
difficult if we want the exceptional set to have zero Lesbegue measure. The
situation changes completely if we require that the set in which our dynamics
is well-defined be large only in the dimensional sense (cf [K],[MS]). Namely,
we can find an invariant subset of the dimension close to 1, so that the
restriction of our map to this set is a subshift of finite type with a finite
number of states. This is proven in Section 4. This fact allows us to derive
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theorem 2 from the following statement.
Theorem 1. Let (Σ+, σ) be an one-sided subshift of finite type and let
A ⊂ Σ+ be a subset such that the topological entropy of A with respect to
σ is less than the topological entropy of the whole space h(Σ+). Then the
topological entropy of the set of points whose σ-orbits do not have limit points
belonging to A equals h(Σ+).

Theorem 1 is proven in Section 3. The proof requires only simple combi-
natorial estimations.

In Section 5 we study the case of an Anosov diffeomorphism f on a
compact surface. The result is the following.
Theorem 3. Let f be an Anosov diffeomorphism of the two-dimensional
torus M and denote by H the Hausdorff dimension of SBR-measure. Sup-
pose that A ⊂ M has the Hausdorff dimension less than H. Then the Haus-
dorff dimension of the set of points whose f -orbits do not have limit points
belonging to A equals 2. Conversely, for any s > H one can find a set A of
the Hausdorff dimension less than s for which the above statement fails.

Roughly speaking, if the intersection of the set A with the set of the typ-
ical points with respect to the SBR measure is small, then there are quite a
lot orbits avoiding A, but on the other hand a majority (in the dimensional
sense) of orbits possess limit points with ’almost typical’ behaviour. Theorem
3 is proven in paragraphs 1−5. The optimality of the estimate given there is
proven in paragraphs 6− 9. In Section 6 we consider a uniformly C2 Anosov
flow gt on a connected (non-compact) Riemannian manifold M of bounded
sectional curvature. It turns out that the most convenient dimensional char-
acteristic to work with is the dimension with respect to a dynamical system
introduced by Pesin in [P2], because this dimension takes into account the
distortion properties of gt. In paragraph 2.5 we recall this definition adapted
to our situation.

In paragraphs 2 − 4 of Section 6 we prove the following main theorem:
Theorem 4. The dimension with respect to gt of the intersection of any
unstable manifold with the set of forward bounded orbits equals the dimension
with respect to gt of the intersection of this manifold with the set of forward
recurrent orbits.

Our arguments provide also the following statement.
Corollary 1. The dimension with respect to gt of the intersection of
any unstable manifold with the set of forward bounded orbits depends lower
semicontinuously on gt in the C2 metric.
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The proof of theorem 4 is very similar to that of theorem 2. It depends on
the theory of self-similar sets. Necessary facts are given in paragraphs 5, 6.

Theorem 4 allows to treat most of the results from above mentioned
papers from a unified point of view, as well as to obtain some new facts. In
paragraphs 7, 8 we derive from theorem 4 the following corollary.
Theorem 5. Let either 1) dim M = 3 or
2) gt be the geodesic flow on a manifold of the constant negative curvature or
3) gt have a finite smooth invariant measure.
Then the Hausdorff dimension of the set of forward bounded orbits equals the
Hausdorff dimension of the set of forward recurrent orbits.

The orbits whose limit points do not belong to a countable set are dis-
cussed in paragraph 9 where we show the following:
Theorem 6. The dimension with respect to gt of the intersection of any
unstable manifold with the set of bounded orbits whose limit set does not
intersect a countable set {bi} equals the dimension with respect to gt of the
intersection of this manifold with the set of recurrent orbits.
Corollary 2. Under the assumptions of theorem 3, the corresponding
result holds for the Hausdorff dimension. The arguments of Section 6 or the
construction of a suspended flow give
Corollary 3. The results of theorems 4 − 6 and corollaries 1 and 2 hold
also for uniformly C2 Anosov diffeomorphisms.
We do not give the detailed proof of these statements because after we obtain
the symbolic dynamics the proof can be completed by various methods, for
example, by one we use in Section 3.
In the case of the existence of a finite smooth invariant measure the geometric
approach developed by Schmidt, Dani, Aravinda and Leuzinger is also very
powerful. For example, the author does not know a dynamical proof of the
following theorem of Dani [D3]:
Proposition 1. Denote by Tn the n−dimensional torus and let A be
the set {x ∈ Tn : for all semisimple surjective endomorphisms f of Tn the
closure of the (x, f)− orbit does not intersect Qn/Zn}. Then the Hausdorff
dimension of A equals n.
Some interesting results for orbits of flows on finite volume homogenious
spaces were obtained recently by Kleinbock & Margulis in [KM].
We use a separate enumeration of lemmas, propositions,formulae and con-
stants in each section. We refer to, for example, lemma 1 of Section 2 as
lemma 2.1. However the enumeration of theorems and corollaries agrees with
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that given in Section 1. In Section 2 we introduce the notation used in this
paper and provide the reader with some background from ergodic theory.
2. Background.

1) In this section we introduce our notation and collect some facts from
the general theory of dynamical systems which will be used throughout this
paper.

We study some dimensional characteristics which are defined as follows.
Given collections of sets Vε (ε ∈ R) such that Vε1 ⊂ Vε2 for ε1 < ε2 and
functions ws :

⋃
ε

Vε → R+ (s ∈ R+) such that for fixed v ⊂ Vε (ε ≤ ε0) ws

is decreasing and ∀s1, s2 : s2 > s1 lim
ε→0

sup
v∈Vε

ws1 (v)

ws2 (v)
= 0, we define for every set

A a measure
ms

ε(A) = inf
vi∈Vε
A⊂∪vi

∑
ws(vi).

Clearly, ms
ε(A) increases as ε decreases and hence there exists the limit

ms(A) = lim
ε→0

ms
ε(A) which can be a positive number, zero or infinity. More-

over, under our assumptions it holds that if ms0(A) > 0 then ∀s < s0 ms(A) =
+∞ and if ms0(A) < +∞ then ∀s > s0 ms(A) = 0. So, we can define the
magnitude dm(A) = inf{s : ms(A) = 0} = sup{s : ms(A) = +∞} which is
called the dimension of A corresponding to the measure ms

ε(A).
For example, the Hausdorff dimension HD(A) is the dimension corre-

sponding to the measure

hs
ε(A) = inf

|Vi|<ε

A⊂∪Vi

∑
i

|Vi|
s,

where the infimum is taken over all coverings of A by balls Vi with diameters
|Vi| less than ε.

Another magnitude we shall deal with is the topological entropy ([B1]).
Given a continuous map f of a compact set X to itself, and a subset Y ⊂ X
we consider for any open covering U = (U1, U2, . . . Un) of X the dimension
h(Y, U), corresponding to the measure

hs
ε(Y, U) = inf

N(Vi)>
1
ε

Y ⊂
⋃
i

Vi

∑
e−N(Vi)s,
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where the Vi are sets of the form Vi =
N(Vi)−1⋂

j=0
f−jUkj(i). The topological

entropy of Y with respect to f is h(Y, f) = sup
U

h(Y, U), where the supremum

is taken over all open coverings of X. Finally, the topological entropy of f
htop(f) is the topological entropy of X with respect to f.

The dimension with respect to a dynamical system ([P2]) is defined in
paragraph 4.

2) In this paragraph we introduce the fractals we deal with.
Given a semigroup {gt} (t ∈ R+ or t ∈ Z+) acting on a metric space M

we denote by Lim+(m) the set of limit points of the gt−orbit of the point
m. In Section 4 we consider different semigroups {fn} n ∈ Z+ and write
Lim+(m, f) when the second argument is not clear from the context. The set
of forward bounded orbits B+ can be defined as B+ = {m ∈ M ∃a ∈ M, ρ >
0 : ∀t ≥ 0 gt(m) ∈ B(a, ρ)} and the set of forward recurrent trajectories R+

as R+ = {m ∈ M ∃a ∈ M, ρ > 0 : ∀T ≥ 0 ∃t > T gt(m) ∈ B(a, ρ)}. If X is
a subset of M we denote by R+(X) the set {m ∈ M : ∀ε > 0 ∀T ≥ 0 ∃t >
T : dist(gtm, X) ≤ ε} (such an awkward definition is needed to satisfy the
condition (1) below). If a is a point in M we use the notation Ig+(a) to
mean the set {m : a /∈ Lim+(m)} and if A is a subset of M then Ig+(A)
denotes Ig+(A) =

⋂
a∈A

Ig+(a).

The main tool for studying these sets is self-similar set theory. Given
a collection Φ of maps {φi} whose domains of definition D(φi) and ranges
of values E(φi) belong to a set X we can define for every subset Y ⊂ X the set
Φ−1(Y ) =

⋃
i
φ−1

i (Y
⋂

E(φi)). Define by induction Φ−n(Y ) = Φ−1(Φ−(n−1)(Y )).

Let ω(Φ) =
∞⋂

n=0
Φ−n(Y ). We use the notation ωf(Φ) for the union of the

limit sets for all finite subcollections of Φ : ωf(Φ) =
∞⋃

k=1
ω({φi}

k
i=1). In es-

timations of a dimension of such sets we shall use the following notation.
Let A = {αi} be a sequence of real numbers satisfying 0 < αi < 1. Con-

sider ζA(s) =
∞∑
i=1

αs
i . Denote by r(A) the root of ζA(r) = 1 if this equation

has a root and the bound of convergence of ζA otherwise. In other words
r(A) = inf{s : ζA(s) ≤ 1} = sup{s : ζA(s) ≥ 1}, if ζ is viewed as a function
with values in R+

⋃
{+∞}.

3) In this paragrath we recall the notion of the an Anosov system. The
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standard reference for this subject is [A].
In Section 6 we consider an Anosov flow gt on a complete (non-compact)

Riemannian manifold M of bounded sectional curvature. Recall that a flow
gt is call Anosov if the tangent space TM is decomposed into a continuous
dgt−invariant sum TM = Eu + E0 + Es, where
1) E0 is generated by tangent vectors to gt−orbits;
2) there exist constants C1 > 0, λ > 0 such that
for every v ∈ Es, t > 0 ‖dgtv‖ ≤ C1e

−λt‖v‖ and
for every v ∈ Eu, t < 0 ‖dgtv‖ ≤ C1e

λt‖v‖.
3) There is a γ > 0 such that the angle between any two of Eu, E0, Es is at
least γ.

The main example of Anosow flow is the geodesic flow on a negatively
curved manifold ([A]).

We require also that gt be uniformly C2 : that is, for t lying in a bounded
interval covariant derivatives of gt up to second order are uniformly bounded
in spite of the non-compactness of M.

In the discrete time case the same definition applies with E0 = 0. We de-
note by W (u)(m) (W (s)(m), W (su)(m), W (ss)(m)) the unstable (resp. stable,
strong unstable, strong stable) manifold of the point m, that is the integral
surface of the field Eu + E0 (Es + E0, Eu, Es respectively) containing the
point m. Under our assumptions these are C2−immersed submanifolds. For
Anosov diffeomorphisms W (u) = W (su), W (s) = W (ss), so that we will use
either notation for these manifolds to treat simultaneously both discrete and
continuous time cases.

We write B(m, ρ) for the ball with center m and radius ρ. The notation
W (u)

ε (m), W (s)
ε (m) etc. mean the ball in the corresponding manifold, where

the distance is defined with the help of the induced Riemannian metric.
Recall that a set Π is called a parallelogram if for any x, y ∈ Π [x, y] =

W (su)
ε0

(x)
⋂

W (s)
ε0

(y) ∈ Π for some ε0 so small that this intersection is a single-
ton. In particular, if X and Y are subsets of M lying in a small enough ball
then the set [X, Y ] = {[x, y] x ∈ X, y ∈ Y } is a parallelogram. We shall
deal with parallelograms of the form Π(a, ε1, ε2) = [W (ss)

ε1
(a), W (su)

ε2
(a)].

By the definition of Π(a, ε1, ε2) it has the natural partition into pieces
of strong unstable manifolds (resp. stable manifolds). The element of this

partition containing a point m is denoted by W
(u)
Π(a,ε1,ε2)

(m) (W
(s)
Π(a,ε1,ε2)

(m)).
We would like to introduce coordinates (u, s) on Π(a, ε1, ε2) using the
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following procedure. Choose some smooth coordinates u on W (su)
ε1

(a) and s
on W (ss)

ε2
(a). For a point p ∈ Π take its coordinates to be the coordinates of its

projections along W (s)(p) and W (su)(p) respectively. So, [(u1, s1), (u2, s2)] =
(u1, s2). This coordinate system makes Π a Hölder submanifold of M.

Similarly, in the continuous time case we can introduce the coordinates
(u, , s, t) on g[−ε,ε]Π in such a way that a point m has coordinates (u0, s0, t0)
if g−t0 belongs to Π and has coordinates (u0, s0) there.

Given two parallelograms Π1 and Π2 a point a ∈ Π1 and a positive t0
such that gt0a ∈ Π2, we denote by σa,t0 ,Π1,Π2 the corresponding Poincare map.
More precisely, if gt0a ∈ Π2 we can define in some neighbourhood of a on Π1 a
continuous function τ such that gτ(m)m ∈ Π2 and τ(a) = t0. If τ̄(m) is such a
function with the largest domain of definition we put σa,t0 ,Π1,Π2(m) = gτ̄(m)m.
We shall refer to τ̄ (m) as τ(σa,t0 ,Π1,Π2, m). If (u1, s1) are the coordinates
on Π1, and (u2, s2) those on Π2 and (u2, s2) = σa,t0 ,Π1,Π2(u1, s1) then by
the invariance of W (su) and W (s) the map σa,t0,Π1,Π2 splits into the product
u2 = U(u1), s2 = S(s1).

It is convenient to use the following notation:
Nu = dim Eu, Ns = dim Es;
D(σ)−the domain of σ(= σa,t0 ,Π1,Π2);
E(σ)−the image of σ;
t(σ) = min

D(σ)
τ(σ, m);

R(u)(m, t) = | det(dgt|Eu)m|, R(s)(m, t) = | det(dgt|Es)m|;
Q(u)(m, t) = ln R(u)(m, t), Q(s)(m, t) = | lnR(s)(m, t)|;
Rσ(m)-the expansion rate of σ in m Rσ(m) = R(m, τ(σ, m));
χ̄+ = max

m
Q(u)(m, 1), χ

+
= min

m
Q(u)(m, 1), χ̄− = max

m
Q(s)(m, 1), χ

−
= min

m
Q(s)(m, 1);

C(σ) = inf
D(σ)

Rσ(m), C̄(σ) = sup
D(σ)

Rσ(m);

t(Π1, Π2) = sup
a,t

(max
m

τ(σa,t,Π1 ,Π2, m) − min
m

τ(σa,t,Π1,Π1, m)).

We write t(Π) for t(Π, Π).
We also benefit from the absolute continuity of the stable foliation, which

can be formulated as follows. Let V1 and V2 be manifolds of dimensions Nu

lying in a small ball and transversal to Es + E0. Let l1 and l2 be Lesbegue
measures on V1 and V2 respectively calculated with the help of the induced
Riemannian metric. Denote by p the projection from V1 to V2 along the
leaves of W (s). Then p∗l2 has a density with respect to l1 on p−1V1 which is
bounded away from zero and infinity.
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5) Now we are going to recall the definition of the dimension with respect
to a dynamical system for our case. A more general definition as well as
motivation, can be found in [P2]. So, let A be a set such that

∀a ∈ A ⇒ W (s)(a) ⊂ A. (1)

Take some m0 and let Ā be A ∩ W (su)(m0). Consider the dimension ∆(Ā)
corresponding to the measure

dhs
ε(Ā) = inf

∑
i

Vols(Ui),

where the infimum is taken over all coverings of Ā by sets Ui with diameters
less than ε such that each Ui is a preimage of a ball Ui = g−tiW (su)

ε0
(ai),

where ε0 is a fixed constant. The magnitude du(Ā) = dim(Eu)∆(Ā) is called
the dimension of Ā with respect to the dynamical system gt. (The rescaling
is done in order to make the dimension of W (su) equal to its topological
dimension.) Since the value of du(A) is independent on the choice of m0

(by the absolute continuity of the stable and unstable foliations) we use the
notation dimgt(A) instead of du(Ā) and ∆(A) instead of ∆(Ā).

6) Here we recall some notions from the theory of symbolic dynamical
systems.

Given a m×m matrix Q whose entries are zeroes and ones, we denote by
Σ the set of two-sided infinite sequences ~x = . . . x−1x0x1x2 . . . xk . . . such that
xi ∈ {1, 2, . . .m} and Qxixi+1

= 1. We consider also the spaces Σ+ of one-sided
sequences, and Σn of sequences of length n satisfying the conditions above.
We denote Σf =

⋃
n

Σn. Elements of Σf will be called words. The subshift of

finite type with the transition matrix Q is the map σ : Σ → Σ (Σ+ → Σ+)
such that (σ(~x))i = xi+1. σ is a continuous map in the topology induced from
the product of discrete topologies of {1, 2, . . .m}.

If w = i1i2 . . . in is a word we denote by Cw the cylinder in Σ (Σ+ respec-
tively):

Cw = {~x ∈ Σ(Σ+) : xj = ij for 1 ≤ j ≤ n}.

We say that Cw is a cylinder of width n if w ∈ Σn. We also use the notation
Cm,n(~x) = {~y : yj = xj for m ≤ j ≤ n}. We write simply Cn(~x) instead of
C0,n(~x).

For a subshift of finite type (Σ+, σ) the following formulae for the calcu-
lation of the topological entropy are useful:
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h(Y, σ) = h(Y, W ),

where W is the covering of X by the sets Ci, and

htop(σ) = lim
n→∞

ln Card Σn

n
.

If Q is irreducible: that is, for any i, j < m there exists n such that
Qn

ij > 0, then also for any i

htop = lim
n→∞

ln Card(~x ∈ Σn : x1 = i)

n
. (2)

7) To use results from the theory of subshifts of finite type for the study
of differential dynamical systems one needs the notion of a Markovian par-
tition [Sn1]. Here we consider the case of an Anosov diffeomorphism g. The

partition M =
n⋃

i=1
Πi of M into parallelograms is called Markovian if

a) Int(Πi)
⋂

Int(Πj) = ∅ for i 6= j;

b) If m ∈ Πi and gm ∈ Πj then gW
(s)
Πi

(m) ⊂ Πj;

c) If m ∈ Πi and g−1m ∈ Πj then g−1W
(u)
Πi

(m) ⊂ Πj.
Consider the matrix Q : Qij = 1 if gΠi

⋂
Πj 6= ∅ and Qij = 0 otherwise.

Let (Σ, σ) be the subshift of finite type with transition matrix Q. The map

p : Σ → M : p(~x) =
+∞⋂

j=−∞
g−jΠxj

conjugates σ and g that is p ◦ σ = g ◦ p.

Using the map p we can identify M and Σ. In Section 5 we write Cn1,n2

instead of p−1Cn1,n2 etc.
In the case dim M = 2 one can find a Markovian partition such that set

of the points which either have no inverse images with respect to p or have
more than 1, has Hausdorff dimension 1 (See [Sn2]).

Markovian partitions for more complicated systems were constructed in
[Rt], [B2] and others. However, it is clear that in the case of a non-compact
phase space one cannot find a finite partition. Nevertheless, as we show in
Section 6 one still can define a good symbolic dynamics on a set of large
dimension.

8) One can use the existence of Markovian partitions to analyse the sta-
tistical behaviour of the orbits for Anosov diffeomorphisms. Here we mention
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the results we need in this paper. Let f be an Anosov diffeomorphism. Then
there exist a measure µ such that for any continuous function g

1

n

n−1∑
k=0

g(f km) →
∫

g(m) dµ(m) V ol a.e. (3)

This measure is called the Sinai-Bowen-Ruelle (SBR) measure. The existence
of this measure is proven in [Sn1]. One can also estimate the deviations from
this law.
Proposition 1. ([OP]) For any continuous function g and for any closed
set A ⊂ R

lim sup
n→∞

1

n
ln Vol{m :

1

n

n−1∑
k=0

g(fkm) ∈ A} ≤ sup
ν−f−invariant∫
g(m) dν(m)∈A

hν(f)−
∫

Q(u)(m, 1) dν(m)

where hν(f) denotes the metric entropy of the measure ν.
9) In this paragraph we recall formulae for calculation of the Hausdorff

dimension of certain invariant sets of Anosov diffeomorphisms. So, let f
be an Anosov diffeomorphism of a compact surface M and ν be an ergodic
f -invariant measure. Then

HD(ν) = hν(f)(
1

χ+(ν)
+

1

χ−(ν)
), (4)

where HD(ν) stands for HD(supp ν), and χ±(ν) are the Lyapunov exponents
χ+(ν) =

∫
Q(u)(m, 1) dν(m), χ−(ν) =

∫
Q(s)(m, 1) dν(m) (see [Y]).

Recall that a point m is called ν-forward typical if for any continuous
function g

lim
n→∞

1

n

n−1∑
k=0

g(f km) =
∫

f(m) dν(m).

The Hausdorff dimension of the set of ν−forward typical points can be cal-
culated by means of the Pesin-Manning-McClusky formula ([MM])

HD+(ν) =
hν(f)

χ+(ν)
+ 1. (5)

10) We conclude this section with one property of Anosov systems we use
in Sections 5 and 6.
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Lemma 1. For every two parallelograms Π1 and Π2 there is a constant
K(Π1, Π2) depending only on the size of the parallelograms, such that for
every a0 ∈ Π1 and t0 > 0 for which gt0a0 ∈ Π2 σ = σa0 ,t0,Π1,Π2 satisfies the
following condition: for every m1, m2 ∈ D(σ)

1

K(Π1, Π2)
Rσ(m1) ≤ Rσ(m2) ≤ K(Π1, Π2)Rσ(m1).

Proof: Let n1 = σ(m1), n2 = σm2 . Consider three possibilities.
1) m1 ∈ W (ss)(m2). The statement follows from the fact that the limit

lim
t→+∞

R(u)(m1 ,t)

R(u)(m2 ,t)
exists and is uniformly bounded as dist(m1, m2) is bounded.

2) m1 ∈ W
(u)
Π1

(m2) and hence n1 ∈ W
(u)
Π2

(n2). The statement follows from

the fact that the limit lim
t→−∞

R(u)(n1,t)

R(u)(n2,t)
exists and is uniformly bounded as

dist(n1, n2) is bounded.

3) In the general case one can find m3 and m4 such that m1 ∈ W
(u)
Π1

(m3), m2 ∈

W
(u)
Π1

(m4) and m3, m4 ∈ W
(s)
Π1

(a).
3. Zero-dimensional dynamics.

1) In this section we deal with one-sided subshifts of finite type. The
main theorem proven here allows us to derive our results for the Hausdorff
dimension in Sections 4 − 6 using the relationship between the topological
entropy and the Hausdorff dimension revealed in [B], [M], [MM], [P2], [P3]
and others.

We will omit σ in h(A, σ)and htop(σ).
In this section we prove the following

Theorem 1. Let A ⊂ Σ+ be such that h(A) < htop . Then h(Ig+(A)) = htop .
Remark. Actually, the same arguments lead to the following result.
Proposition 1. Fix s < htop and let U = {Uk} be a subset of

⋃
n>N0

Σn. Let

l(Uk) the length of Uk and assume that
∑
k

e−sl(Uk) < 1. Denote by Ig+(U) =

{~x ∈ Σ+ : ∀k, m1, m2 xm1xm1+1 . . . xm2 6∈ U}. Then h(Ig+(U)) ≥ cs(N0),
where lim

N0→∞
cs(N0) = htop .

The proof of the theorem is divided into several steps.
Without loss of generality we may assume that the transition matrix is

irreducible.
2) In this paragraph we introduce another dimensional characteristic

which is easier to handle than the topological entropy. Denote by hbin(Y )

12



the dimension corresponding to the measure

hε
bin, s(Y ) = inf

l(Vi)>
1
ε , Y ⊂

⋃
i

Vi

l(Vi)=2ki

e−sl(Vi).

So, the difference with the topological entropy is that now we consider only
coverings by cylinders whose widths are powers of 2.

Since the infimum is now taken over a smaller set we get

hbin(Y ) ≥ htop(Y ),

but in view of (2.2) we still have hbin(Σ+) = htop .
In the general case we have the following

Lemma 1. hbin(Y ) ≤ h(Y )+htop

2
.

Proof: Let {Vi} be a covering of Y with N(Vi) > N0 and
∑
i

e−sl(Vi) ≤ 1. Let

2ki < l(Vi) ≤ 2ki+1. Denote by V j
i the elements of Σ2ki+1, such that

⋃
j

V j
i = Vi,

and let ni = Card{V j
i }. By (2.2)

ni ≤ C1e
(htop +ε)(2ki+1−l(Vi)).

Hence,

∑
i,j

e−l(V j
i

)(
s+htop +ε

2
) ≤

∑
i

nie
−2ki+1(

s+htop +ε

2
) ≤ C1

∑
i

e−φi,

where

φi = (htop +ε)(2ki+1−l(VI))−2ki(s+htop +ε) = (htop +ε)(2ki−l(Vi))−2kis ≤ −l(Vi)s.

Therefore, hbin(Y ) ≤ h(Y )+htop +ε

2
and since ε can be chosen arbitrary small

the lemma is proven.
So it suffices to show that for all ε hbin(Ig+(A)) > htop −ε, provided that

hbin(A) < htop .
3) Here we define the set of prohibited words. Take a real θ1 such that

hbin(A) < θ1 < htop . Then for all N0 we can find a covering of A by cylinders
A ⊂

⋃
i
Ui such that l(Ui) = 2ki, ki > N0 and

∑
i

e−θ1l(Ui) ≤ 1.

13



So we have Ig+(A) ⊃ Ig+(U). Now we construct a smaller set, denoted
by Ig+

bin(U) as follows.
Let P =

⋃
i
U bin

i , where U bin
i = {Uij : l(Uij) = 2ki+1 and Uij contains Ui as

a subword}. We call elements of P prohibited words.
By (2.2) the number of prohibited words of length 2k+1 does not ex-

ceed C22
ke2k(θ1+htop +ε), which for large enough k (that can be guaranteed

by choosing N0 large) is less then eθ22k+1
, where θ2 is a constant such that

htop +θ1

2
< θ2 < htop . Form the set

Ig+
bin(U) = {~x ∈ Σ+ : ∀p ∈ P ∀m ≤ 0 x

m
l(p)
2

+1
x

m
l(p)
2

+2
. . . x

(m+2)
l(p)
2

6= P}.

(The number l(p)
2

appears since p contains an element of U of length l(p)
2

). We
call words, that is finite sequences, satisfying the same condition, admissible.

Since Ig+
bin(U) ⊂ Ig+(U) ⊂ Ig+(A), it is enough to estimate h( Ig+

bin(U)).
4) Here we divide all admissible words of length 2k into good and bad

ones.
We call the first 2k−1 symbols of the word of length 2k its prefix and the

last 2k−1 symbols its suffix.
The admissible word Wk of length 2k is said to be good if

a) both its prefix and suffix are good and

b) it forms the prefix of at most e
(htop +θ2)2k

2 prohibited words and the suffix

of at most e
(htop +θ2)2k

2 prohibited words,
and said to be bad otherwise.

Note that the number of words not satisfying the condition b) does not

exceed 2e2k( 3
2
θ2−

htop

2
), which, if N0 is large enough, is less than e2kθ3, where θ3

is a constant such that 3
2
θ2 − htop < θ3 < htop .

Define Gk as

Gk = min
Wk−good

#{W̃k − good : WkW̃k − admissible}.

Note that, by its very definition, the number of good words of length 2k is
at least Gk.

Let W
(p)
k , W

(s)
k (W̃

(p)
k , W̃

(s)
k respectively) be the prefix and the suffix of

Wk (W̃k respectively).
WkW̃k is admissible and W̃k is good provided that

14



1) W
(s)
k W̃

(p)
k and W̃

(p)
k W̃

(s)
k are admissible;

2) WkW̃k /∈ P ;

3)W̃
(p)
k W̃

(s)
k is not bad.

There exist at least G2
k−1 possibilities to satisfy the first condition, among

which at most e(
htop +θ2

2
)2k

violate the second condition by property b) of the
good word and at most eθ32k

violate the third condition by the above estimate.
Therefore, we get

Gk ≥ G2
k−1 − 2eθ42k

,

where θ4 = max( θ2+htop

2
, θ3). We claim that for any α < htop Gk ≥ eα2k

,
provided that N0 is large enough. Indeed without loss of generality we may
assume that α > θ4. Denote gk = Gk

eα2k . Then gk ≥ g2
k−1−2e(θ4−α)2k

for k > N0

and gN0 ≥ e(htop −α−ε)2N0 . Clearly gk increases to infinity if gN0 is large enough.
5) Here we introduce a measure on Σ+ satisfying the uniform mass dis-

tribution principee for hbin .
As the first step put µ(Σ+) = 1. Let us assume that we have already

defined µ for cylinders of width 2k. Let C(k) be such a cylinder. If C(k) is
good denote by C i

(k+1) admissible cylinders of width 2k+1 inside C(k) and put

µ(Ci
(k+1)) =

µ(C(k))

Card{Ci
(k+1)

}
. In this case µ(C i

(k+1)) ≤
µ(C(k))

Gk
and by induction it

follows that
µ(Ci

(k+1)) ≤ C2e
−α2k

. (1)

If C(k) is bad we require that µ|C(k)
be concentrated at a single point in

C(k).
If C(k) is not even admissible we claim that µ|C(k)

was completely specified

in the previous steps. Indeed, if a cylinder of width 2(k−1) containing C(k) −
C(k−1) is admissible then µ|C(k)

is either zero or δ−measure. If already C(k−1)

is not admissible then µ|C(k−1) was completely described earlier by induction.
By the construction of µ it follows that µ = µd + µc, where µd is concen-

trated on a countable set of points and µc is supported on Ig+
bin(U).

(1) implies that

µd(Σ+) ≤
∞∑

k=N0

(number of bad intervals of range 2k)C2e
−α2k

≤

≤ C2

∞∑
k=N0

e−(α−θ3)2k

.
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So, if N0 is large enough, µd(Σ+) ≤ 1 and hence µc(Σ+) > 0. It follows from
(1) that for every cylinder C of width 2k

µc(C) ≤ C2e
−α2k

.

Therefore if {V
(2ki )
i } is any covering of Ig+

bin(U) we obtain

∑
i

e−αl(Vi) ≥
1

C2

∑
i

µc(V
(2k

i )
i ) ≥

µc( Ig+
bin(U))

C2
=

µc(Σ+)

C2
> 0.

So, hbin(Ig+(A)) ≥ hbin( Ig+
bin(U)) ≥ α. By the remark at the end of

paragraph 2 this completes the proof of theorem 1.
4. One-dimensional dynamics.

1) In this section we study a piecewise expanding map f of an interval
I into itself. More precisely, we assume that there exists a finite partition

of I into intervals I =
l⋃

i=1
Ii, such that if fi denotes f |Ii

, then the following

conditions are satisfied:
a) fi ∈ C2(Ii);
b)∃λ > 1 : |fi

′| ≥ λ, therefore
c)fi is strictly monotone.

Recall the notion of an interval of range n for f. Intervals of range 1 are
precisely {Ii}. If we have already defined intervals {I

(n)
j } of range n we say

that Î is an interval of range n + 1 if it has the form Î = f−1
i I

(n)
j1

∩ I
(n)
j2

for some i and intervals I
(n)
j1

, I
(n)
j2

of range n. Hence, fn is a C2−continuous
function on any interval of range n. We denote by In(x) the interval of range
n containing x.

The aim of this section is to prove the following statement:
Theorem 2. Let A ⊂ I be a subset of I such that HD(A) < 1. Then
HD(Ig+(A)) = 1.

The proof consists of several steps.
2) Firstly, we want to reduce our problem to the case when our map is

almost uniformly expanding in order to make the Hausdorff dimension of an
invariant set proportional to the topological entropy.

Fix natural N. We consider the map g(x) = fn1(x)(x), where n1(x) =
min{n : min

I(n)(x)
|fn(x)′| > N}. Clearly,

n ≤ M = [
ln N

ln λ
] + 1. (1)
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We denote by Jj the intervals of range 1 for g so that each Jj = In1(x)(x)
for some x. We shall use the distortion inequality (see, for example [CFS])
which states that there exists a constant C1 (which does not depend on n),
such that

max
I
(n)
i

|fn(x)′| ≤ C1 min
I
(n)
i

|fn(x)′|.

This inequality implies that

N ≤ |g′(x)| ≤ C2N, (2)

where C2 = C1 max
x

|f ′(x)|.

Denote by Ak =
k⋃

j=0
f−j(A). It is straightforward to check that Ig+(A, f) =

Ig+(AM , g) and HD(A) = HD(AM) (where M is defined by (1)). So it suffices
to prove that HD(Ig+(AM , g)) ≥ 1 − ε(C2, N), where ε → 0 as N → +∞.
In the sequel we often omit the index M in AM .

3) In this paragraph we define an invariant subset of the interval K such
that g|K is a subshift of finite type and HD(K) is close to 1.
Lemma 1. (cf [MS].) There exists a g−invariant set K such that g|K is a
subshift of finite type and h(K, g) ≥ ln(N − 4) − ln 2, where h(g|K) denotes
the topological entropy of g with respect to K.

Proof: Without loss of generality we can assume that

max
i

|Ji| ≤ 2 min
i

|Ji|, (3)

considering, if necessary, a finer partition of I. Denote by Ji1i2...ik the set

(gik . . . ◦ gi2 ◦ gi1)
−1I and set π(i1i2 . . . ik . . .) =

∞⋂
k=1

Ji1i2...ik . This set can either

be empty or a singleton, so we shall write x = π(~i) instead of {x} = π(~i). We
say that Ji covers Jj iff Jj ⊂ g(Ji). Put K = {π(~i) : Jik−1

covers Jik}. Note

that this condition guarantees that π(~i) 6= ∅. By (2) and (3) every interval
Ji covers at least N

2
− 2 intervals of range 1 for g, so h(g|K) ≥ ln(N

2
− 2).

4) In this paragraph we derive theorem 1 from theorem 2.
Lemma 2. ∀Y ⊂ K

h(Y, g)

ln C2 + ln N
≤ HD(Y ) ≤

h(y, g)

ln N
.
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Proof: 1) Let s > h(Y, g) and {J
(ni)
i } be a covering of Y by intervals of

range ni such that
∑
i

e−sni ≤ 1. Since |J
(ni)
i |Nni ≤ 1, we obtain

∑
i

|J
(ni)
i |

s
ln N ≤

∑
i

N−
sni
ln N ≤ 1.

Hence s
lnN

> HD(Y ).
2) Let s > HD(Y ) and {Vi} be a covering of Y, so that

∑
i
|Vi| ≤ 1.

Consider ni = min{n : ∃yi ∈ Y J (n)(yi) ⊂ Vi}. Since, by the definition of K,
fn

i J (ni) contains some interval of range 1 we have

|Vi|(C2N)n ≥ C3,

where C3 = min
K

|J (1)(y)|. On the other hand Vi

⋂
Y is contained in the union

of at most two intervals of range (ni − 1), say J
(ni−1)
i1 and J

(ni−1)
i2 . For the

covering Y ⊂
⋃
i
(J

(ni−1)
i1

⋃
J

(n1−1)
i2 ) we obtain

∑
i

e−s(ln N+ln C2)(ni−1) ≤ (C2N)s
∑

i

(C2N)−nis ≤
(C2N)s

C3

∑
i

|Vi|
s ≤

(C2n)s

C3

.

Hence, h(g, Y ) < s(ln N + ln C2) and the lemma is proven.
Lemma 2 implies that for N large enough h(A, g) < h(K, g). Therefore

HD(Ig+(A)) ≥
h(Ig+(A), g)

ln N + ln C2
=

h(K, g)

ln N + ln C2
≥

ln(N − 4) − ln 2

ln N + ln C2
.

Since N can be chosen arbitrary large, theorem 2 is proven.
5. Two-dimensional dynamics.

1) In this section we deal with a C2 Anosov diffeomorphism f of two-
dimensional torus M. We denote by µ the SBR measure for f.

Set es(f) = sup{s : ∀A HD(A) < s ⇒ HD(Ig+(A) = 2}. In this section
we prove the following.
Theorem 3. es(f) equals to the dimension of SBR measure.

For the SBR measure formulae (2.4) and (2.5) imply

HD(µ) = 1 +
χ+

χ−
, (1)

18



where χ+ = χ+(µ) = χ+(V ol), χ− = χ−(µ) = χ−(V ol). It is formula (1)
that we use in the proof. We needed HD(µ) only to explain the meaning of
the statement in the introduction.

2) Here we begin the proof of the lower bound for es(f). Consider a

Markovian partition Π = (Π1, Π2 . . . ΠP ) so that HD(M \
P⋃

i=1
Int Πi) = 1. Fix

a small constant ε1. We call a cylinder Cn
j of the width n typical if it satisfies

the following conditions:

a) ∀m ∈ Cn
j |Q

(u)(m,n)
n

− χ+| < ε1;

b) ∀m ∈ Cn
j |Q

(s)(m,n)
n

− χ−| < ε1;
By (2.3) we can find n so large that

α) the Volume of the typical cylinders of the width n is greater than 1
2
;

β) for any typical cylinder Cn
j

Vol(Cn
j

⋂⋃
k

f−1(Cn
k
))

Vol(Cn
j
)

> 1
2
, where the union is

taken over all typical cylinders.
Denote by N the set {m : ∀k ∈ Z f knm lies in a typical cylinder of the

width n}. It suffices to prove that for given ε, A such that HD(A) < es(f)−ε
we can choose ε1 so small that HD(Ig+(A, fn)

⋂
N) ≥ 2 − ε.

3) In this paragraph we estimate the topological entropy of N with respect
to fn. Since in the two dimensional case the stable and unstable foliations
are smooth([HP]), the Volume on M is equivalent to du ds, where du is the
induced metric on W (u) and ds that on W (s). Therefore there is a constant
C1 such that

(
1

C1

)e−n(χ++ε1) < V ol(Cn
j ) < C1e

−n(χ+−ε1) (2)

and

(
1

C1
)e−2n(χ++ε1) < V ol(Cn

j

⋂
f−nCn

k ) < C1e
−2n(χ+−ε1).

By the property β Cn
j intersects at least C2e

n(χ+−2ε1) inverse images of typical
cylinders. Hence by (2.2)

htop(N, fn) ≥ n(χ+ − 2ε) − ln C2.

So, for any fixed ε2 we can choose ε1 so small and n so large that

htop(N, fn) ≥ n(χ+ − ε2). (3)
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4) In this paragraph we point out another way of calculating of HD(A
⋂

N).
We will consider forward cylinders of the form

Π+ =
k+⋂
j=0

f−ni(Cn
i+j

)

and backward cylinders of the form

Π− =
k−⋂
j=0

fni(Cn
i−j

),

where n was defined in paragraph 2 and the Cn
i±
j

are typical.

Set Q+(P+) = min
m∈P+

Q(u)(m, k+n), Q−(P−) = min
m∈P−

Q(s)(m, k−n). The

cylinder P = P + ⋂
P− will be called a square if Cn

j+
0

= Cn
j−0

, Q−(P−) ≥

Q+(P+) but Q−(
k−−1⋂
j=0

fni(Cn
j−
i

)) < Q+(P+). It is easy to see (cf. the proof of

lemma 4.2 or [F]) that HD(A
⋂

N) can be calculated using only coverings of
A

⋂
N by squares.
So given θ > HD(A), we can find such a covering A ⊂

⋃
i
Pi such that

∑
i
|Pi|

θ ≤ 1. On the other hand |Pi| ≥ C3e
−(χ++ε1)k

+
i n

Therefore ∑
i

e−(χ++ε1)k
+
i nθ ≤ (

1

C3
)θ. (4)

Denote by U the set {Ui}, where Ui = f−k−
i

nPi. From the definition of the
typical cylinder it follows that, if the diameters of the Pi are small enough,
then |k−

i −k+
i

χ+

χ−
| < ε3k

+
i , where ε3 → 0 as ε1 → 0. So, for l(Ui) = k+

i +k−
i +1,

we obtain the estimate |l(Ui)− k+
i HD(µ) + 1| < ε3k

+
i . Substituting this into

(4) we get, provided that |Pi| are small enough,

∑
i

e−(
χ+

HD(µ)
+ε4)l(UI )nθ ≤ 1,

where ε4 → 0 as ε1 → 0. Using formula (3) and the fact that θ < HD(µ) we
obtain that, if ε2 and ε4 are small enough,

(
χ+

HD(µ)
+ ε4)nθ < htop(N, fn).
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Now by Proposition 3.1 htop(Ig+(U), fn) > htop(N, fn) − ε5n, where ε5 → 0
as sup

i
|Pi| → 0.

5) To finish the proof of the lower bound it remains to apply the inequality

HD(Ig+(U, fn)) ≥
htop(Ig+(U, fn))

max
m∈Ig+(U,fn)

Q(u)(m, n)
+ 1,

which is proven in [M] (cf. also the proof of lemma 4.2). Indeed, in our case

HD(Ig+(U, fn)) ≥
n(χ+ − ε2 − ε5)

n(χ+ + ε1)
+ 1 = 2 −

ε1 + ε2 + ε5

χ+ + ε1
,

as was to be demonstrated.
6) Now we pass to the proof of the upper bound for es(f). Namely, we

consider we set Tε1 = {m : for infinitely many n fnC−n,0(m) is ε1-typical}.
We want to prove two facts. The first is that

lim
ε1→0

HD(Tε1) ≤ HD(µ). (5)

The second claim is that for any positive ε1

HD(Ig+(Tε1)) < 2. (6)

In this paragraph we prove (5). It is enough to show that for any paral-
lelogram Πi0 from our partition the inequality

lim
ε1→0

HD(Tε1

⋂
Πi0) ≤ HD(µ)

holds. Note that if m ∈ Tε1 then W
(u)
Πi0

(m) ⊂ Tε1. Therefore we have to prove
that

lim
ε→0

HD(W
(s)
Πi0

⋂
Tε1) ≤

χ+

χ−
.

Indeed for any n0

Tε1 ⊂ {∃n > n0 : fnC−n,0(m) is ε1 − typical}.

So, we can consider the covering of W
(s)
Πi0

(m)
⋂

Tε1 by segments

∞⋃
n=n0

⋃
Cn

j −ε1−typical

(f−nCn
j

⋂
W

(s)
Πi0

(m)).
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By property a) of ε1-typical cylinders for fixed n

Nn = Card{Cn
j − ε1 − typical} ≤ C1e

(χ++ε1)n.

On the other hand the lengths of the sets Cn
j

⋂
W

(s)
Πi0

(m) do not exceed the

magnitude dn = C4e
(χ−−ε1)n. Hence for any s > χ++ε1

χ−

∑
n

∑
j

|Cn
j

⋂
W

(s)
Πi0

(m)|s ≤
+∞∑
n=1

Nnds
n < +∞,

which proves (5).
7) It remains to prove the second part of the upper bound: that is, formula

(6).
Moreover we prove that there exists a sequence {nj}, nj → ∞ as j → ∞

such that if T̃ε1 = {m : fnjC−nj ,0(m) is ε1 − typical}, then HD(Ig+(T̃ε1)) <
2. The plan of the proof is the following. Denote by T̃ J

ε1
= {m : ∀j 1 ≤ j ≤

J fnjC−nj ,0(m) is ε1 − typical}. We show that

HD(Ig+(T̃ J
ε1

)) ≤ 2 − γ, (7)

where the constant γ depends only on ε1 and f but not on J. Since Lim+(m)
is a closed set we conclude that HD(Ig+(T̃ε1)) ≤ 2 − γ.

8) This paragraph contains some technical results we need to prove the
existence of the sequence {nj}, declared in the previous section. Without
loss of generality we may assume that the Riemannian metric on M is the
Lyapunov one, so χ

+
> 0. We shall use the following

Proposition 1. For any ε1, ε2 there exists a constant C5 = C5(ε1, ε2), such
that for every n

Vol(m : Cn(m) is not ε1 − typical) ≤ C5e
−n(α(ε1)−ε2),

where α(ε1) > 0 if ε1 > 0.
This proposition follows immediately from proposition 2.1 and lemma 2.1

(see also (2.5)).
Denote by Kn

j = exp(− min
m∈Cn

j

Q(u)(m, n)), K̄n
j = exp(− max

m∈Cn
j

Q(u)(m, n)).

Now we define γ in (7). Without loss of generality we may assume that

α( ε1

2
) ≤ χ̄+. Put γ =

α(
ε1
2

)

4χ̄+
. Denote by An,l = {K

(n+l)
j }Cn

j
is not

ε1
2
−typical. Let

Bn0 =
⋃

n≥n0

n⋃
l=0

An,l.
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Lemma 1. lim
n→∞

ζBn(1 − γ) = 0.

Proof: We claim that ζB1(1 − γ) < +∞. Indeed, since for l ≤ n K
(n+l)
j ≥

e−2χ̄+n, we obtain

∑
An,l

(K
(n+l)
j )1−γ ≤ e2χ̄+nγ

∑
An,l

Kn+l
j ≤ C6e

2χ̄+nγ
∑
An,l

Vol(C
(n+l)
j ) ≤ C6e

−α(
ε1
2

)n
2

which completes the proof (the middle inequality follows by lemma 2.1).
9) In this paragraph we define the sequence {nj}.
By lemma 1 there exists n1(ε1) such that ζBn1(ε1)(ε1)(1 − γ) < 1. Put

n1 = n1(ε1).
Lemma 2. ∀n∃N(n) : if CN(m) is not ε1-typical then fnC−n,N(m) is not
ε
2
-typical.

Proof: nχ
+
≤ Q(u)(f−nm, N + n) − Q(u)(m, N) ≤ nχ̄+.

Put nk = N(
k−1∑
j=1

nj). We call a word marked if it corresponds to a cylinder

C
(n+l)
j such that n ≥ n1, 0 ≤ l ≤ n and Cn

j is not ε1

2
-typical. We want to

estimate HD(IG+(T̃ J
ε1

)). It suffices to consider the set CT J
ε1

= {m : ∀n ∃j ≤
J : Cnj(fn−njm) is not ε1 − typical}. Again it is enough to estimate the

dimension of CT J
ε1

⋂
W

(u)
Πi0

.

Lemma 3. Let ~x = x0x1 . . . xk . . . be the future symbolic representation of a
point from CT J

ε1
. Then ~x can be decomposed as ~x = S0w1w2 . . . wk . . . , where

the length of the word S0 is at most nJ and the words wk are marked.
Proof: Denote by NJ = N \ {1, 2, . . . nj}. By the definition of CT J

ε there
exist intervals Lk = [Mk, Nk], with an integer andpoints, such that
1) NJ ⊂

⋃
k

Lk;

2) ∀k∃j : Nk − Mk = nj − 1;
3) CxMk

xMk+1...xNk
is not ε1-typical.

We can throw away some of L′
ks in such a way that the remaining set still

satisfies 1) and covers NJ with multiplicity at most 2. Indeed if some natural
number n is covered by more than 2 intervals we throw away all but the
one with the smallest Mk and that with the largest Nk. We still denote the
refined covering by {Lk}. We assume that the Lk are ordered in such a way
that Mk < Mk+1. Now we modify this covering to obtain a partition of NJ .

We proceed by induction. As the first step put L
(1)
k = Lk. We will resolve

intersections from left to right. So let us assume that on the l−th step we
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get L
(l)
k = [M

(l)
k , N

(l)
k ] and M

(l)
k < M

(l)
k+1. Let k(l) be the smallest number

such that L
(l)
k

⋂
L

(l)
k+1 6= ∅. Since in the previous steps we dealt with the

intersections from the left of L
(l)
k(l) all intervals L

(l)
k with k > k(l) are elements

of {L
(1)
k }. In particular there exist j(l) such that N

(l)
k(l)+1 −N

(l)
k(l)+1 = nj(l). We

also assume by induction that ∃j̃(l) so that nj̃(l)−1 ≤ N
(l+1)
k(l) −M

(l)
k(l) <

j̃(l)∑
m=1

nm.

We put L
(l+1)
k equal to L

(l)
k if k < k(l) and to L

(l)
k+1 if k > k(l). To define

L
(l+1)
k(l) consider two possibilities.

If j̃(l) < j(l) we assign L
(l)
k(l) = L

(l)
k(l)

⋃
L

(l)
k(l)+1.

If j̃(l) ≥ j̃(l) we assign L
(l+1)
k(l) = [M

(l)
k(l), M

(l)
k(l)+2 − 1].

It is clear that, for fixed k, L
(l)
k stabilize after a finite number of steps. We

denote the resulting partition by L̃k = [M̃k, Ñk]. By induction we get that
∀k Cx

M̃k
x

M̃k+1...x
Ñk

is marked.

So, fix n and consider the covering of W
(u)
Πi0

⋂
CT J

ε1
by sets W

(u)
Πi0

⋂
CS0w1w2...wn

for possible S0, w1 . . . wn satisfying the condition of lemma 2.

Since |W
(u)
Πi0

⋂
CS0w1w2...wn| ≤ C7

n∏
j=1

K(Cwij
), we obtain

∑
S0, w1...wn

|W
(u)
Πi0

⋂
CS0w1w2...wn|

1−γ ≤ C1−γ
7 ζBn1

(1 − γ)n → 0

as n → ∞. So, the proof of (7) and hence that of theorem 3 is complete.
6. Multidimensional dynamics.

1) In this section we study an Anosov flow gt on a complete (non-compact)
Riemannian manifold M of bounded sectional curvature. We prove the fol-
lowing theorems.
Theorem 4. dimgt(B+) = dimgt(R+).
Theorem 5. If either
1) dim(M) = 3 or
2) gt is the geodesic flow on a manifold of constant negative curvature or
3) gt has a finite smooth invariant measure,
then HD(B+) = HD(R+).
Theorem 6. For any countable set A dimgt(B+ ⋂

Ig+(A)) = dimgt(R+).
Corollary 2. Under assumptions of theorem 5

HD(B+
⋂

Ig+(A)) = HD(R+).
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The proof of theorem 4 implies
Corollary 1. dimgt(B+) depends lower semicontinuously on gt in the C2

metric.
2). In the next three sections we carry out the proof of theorem 4. Recall

the notation of paragraph 2.3.
We want to reduce our global problem to a local analysis. The first step

towards this aim is the following statement.
Proposition 2. For every δ > 0 there is a point a such that for any its
neighbourhood U(a) ∆(R+(U(a))) ≥ ∆(R+) − δ. (Such points will be called
δ−hospitable.)

Proof: Take some m0 ∈ M. Since R+ =
∞⋃

n=1
R+(B(m0, n)) and du(

∞⋃
n=1

An) =

sup
n

du(An) there is an n0 such that ∆(R+(B(m0, n0))) ≥ ∆(R+) − δ. By

the same argument, for every n there is a point mn ∈ B(m0, n0) such that
∆(R+(B(mn, 1

n
))) ≥ ∆(R+)− δ. Any limit point of the sequence {mn} is δ−

hospitable.
3) In this section we construct an invariant set of large dimension admit-

ting a simple symbolic description.
Take some δ−hospitable point a. From now on we make the simplifying

assumption that a is not a periodic point. The case when this assertion does
not hold requires few modifications of the proof which are explained at the
end of paragraph 4.

Given an arbitrary small constant θ one can find T = T (θ) such that for
all t ≥ T, m ∈ M R(m, t) ≥ 1

θ
. Knowing this T , by non-periodicity of a we

can find ε so small that for points from Π(a, ε, ε) the return time to Π(a, ε, 2ε)
exceeds T + t(Π(a, ε, 2ε)). For the sake of brevity we denote Π(a, ε, 2ε) by Π
and Π(a, ε, ε) by Π̃.

Now we are going to consider some sets not satisfying the condition (2.1).

For such a set X the notation ∆(X) means ∆(X
⋂

W
(u)
Π (a)).

Define the collection Φ̃ of maps {φ̃i} of Π̃ to itself as follows. If ai ∈
W (u)

ε (a) and ti > 0 are such that gtiai ∈ Π(a, ε
2
, ε) and, moreover, ti is the

time of the first return of ai to Π(a, ε
2
, ε), then we add the map φ̃i = σai,ti,Π̃,Π̃

to Φ̃. Here we impose the restriction of returning to the smaller parallelogram
Π(a, ε

2
, ε) to guarantee that if m ∈ D(φi) then W

(s)

Π̃
(m) ⊂ D(φi). It is easy

to see that ωf(Φ̃) ⊂ B+.
We want to estimate ∆(ωf (Φ̃)) from below in terms of {C̄(φ̃i)}. One has
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a chance to do this because the worst that can happen is that Rφ̃i
≡ C̄(φ̃i),

because then D(φ̃i), D(φ̃j ◦ φ̃i) and so on have the least possible volume, so
it is easy to find an economic covering of

⋃
(i1i2...in)

D(φ̃in ◦ . . . φ̃i2 ◦ φ̃i1) and

hence a covering of ωf(Φ̃).
Unfortunately, there are two obstacles to carrying out such an estimate.
1) It might happen that E(Ũi) 6= W (su)

ε (a) (because ai is very close to
∂W (su)

ε (a)). Then Vol(D(φ̃i)) could be small even though C̄(φ̃) were small.
2) D(Ũi) could intersect D(Ũj) for i 6= j. Then one covers D(Ũi)

⋃
D(Ũj)

more economically than if they were disjoint.
To overcome the first difficulty put φi = σai,ti,Π,Π. Now E(Ui) = W

(u)
2ε (a)

if θ is small since the ai are far enough from the boundary of Π.
To deal with the second difficulty consider Φn = {φi : nT ≤ t(φi) ≤

(n + 1)T}.
4) In this section we prove that, for some n, ∆(ω(Φn)) is close to ∆(ω(Φ̃))

which completes the proof of theorem 2 since ω(Φn) ⊂ B+.
Since D(φi)

⋂
D(φj) = ∅ for φi 6= φj ∈ Φn we are able to establish the

following result. Denote rn = r({ 1
C̄(φi)

}φi∈Φn).

Lemma 1. ∆(ω(Φn)) ≥ rn.
This is a standard result from the theory of self-similar sets. The proof

is given in paragraph 5.
To estimate rn from below we need the following statement. Denote

r0 = r({ 1
C(φ̃i)

}).

Lemma 2. ∆(ω(Φ̃)) ≤ r0.
This proposition is proven in paragraph 6.
Hence r0 ≥ ∆(R+)−δ (we have used what ω(Φ̃) ⊃ R+(Π(a, ε

4
, ε))

⋂
Π(a, ε

4
, ε)

and the equalities du(
∞⋃

n=1
An) = sup

n
du(An) and du(g

tĀ) = du(Ā)).

It remains to compare rn and r0. We claim that, for θ small enough, there
is some n such that rn ≥ ∆(R+)−3δ. Indeed, let us assume that the contrary
is true. Note that if φi ∈ Φn then C(φ̃i) ≥ (1

θ
)n. By lemma 2.2 there exists

C1 = C1(ε, δ) such that for φi ∈ Φn

(
1

C(φ̃i)
)∆(R+)−2δ ≤ C1θ

nδ(
1

C̄(φi)
)∆(R+)−3δ.
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Summation over φi ∈ Φn gives

∑
φi∈Φn

(
1

C(φ̃i)
)∆(R+)−2δ ≤ C1θ

nδ.

Sumating over n we obtain

∑
i

(
1

C(φ̃i)
)∆(R+)−2δ ≤

C1θ
δ

1 − θδ
, (1)

which contradicts lemma 2 if C1θδ

1−θδ < 1.
Since δ can be arbitrarily small the theorem is proven.
The case in which there exists T0 such that gT0a = a requires few changes.

In this case we can achieve t(φi) ≥ T + t(Π) for all φi except φ1 = σa,T0 ,Π,Π.
Proceeding along the same line as in the proof of (1), we obtain

∑
i

(
1

C(φ̃i)
)∆(R+)−2δ ≤ (

1

C(φ̃1)
)∆(R+)−2δ +

C1θ
δ

1 − θδ
,

which also contradicts lemma 2 for θ small enough.
Remark. Since rn depends continuously on gt corollary 1 is proven. The
meaning of this result is that in the general case the set of non-recurrent orbits
has non-empty interior, so one can enlarge dimgt(R+) and hence dimgt(B+)
by making them recurrent with the help of a small change of the flow in
this interior. However, the set B+(B(m, n)) is much more persistent to such
perturbations (see also [D2]).

5) In the next two sections we discuss the theory of self-similar sets.
The estimates presented here for the dimension with respect to a dynamical
system are completely analogous to those for the Hausdorff dimension (see
[F]). Moreover the former can be derived from the latter if one notes that
∆(Ā) is the Hausdorff dimension with respect to the metric on W (su)(m0)

ρ(m1, m2) = exp−(min{τ > 0 : d(gτ
s (m1), g

τ
s (m2)) ≥ ε0}),

where the distance d is measured by means of the induced Riemannian metric
on W (su)(m0) and gτ

s denotes the synchronised flow obtained from gt through
the change of time

dτ

dt
(m) =

d

dt
|t=0Q

(u)(t, m) =
d

dt
|t=0R

(u)(t, m).
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(For synchronized flows see [Pr]; the metric ρ is discussed in [H], [Hs].)
We present the proof in this paper because we shall use the arguments

given here in the succeeding paragraphs.
Proof of lemma 1. Let us numerate the elements of Φn : φ1, φ2 . . . φln .
Throughout the proof we denote for the sake of brevity C(i) = C̄(φi), Tn =

max
i=1...ln

(t(φi)+ t(Π)), Di1...ik = D(φik ◦ . . . ◦φi1)
⋂

W
(u)
Π (a). Consider the mea-

sure µn on ω(Φn)
⋂

W
(u)
Π (a) defined by µ(Di1...ik) =

k∏
j=1

( 1
C(ij)

)rn.

Lemma 3. There exists C2 = C2(n) such that for every U0 = g−t0W (su)
ε0

(a0)
we have µn(U0) ≤ C2Volrn(U0).
Proof: Note that for Di1...ik one has µn(Di1...ik) ≤ C3Volrn(Di1...ik) by the
definition of C(i). Set I I = {(i1 . . . ik) : t0 ≤ t(φik ◦ . . . ◦ φi1) ≤ t0 + Tn}.
Then {Di1...ik}(i1...ik)∈I forms a covering of ω(Φn) and each point belongs to

at most Tn+t(Π)
T

elements of the covering. There are two constants C4(n)
and C5(n) such that for every (i1 . . . ik) ∈ I C4 ≤ Vol(gt

0Di1...ik) ≤ C5, since

gtDi1...ik = W
(u)
Π (m) for some t t0 ≤ t ≤ t0+Tn+t(Π). Set J J = {(i1 . . . ik) ∈

I : Di1...ik

⋂
U0 6= ∅}. Note that if J 6= ∅ then a0 lies in some compact part

of M (which depends on n) and hence by volume comparison arguments one
can find C6(n) such that Card(J) ≤ C6. Lemma 2.1 gives, for (i1 . . . ik) ∈ J,
Vol(Di1...ik

)

Vol(U0)
≤ C7 and so the constant C2 = C3C6

C
rn
7

satisfies the condition of the

lemma.
Let {Ui} be a covering of ω(Φn)

⋂
W

(u)
Π (a). Then

∑
i

V olrn(Ui) ≥
∑

i

1

C2

µ(Ui) ≥
1

C2

.

Hence, dhrn(ω(Φn)
⋂

W
(u)
Π (a)) > 0 and ∆(ω(Φn)) ≥ rn.

6) Proof of lemma 2: Now we denote

D̃i1...ik = D(φ̃ik ◦ . . . ◦ φ̃ik)
⋂

W
(u)

Π̃
(a).

For fixed k such sets form a covering of ω(Φ)
⋂

W
(u)

Π̃
(a). Given ∆r we have

∑
(i1...ik)

Volr0+∆r(Di1...ik) ≤
∑

(i1...ik)

C8(
k∏

j=1

1

C(φ̃ij)
)r0+∆r ≤ C8θ

k∆r.
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Hence ∆(ω(Φ̃)) ≤ r0 + ∆r. Since ∆r can be arbitrary small the lemma is
proven.

7) Proof of theorem 5.1)&2) : Under these assumptions Π is a
smooth submanifold and coordinates (u, s) are smooth on it (see [HP]). So
are the coordinates (u, s, t) on g[−ε,ε]Π introduced in Section 2. In these co-

ordinates B+ and R+ have the local product structure B+ = Bu×W
(ss)
2ε (a)×

[−ε, ε] and R+ = Ru ×W
(ss)
2ε (a)× [−ε, ε]. Hence, HD(B) = HD(Bu)+Ns +1

and HD(R) = HD(Ru) + Ns + 1. The statement follows from the fact that
under our assumptions

HD(Bu) = HD(B+
⋂

W
(u)
Π (a)) = du(B

+
⋂

W
(u)
Π (a)) =

= du(R
+

⋂
W

(u)
Π (a)) = HD(R+

⋂
W

(u)
Π (a)) = HD(Ru).

8) To prove theorem 5 for flows with a smooth invariant measure we need
the following

Lemma 4. Suppose V with dim V = Nu lies in a small neighbourhood of
a and is transversal to the leaves of the stable foliation. Then HD(V

⋂
B+) =

Nu. (Here we assume that a is δ−hospitable for any δ. Such points exist by
ergodicity).
Proof: Under the conditions of the lemma we can choose Π so small that
the projection π of V along the leaves of the stable foliation are absolutely
continuous and if l denotes the Lebesgue measure on V and l̂ is the image
by π∗ of Vol on W (su)(a) then

1

C9
l̂ ≤ l ≤ C9l̂.

Take a ball U of radius ρ on V and let Ũ be the ball with the same center
and radius 2ρ. Since V lies in a bounded part of M there exists a constant
C10 such that

1

C10
ρNu < Vol(Ũ) < C10ρ

Nu .

As was proven in paragraph 5, if Π is small enough there exists n such
that ∆(Φn) > 1 − δ and moreover µn(Di1i2...ik) ≤ C2Vol1−δ(Di1i2...ik), where

Di1i2...ik = D(φik ◦ . . . ◦ φi2 ◦ φi1)
⋂

W
(u)
Π (a). We want to project µn down to

V and prove the analogue of lemma 3. So, let Y = π(U), Ỹ = π(Ũ). Since
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the strong unstable foliation is Hölder continuous there exist a constant β1

such that dist(Y, ∂Ỹ ) > ρβ1 . Consider

I = {(i1i2 . . . ik) : diam(Di1...ik−1
) > ρβ1but diam(Di1...ik−1ik) ≤ ρβ1}.

Since Φn is finite there exist a constant C11 such that diam(Di1...ik−1ik) ≥

C11 diam(Di1...ik−1
). So for all (i1 . . . ik) ∈ I we have diam(Di1...ik) > ρβ1

C11
. By

the uniformity condition for gt there exist constants C12 and β2 such that
Vol(Di1...ik) ≥ C12 diam(Di1...ik)

β2.
Let J = {(i1 . . . ik) ∈ I : Di1...ik

⋂
Y 6= ∅}. So if (i1 . . . ik) ∈ J then

Di1...ik ⊂ Ỹ . Further {Di1...ik}(i1...ik)∈J form a covering of ω(Φn)
⋂

Y. of mul-
tiplicity bounded by some constant C13 = C13(n). Therefore we obtain

µn(Y ) ≤
∑

(i1...ik)∈J

µn(Di1...ik) ≤ C2

∑
Vol1−δ(Di1...ik) ≤

≤
C2

∑
Vol(Di1...ik)

C12ρβ1β2δ
≤ C2C13(C12)

−1Vol(Ỹ)ρ−β1β2δ ≤

≤ C2C13(C12)
−1C9Vol(Ũ)ρ−β1β2δ ≤ C14ρ

N−β1β2δ,

where C14 = C2C13C9

C112N . Hence the mass distribution principee gives

HD(supp π∗µn) ≥ N − β1β2δ.

Since δ can be arbitrarily small and supp π∗µn ⊃ B+ the lemma is proven.
Proof of theorem 5.3): Choose a smooth coordinate system (ũ, s̃, t̃)
in a neighbourhood of a so that the manifolds Vs̃0,t̃0

= {s̃ = s̃0, t̃ = t̃0}
are transversal to the leaves of the stable foliation. Then by the previous
lemma HD(Vs̃0, t̃0

⋂
B+) = Nu which implies that HD(B+) = dim M (see,

for example [F]).
9) Theorem 4 asserts that the set of points not-visiting some neighbour-

hood of infinity has a large dimension. The ”finite” counterpart of this result
is theorem 6 (see the introduction).

The proof of theorem 6 does not differ too much from that of theorem 4
but one should sharpen lemma 1 as follows.
Lemma 5. ∆(ω(Φn)

⋂
Ig+({bi})) ≥ rn.

This lemma can be proven by the arguments of Section 3 Another ap-
proach is given in [Sc]. After proving theorem 6 one can use the arguments
of paragraphs 7 − 8 to derive Corollary 2.

30



Acknowledgements. I thank Ya.G. Sinai for posing the problem and con-
stant encouragement during my work over the solution. In particular, he
pointed out more sharp formulations of some results than were in the previ-
ous version of the paper. It is a pleasure for me to express my gratitude to
I.E. Dinaburg, B.M. Gurevich, D.Y. Kleinbock, D.V. Kosygin, B. Stramann
and S.L. Velani for useful discussions. I thank P.V. Hegarty for comments
on writing in English.
References.

[A] Anosov D.V. ’Geodesic flows on closed Riemann manifolds with negative
curvature’ Proc. Steklov Inst. Math. v.90 (1967)
[AL] Aravinda C.S. & Leuzinger E. ’Bounded geodesics in locally symmetric
spaces’, preprint (1993)
[B1] Bowen R. ’Topological entropy for non-compact sets’ Trans. Amer.
Math. Soc. v.184 (1973) 125-136
[B2] Bowen R. ’Markov partitions and Axiom A diffeomorphisms’ Amer. J.
Math. v.92 (1970) 907-918
[BG] Boyarsky A. & Gora P. ’Compactness of invariant densities for families
of piecewise monotonic transformations’ Canadian J. Math. v.41 (1989) 855-
869
[BJ] Bishop C.J. & Jones P.W. ’Hausdorff dimension and Kleinian groups’,
preprint (1994)
[CFS] Cornfeld I.P., Fomin S.V. & Sinai Ya.G. ’Ergodic theory’ Springer-
Verlag, New-York (1982)
[D1] Dani S.G. ’Bounded orbits of flows on homogeneous spaces’ Comm.
Math. Helvetici v.61 (1986) 636-660
[D2] Dani S.G. ’On badly approximable numbers, Schmidt games and bounded
orbits of flows’ in Lond. Math. Soc. Lect. Note Ser. v.134 (1989) 69-86
[D3] Dani S.G. ’On orbits of endomorphisms of tori and the Schmidt game’
Erg. Th.&Dyn. Sys. v.8 (1988) 523-529
[F] Falconer K.J. ’The geometry of fractal sets’ Cambridge Univ. Press (1985)
[FM] Fernandez J.L. & Melian M.V. ’Bounded geodesics of Riemann surfaces
and hyperbolic manifolds’, preprint (1994)
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