EXPONENTIAL MIXING IMPLIES BERNOULLI

D. DOLGOPYAT, A. KANIGOWSKI, F. RODRIGUEZ-HERTZ

ABSTRACT. Let f be a C'*® diffeomorphism of a compact manifold M preserving a
smooth measure p. We show that if f : (M, u) — (M, ) is exponentially mixing then
it is Bernoulli.

1. INTRODUCTION

1.1. Main result. Let f : (M, u) — (M, ) be a CTe diffeomorphism of a compact
manifold M that preserves a smooth measure p. We say that f is exponentially mizing
(for smooth functions) if there exists[]r € N, ¢ > 0, and 7 > 0 such that for any
¢, € C*(M)

(1.1) \ [ swiron— [ oan [ wdﬂ'<c~e—m||¢||r||¢||r,

where || - ||, is the norm on C*(M).

Recall that (f, M, u) is a Bernoulli system (or Bernoulli) if for some m it is measure
theoretically isomorphic to the shift on {1,...,¢}% with the measure pZ where p =
(p1,...,pe) is a probability vector. Our main result is the following:

Theorem 1.1. If f is exponentially mizing then it is Bernoulli.

1.2. Broader context. One of the central discoveries made in the last century in
the theory of dynamical systems is that smooth systems can exhibit chaotic behavior.
The strongest ergodic property that describes chaoticity is the Bernoulli property, i.e.
being (measure-theoretically) isomorphic to a Bernoulli shift. Some weaker ergodic
properties describing chaoticity are (see e.g. a survey article by Ya. Sinai, [51]): the
K-property, positive entropy, mixing of all orders, mixing, weak mixing and ergodicity.
It is easy to see that Bernoulli implies K and that mixing of all orders implies mixing
which implies weak mixing which implies ergodicity. It follows by [47] that K-property
implies positive entropy. Moreover K-property also implies mixing of all orders, see e.g
[16] (this inclusion is probably least trivial from all the inclusions mentioned above).
It is not known if mixing implies mixing of all orders; this is known as the Rokhlin
problem, [45]. Except for the Rokhlin problem it is known that all the above inclusions
are strict (also in the smooth setting see e.g. the discussion in [20]). All the above
mentioned properties do not require a smooth structure and can be defined for an
arbitrary measure preserving system.

LA standard interpolation argument (see e.g. Lemma in Appendix shows that if (1.1)) holds
for some r then it holds for all r > 0 (but taking r small would require making n small).
1
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Classical statistical properties that require a smooth structure (see e.g. [51]) are:
central limit theorem, large deviations and exponential mixing. These properties provide
quantitative information on the system. All the three properties imply ergodicity, but
central limit theorem and large deviations do not imply weak mixing and hence also
do not imply stronger ergodic properties, see e.g. [20]. In this paper we focus on
consequences of exponential mixing. Notice that trivially exponential mixing implies
mixing. However it was not known if it implies any stronger ergodic properties. Our
main result (see Theorem shows that exponential mixing implies the strongest
ergodic property: Bernoullicity. In particular, it has the following non-trivial corollary:

Corollary 1.2. Let f € CYT*(M). If f is exponentially mizing with respect to a smooth
measure pu then it is mizing of all orders and also has positive entropy.

We note that [27] shows that mixing implies mixing of all orders for systems whose
spectral measure is singular. Corollary treats the opposite case where the spectral
measure has analytic density for smooth observables.

We in fact show in Section [3| that if f € C1**(M) is exponentially mixing for a f-
invariant measure g which is not supported on a fixed point of f, then f has a non-zero
Lyapunov exponent with respect to p, i.e. we have:

Proposition 1.3. If f : M — M is a C'™ diffeomorphism which is exponentially
maxing with respect to a non atomic measure p then f has at least one positive Lyapunov
exponent (for the measure ).

The following questions are natural:

Question 1.4. Let f : X — X be a C'* map preserving a non atomic measure .
Assume that (f, ) is exponentially mizing for Holder observables. Does f have positive
topological entropy? Does (f, 1) have positive metric entropy? Is (f,u) a K system? Is
it Bernoulli?

Our main result provides positive answers to all those questions if the measure y is
smooth, but it is interesting to weaken assumptions on the invariant measure.

We also remark that while our results show that exponential mixing implies mixing
of all orders we do not get any quantitative bounds on the rate of multiple mixing. In
particular, the following question is natural. We say that (f, i) is ezponentially mizing
of order k if there exist constants ry, Cy, nx such that if ¢1, ¢o, ..., ¢r € C*(M) then

k k k
1.2 (fx) | du — cdp| < Cre ™ il s
0 |f (Tetrn )an=T1 f oot < i TTon
where L = min (nj41 — ny).

1<j<k—1
Question 1.5. Does exponential mizing imply exponential mizing of all orders?

We note that exponential mixing of all orders implies several statistical properties
such as the Central Limit Theorem [7] and Poisson Limit Theorem for close returns
[21].
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The reason why our method does not provide quantitative bounds on multiple mixing
is because we rely on the Pesin theory, which in particular uses a Multiplicative Ergodic
Theorem which is a non constructive result. It seems of interest to obtain quantitative
bounds assuming some estimates on the measure of points where the convergence in the
Multiplicative Ergodic Theorem is slow. Such results were previously obtained in [T}, 2]
where instead of exponential mixing the authors assume non-uniform hyperbolicity and
dominated splitting.

The Bernoulli property was shown to hold for many classes of natural dynamical sys-
tems: ergodic toral automorphisms [32], Axiom A diffeomorphisms [§], quadratic mapsﬂ
with absolutely continuous invariant measure [34], geodesic flows on surfaces of con-
stant negative curvature [36], geodesic flows on higher dimensional manifolds (without
focal points) [40], Anosov flows [44], non-uniformly hyperbolic maps and flows (with
singularities) [I5]. Recently in [28] it was shown that partially hyperbolic homogeneous
systems are Bernoulli. The above list is not complete but it contains the main examples
of smooth Bernoulli systems.

We note that in the last 25 years there has been a significant progress in proving
K property for partially hyperbolic systems. This study was initiated in [50} 10} 25].
Currently the strongest result is due to [I3] and says that a partially hyperbolic center
bunched volume preserving diffeomorphism with essential accessibility property is K.
Recall that f is partially hyperbolic if there is a D f invariant splitting TM = E*® E°®
E* and positive functions v(z), 0(z),y(z),, ¥(x) such that

vo<l, v<y<At<iol

and
1D <ol it v e B, DFW) > 57 o] it v e B
Yol < IDF@)I| <47 if v € E°.

A partially hyperbolic system is called center bunched if the above functions could be
chosen so that v < v4 and 7 < 74. A key inspiration for our approach comes from
the remark that any system with non zero Lyapunov exponents could be regarded
as a non-uniformly partially hyperbolic system (enjoying the center bunching). This
allows one to extend several tools from the theory of partially hyperbolic systems to
the non-uniform setting and plays an important role in our proof.

Recall that for a partially hyperbolic system one can define an accessibility class of
a point x as the set of points which can be joined to x by a piecewise smooth curve
such that each piece belongs to either one stable leaf or one unstable leaf. Essential ac-
cessibility means that every measurable set which consists of whole accessibility classes
has measure zero or one. This is weaker than accessibility which means that there is
only one accessibility class. We note that the essential accessibility is insufficient for
the Bernoulli property, see [30, 48, 29]. Thus a natural next step is to understand
which additional features of the system are responsible for Bernoullicity. The recent
works [28] 22] 20] seem to indicate that an important role is played by the competition
between the rate of mixing and the complexity of the system restricted to the subspace

2For non invertible systems the Bernoulli property means that the natural extension of f is iso-
morphic to a Bernoulli shift.
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with zero exponents. In particular, in the present paper we show that the exponential
mixing implies the Bernoulli property as the growth in the zero exponents directions
is always sub-exponential. However, there are still many open questions related to the
Bernoulli property for smooth systems. Below we mention a few which seem to play a
central role in the theory.

Question 1.6. Is exponential mizing assumption in our main theorem optimal? In par-
ticular, does there exists a diffeomorphism which enjoys a stretched exponential mixing
(i.e. at rate e for o € (0,1)) but is not Bernoulli?

We note that [20] constructs non Bernoulli systems with arbitrary fast polynomial
mixing rate. However, in order to get the mixing rate of n= [20] considers manifolds of
dimension growing quadratically with «. In fact, lowering the dimension of the phase
space makes it more difficult to construct non Bernoulli systems. In [29] the authors
construct K non-Bernoulli examples in dimension 4. On the other hand it follows from
the Pesin theory that K implies Bernoulli in dimension 2. Hence the following classical
question is of a central importance:

Question 1.7. Does there exist a K non Bernoulli diffeomorphism preserving a smooth
measure in dimension three?

The next question is important for the theory of partially hyperbolic systems.

Question 1.8. Is every volume preserving partially hyperbolic system with accessibility
property Bernoulli?

1.3. Outline of the proof. Since our approach requires rather technical results from
the Pesin theory of C'* diffeomorphisms we will outline the main steps in the proof
for convenience of the reader.

A standard approach for proving the Bernoulli property (developed in [36]) is to
verify the very weak Bernoulli (vwB) property which means that for each S > 1 the
itinerary of the orbit during the time interval [0, S] is asymptotically independent of the
remote past. More precisely, if P is a finite partition then for large enough Ny > Ny,
the distribution of the itineraries on time [0,.S] are almost the same for most atoms

No
of Py, N, = \/ f“P (here the closeness of the distributions on itineraries is induced
i=Ny
by the topology in which two itineraries are close if their Hamming distance is small).
In this paper we also verify vwB property, but to do so we need to develop geometric
structure of our system which follows from exponential mixing. We divide our argument
into several steps.

The first main step in the proof (conducted in Section |3 is to show that exponential
mixing implies that some exponents are non-zero. For the proof of this we only require
that f € C'T(M) is exponentially mixing for a measure p which is not supported on
a single point. We first show that if f is exponentially mixing, then there is 71 > 0 and
a set B of positive measure such that for all sufficiently large n the balls O,, centered
in B with radius e”"" satisfy that the diameter of f™(O,,) becomes macroscopic. Next
we show that if exponents were zero then, for each £ > 0 the images of balls of size
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~ e~ " centered at Oseledets typical points remain exponentially small after iterating

n times. Taking ¢ < n; leads to a contradiction with the fact that such an image must
become of order 1 (macroscopic) in diameter.

The existence of non zero exponents makes the Pesin theory applicable to our prob-
lem. In particular, almost every point has an unstable manifold of positive size and
the unstable lamination is absolutely continuous. We note that all the necessary facts
from Pesin theory needed in our paper can be obtained by standard techniques. In par-
ticular our presentation relies heavily on Barreira-Pesin book [6]. On the other hand
the statements in our paper are less restrictive than in most other references as we
only assume that the system has some non-zero exponents. In particular we extend
the theory of fake center stable foliations developed in the ergodic theory of partially
hyperbolic systems to the non-uniform setting. One technical novelty in our argument
is that we define center foliations that work for finitely many iterates, and they have
good absolute continuity properties (see the descriptions of Sections [5| and @ below).
We would like to emphasize that the results of Sections (as well as Section [§ and
Appendix [A]) are valid for any diffeomorphism preserving a smooth measure with some
non-zero exponents and as such are of independent interest.

Next, a standard backwards contraction argument going back to [3} 136, 50] shows that
the remote past partition Py, n, is almost u-saturated, meaning that if £ is sufficiently
small then for most points the unstable manifold of size £ around = belongs to the same
atom as x. We present this argument in Section [4]

Given almost u-saturation, the natural idea for verifying the vwB property is to
show that for any large n and any two “typical” unstable pieces Wi, W, of size &
there exists an almost measure-preserving map 6 : (Wi, mj, ) — (W, mjy,) such that
the points x and 6x remain close for 1 — ¢ proportion of the first n iterates. More
precisely, the existence of such maps allows to control S-itineraries for sufficiently
large S, while for small S we can use the K-property, see Corollary for details.
For many of the Bernoulli examples mentioned in this map can be constructed
taking n’ < n, subdividing f™ W, = U W ; so that W ; is close to W ; and defining

J

0 : f_n/WLj — f‘”’WQJ using the center-stable holonomy. In this approach almost
measure preservation comes from the absolute continuity of the center stable foliation,
the closeness of fiz and f7(fx) comes from the fact that the center stable direction
is non-expanding and the possibility of subdividing f*W; and f*W, into the pieces
which are close to each other comes from the minimality of the unstable lamination.
In our case none of the above properties is available. That is, we do not know if
the center stable distribution is uniquely integrable and if so, it is not clear if the
resulting lamination is absolutely continuous. Moreover the vectors in the subspace
corresponding to the zero exponent could grow albeit at a subexponential rate. Finally
we do not know if the unstable lamination is minimal. To overcome these difficulties we
establish weakened analogues of the above properties which are nonetheless sufficient
for our purposes.
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First of all, in Section [5| we introduce the crucial notion of fake center-stable foliation
at time n. This (locally defined) foliation mimics the behavior of the center-stable
foliation for n iterates. Fake center-stable foliation was previously used in the study
of ergodic properties of partially hyperbolic systems in [I3] where these foliations were
constructed near an arbitrary orbit. In our setting this foliation is defined only near
Lyapunov regular orbits. The main result of Section [5|is that we can define this lam-
ination outside of a set of an arbitrary small measure so that there is a unique leaf
passing through each point. This statement is non trivial even for partially hyperbolic
systems in case the center stable distribution is not uniquely integrable.

The properties of the fake foliation are studied in Section [l For each fixed n the
center stable foliation is obtained by pulling back a smooth foliation, hence it is abso-
lutely continuous. If the center stable distribution is uniquely integrable then the fake
foliations approach the real center stable foliation as n tend to infinity. Therefore if the
center stable foliation is not absolutely continuous, then we could expect the fake center
stable jacobians to deteriorate on the unit scale. However, we show in Proposition
that if we take two submanifolds which are exponentially close then the jacobian of the
fake center stable holonomy is close to 1. Accordingly the fake center stable holonomy
between nearby typical unstable leaves is almost measure preserving (Proposition .
Another consequence of the local absolute continuity is local product structure of the
measure on the small scale established in Corollary [6.6]

The next key step in the analysis is the exponential almost equidistribution of un-
stable leaves established in Section [ The main result of that section is the Main
Proposition (Proposition which says that given a typical unstable leaf YV and a
partition of the phase space into cubes of size r > ™" we can discard a small proportion
of cubes so that the proportion of f™W inside the remaining cubes is approximately
equal to the measure of the cube. We also point out that the Main Proposition also
implies that for any cube of size of order 1, f™W is equdistributed in the cube.

A standard approach to proving equidistribution of the unstable leaves is the follow-
ing. Take exponentially narrow tube 7 around W. By exponential mixing the image of
T is equidistributed in the phase space. Next every point z in 7 belongs to the center
stable leaf of a point 2z’ in W, and since the Lyapunov exponents in the center stable
direction are non-positive, we expect f"z and f"z’ to be close. Unfortunately, this
closeness only holds if 2’ is sufficiently regular point and while the contribution of non
regular points is small it does not have to be exponentially small. These necessitates
discarding the cubes in our partition which attract an anomalously large proportion of
non regular points. The Main Proposition is the crucial result in establishing both the
K and the Bernoulli properties. Namely, the K-property follows from the equidistri-
bution of the image of unstable leaves on the unit scale, as we explain in Section [§] To
verify the very weak Bernoulli we follow the strategy described above by constructing
the coupling between the nearby pieces of f* W, and f*W, with n’ = en. Here the
possibility of the subdivision

W, = (U W; ;) U {small unmatched part}

J
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so that W, ; is close to W, ; comes from the exponential almost equidistribution, the
coupling map is almost measure preserving due to the local absolute continuity of the
fake center stable foliation and the closeness of z and #z comes from the fact that [z
and f"0(x) are exponentially close at time n/ and the divergence in the center stable
direction is subexponential. This argument is presented in Section [9}

1.4. The choice of parameters. We finish our outline by specifying the dependence
of parameters that appear in our proofs. Our proofs rely heavily on the Pesin theory and
the very weak Bernoulli property. They involve several scales of smallness (or largeness)
of parameters. To make it easier for the reader we summarize the dependences that
appear in the paper.

(1)

(4)

We start with f € C'**(M) which is exponentially mixing on C*(M) with ex-
ponent 77 > 0. In the text we introduce the number 7) (depending only on 7, r
and dim M). Namely in Lemma we obtain as a consequence of exponential
mixing, that if 7 is small enough then the images of balls (centered at typical
points) of size e~ become macroscopic after n iterates. Also in Lemma we
show that exponential mixing for smooth functions implies mixing on parallelo-
grams of size e”"?n provided that 7, is small enough. E| We use the notation «; to
denote Holder exponents of certain functions that we define. All the a; depend
only on || f||c1, the Lyapunov exponents of f, a, and dim M. In Proposition
we will also use the number 5 > 0 which can be taken to be 1/2 min(a, min; ;).
Our proof proceeds by verifying the Ornstein-Weiss criterion (see Corollary.
Thus given € > 0 we need to construct a map 6 verifying . This € defines
the next level of smallness. We note that if the conditions of Corollary are
satisfied for some ¢ > 0 then they also hold for all ¢’ > e. Therefore in the proof
we assume that ¢ is sufficiently small and we will use estimates like % < /100
without additional explanations.

Having fixed ¢ > 0 we take § = £'%°. We then apply Lemma [2.4] for this choice
of ¢ to get the corresponding function t(-) describing the size of Pesin chart for
(A, §)-regular points. Next we pick the parameter 7 > 0 for the Pesin sets in
and respectively. For points in these sets the function t(-) is larger
than 7. We again want 7 = 7(¢) to be small enough in terms of € so that
((Pr) =1 —¢' (see (2.15)).

Having fixed all the above parameters we now choose a sufficiently large ng
(largeness depending on all the previously fixed parameters) and we conduct
the proof for n > ny.

Throughout the paper we use the following abbreviations:

a2n—ngan

~ 2
En=c¢ , Th=e¢€

—1n2en—e*n

The above parameters are the sizes of the parallelograms B(&,, 7,,) that we will con-
sider: the parameter &, is the size in u direction and 7, is the size in the (fake) cs
direction. It is important that both are exponentially small, but the u direction is

1 1 D 1
3According to (B.5) and (B.4) we can take 7 = min (10D’ 81') , and ny = T _;721_ (10 — 15) ,

where D = dim(M), but the precise values of these constants are not important for our argument.
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longer than the cs (this simplifies some arguments using Holder continuity of the u
foliation).

1.5. Notation. The following notation is used throughout the paper:

b = 10%.

B(&, r)—the parallelograms in the phase space (see ([5.1))).

B, — disjoint parallelograms whose union covers most of the space (see family B,
after Lemma

By — the family of parallelograms defined after equation ([5.7)).

B;(r) — parallelograms defined after equation ({5.11]).

C¢,C¢® —unstable and center-stable cones of aperture b (see -

Ciy ) CS*(y)—the cones of aperture 1/2 of z shifted to y (see 2 18).

D = dim(M), d* = dim(E"), d* = d(E*).

E"(x), E“(x)-the Oseledets subspaces at z corresponding to positive and non-
positive exponents respectively.

Ecsn&( ) Twcsné( )

f-representation of f in Lyapunov charts (see Lemma .

F; j—the leaves of fake center stable foliations (obtained by reindexing of F; ; ; from
(65-13), see end of Section [f).

h.s—Lyapunov coordinate map (see Lemma .

L s—the linear map rectifying the angles between E*(z) and E®(z) (see Lemma 2.4)).

LyapReg-the set of Lyapunov regular points (see Definition .

Lo,=P.Nf"PNf P (see )

my — Lebesgue measure on W,

my, — the conditional of y on the unstable leaf W (see (2.19)).

P, — the Pesin set of points with v > 7 (see (2.15)).

Q. — Lyapunov neighborhood of the point z (see (2.6])).

Q" — Bowen ball with respect to the Lyapunov neighborhood z (see (2.6))).

Qz(ry,res) — images of the parallelograms in the tangent space (see (2.7)).

ru(x) — size of unstable manifold of z defined in Lemma [4.4]

ts(x) — sizes of Lyapunov charts at = (see (2.3))).

NRs(z) — a function measuring the nonuniformity in the Multiplicative Ergodic The-
orem for z (see Definition [2.1] and Theorem [2.2)).

R; ;(r) — the domains of F;; (see (5.16)).

P = e S (see (7.1))).

R, - union of F—saturations of R;;(r) defined by (7.14).

W;Sv”=5(g) — the image of fake center stable foliation in the Lyapunov charts (see
De/f\izlition .

W (x) — the image of (fake) unstable manifold in the exponential coordinates (see

Lemma .

+r — the local stable manifold of  of size R (see (2.11))).
W — the local unstable manifold of z (see (2.12))).

V/\Z — reference unstable manifolds (see (5.10))).
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«a — Holder regularity of Df.

oy — the regularity of the Oseledets spaces on Pesin set (see Lemma .

ag = min(a/2, ap) — regularity of the rectifying maps L, (see (A.5])).

a3 — the (controlled) regularity of center stable manifolds (see Lemma .

ay — the regularity of unstable manifolds (see Lemma [2.8)).

a5 — cone contraction stability exponent (see Lemma [2.11]).

ag — the (controlled) regularity of the tangent spaces of fake center stable manifolds
(see Lemma[A.5).

ay — the (controlled) regularity of the tangent spaces of admissible manifolds (see
Lemma .

B — regularity exponent of admissible manifolds in Definition 6.2}

nY : R* — R — a function whose graph defines W*(z) (see Lemma .

720 R — RY — the function defining the graph of We™9(3) (see Lemma .

Z7y :
72 — the smallness exponent sufficient to guarantee the exponential mixing on paral-

lelograms (see Lemma [B.2)).
A — the smallest positive exponent (see Lemma .
£ = e (see (5.6).
p(z) — density of y in the product coordinates (see (5.2)).
7 — the parameter of the Pesin set so that u(P,) > 1 — &P.

1.6. Layout of the paper. The proof of Theorem is carried out in Sections
following the outline given above. Section |2 contains the necessary background. Tech-
nical estimates from the Pesin theory needed in our proof are collected in the appendix.
Section [I0]describes several skew products with Anosov base and homogenous dynamics
in the fiber where the Bernoulli property follows from our main result. These examples
seem unaccessible by other methods. The results are sharp as the failure of exponential
mixing also leads to the failure of the Bernoulli property.

Acknowledgements: The authors would like to thank Mariusz Lemanczyk, Yuri
Lima and Yakov Pesin for suggestions improving the readability of the paper.

2. PRELIMINARIES

2.1. The Pesin theory. Let f be a C'™ diffeomorphism of (M, i) with dim(M) = D.
We denote the derivative of f by Df, : T,M — Ty, M andlet Df;! := D fsn-1,0...0Df,.
We assume throughout that p is smooth and that f is ergodic with respect to pu.

Definition 2.1. [12, Thm 2.4 & Prop 2.6][6, Thm 3.4.10, Thm 3.5.5, Prop 3.5.8.] Let
A > 0. A point x is said to be (X, 0)-Lyapunov regular if there is a splitting

Ty, M = E(f'z) & B (')
for k € Z and there are numbers Rs(fFx) > 0 such that

(1) Rs(fFma) < HRs(fra) for every k € Z, n € Z;
(2) DfFE°(x) = E°(f*x) for every k € Z, o = cs,u;
(3) if ve E<(fFx), n >0, then

IDf ol < Rs(f)e™ oll;
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(4) if v e E*(f*z), n <0, then
1D ol < Rs(f* ) o]
(5) Z(E(f*x), B*(fre)) = B35 (f*(2).
Note that (A, d)-Lyapunov regular point is (A, d")-Lyapunov regular for any ¢’ > 4.

Theorem 2.2. [6 Thm 3.4.10, Thm 3.5.5, Prop 3.5.8.] Let X be the smallest positive
Lyapunov exponent of f. Then for each § > 0 the set of (\,d)-Lyapunov reqular points
has full measure. Moreover, the function x — Rs(x) can be chosen Borel measurable.

Fix A > 0 from the above theorem and let § be a small number. Let
(2.1) LyapReg(0) := {x € M : xis (A, J/4)-Lyapunov regular}.
Notice that since f is C'T*, there is a constant C; > 0 such that denoting by exp,,

the exponential map and letting fp = €Xpy-10 J oexp, we have that fp is defined on the
ball of radius 1/C4 in T,M and

(2.2) 1Dz, f,) ™" = (D2, f) iy nimrynr < Cilzr — 20

if |21]p, |22], < C% For p € LyapReg(d) let

9 —2/a
2.3 ) = (T ey )

The precise formula for vs(p) will not be important in our arguments. We will just
use that it is uniformly bounded from below on Pesin sets defined in (2.4)) below. We
A.2)

may assume that ts5(p) < CL (see e.g. the comment below Lemma . Moreover by
property (1) in Definition [2.1, we have that

w5 (p) < vs(fp) < eavs(p).

In what follows (see eg. Lemma2.4)) we will work with a rescaling of v(-), t5(+) = tsa(-).
To simplify notation and since we will work with the rescaled function from now on,
we will denote the rescaling also by ts(-).

Let us write RP? = R* x R%. Sometimes we will write R? to emphasize that it
correspond to the tangent space of x.

We now define the Lyapunov norm. Let x € LyapReg(é/4). Define for u € E%(x)

|U ;2’5 _ Z |Dxfmu’§cmme—2)\m—26\m\
m<0
and for v € E*(x)
|U|;c2,6 = Z |D$fmv|?cmx6_2§|ml-
m=0
These norms define inner products naturally and we extend it to an inner product on
T.M = E"(z) & E®(x) by declaring these spaces orthogonal.
Next we define the Pesin sets. Let

(2.4) P=P :={zeM: tzx)>r1}
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Since t5(+) is measurable it follows that z(P,) — 1 when 7 — 0. (Note also that P, C P;
for 7 < 7).

Lemma 2.3. There exists oty > 0 such that for every 7,0 > 0 ,0 < ¢ there is
K = K(7,0) > 0 such that the maps © — E"(x) and x — E*(x) are (K, ay)-Hélder
continuous on P° .

Proof. The proof of this is the same as the proof of Theorem 5.3.2 in [6] using the
observation that the proof of this theorem does not require that £ is contracting. [

Lemma 2.4 (Lyapunov charts). [see [12, Prop 5.1],[6, Thm 5.6.1] and [11], Sec 11.2]
for one sided charts] There is ag,00 > 0 such that for every 6 < g there are linear
maps L, s: RP — T, M, such that
L1. Ly is an isometry between the standard metric in RP and the | - |, 5 metric;
L2. for every sufficiently small 7 > 0, the maps x — L, s are ag- Holder continuous
on P;.

Moreover defining
hes=exp,olys, and fos=hg, ;0 f0hys,

we have
(1) hy5(0) = z;
(2) Lys(R*) = E*(x) and L, s(R*) = E(x);
(3) max(|Loall 1L 3) < 6 (@)
(4) domain(fys5) O Bey(x)(0) and domam(f;;) D By (0);
() @710l < |Dofus(v)] for v € R, [Dofus(o) < o] for v € R
(6) Hola,(D frs) < 6, Lip(fo5 — Dofes) <6 and Lip(f, 5 — Dof,3) <0
(7) max (Lip(hes), Lip(h;3) ) <5 (2).

While this lemma is standard (see the references above) we recall the proof (the
statement of Lemma[2.4]is obtained by combining Lemmas [A4[A ] from Appendix
in Appendix |A| since the intermediate steps in its proof are also important in the
derivation of other estimates which will be used in the paper and are described below.

We extend f, s to all RP by making it linear outside of the ball of radius 2vs(z) and
with same bounds as in Lemma (note that this is possible by taking a smaller ay if
necessary, see the definition of vs(+)).

2.2. Hadamard-Perron, center-stable foliation.

Definition 2.5. Given 0 < 6 < dy, © € LyapReg(d) and n > 0, we define the foliation

W;S’”"S on RY by by pulling back the foliation by planes parallel to RS via ;gf?, i.€e.

W;s,n,&(g> — (fég))—l (Rcs 4 fig) (g)) .

Let B (y) = TWeom(g).
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Notice that for k € [0, n],
7(k) (tTresm,d 7=\ _ t1i7cs,n—k,8 7(k) /-
FE W () = Wear 2 (15 (7).
The following lemma is crucial:

Lemma 2.6. There ezists az, 65 > 0 such that the following holds: for every é € (0, 6y),

~CS

any © € LyapReg(d), every § € RP, there is nx,z’jn"s : R — R such that

Wend() = graph (7i55")

and
30
~C8,1,0
1D er < — 2
and
126
~C8,1,0
(2-5) [an,g ]C% < —1 P

We will prove the above lemma in of the appendix.
We finish this subsection with the following straightforward lemma:

Lemma 2.7. Let ¢ : GL(RY) x Grass*(R”) — R be ¢(A, E) = log |det(A|E)|. Given
Co there is a constant N(Cy) such that if ||A|l, || B||, |A7 ], ||B7Y| < Co and E and F
are graphs of the maps L, Ly : R* — R?, respectively, where RP = R® x R®, then

[¢(A, E) = ¢(B, F)| < N(Co)([|[A = Bl + |[Le — Lr|).

In the proof of our main result (see the beginning of Section |5) we work with fixed
e > 0. We always assume that ¢ > 0 (from the above results) is small enough in terms
of € but fixed (e.g § = £'® would do). Therefore, we will omit it in the notation below.

Denote by B®(z, R) the ball of radius R > 0 centered at z € R, with an analogous
notation for B*(z, R). If z = 0 we simply denote B“*(R) = B*(0, R) with an analogous
notation for B*(R).

Let
(2.6) Qu = ho(Bey()(0)) and QL = ﬁf"“Qm;
notice that QY = hy (=g (fe) " (Bey(pray))- We also define
(2.7) Qu(TusTes) 1= ha(B"(ry) X B*(res)),
(2.8) Qu(r) = Qu(r,r),  Qu(A,1) = hy(A x BP(r)).

Let d* = dim E* and d*° = dim E.

In the paper it will be more convenient to work with cubes rather than balls (i.e.
balls in the mazimum norm ||z||. = max|z;|). Let C*(R) C R" be a cube centered at
0 of side length R, i.e. a ball centered at 0 of radius R/2 in the metric || - || .
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Lemma 2.8. (Lemma and Corollary [A.9) There are constants Co, s > 0 such
that for every x € LyapReg,

__ 1 _
Wy = {y € R” : limsup —log| f;" ()| < 0}

is the graph of a C'T function

(2.9) n=mn,:R"— R®
with
(2.10) [l crves < Co, n(0) =0, Doy = 0.

Moreover if Z1, Zo € Wf then

(Fr12) 71 (21) = (F1a) 7 (22)] < 2120 — 2
and if we define
(2.11) Wi, = graph(n, C*(R)), Wyp=ho(Wep)
then for every x € Lyapreg and R > 0,

(fx)_IW}L@R - Waje(—/\wé)R'

Set
(2.12) W = W

z,e5(x)
Notice that f~'W; C W, since by Lemma Fr W @) C Wiy 1 (f D).
In some papers W' is called local unstable manifold of x and is denoted W;';,.. We do
not use the subscript loc since we will not need to consider global unstable manifolds
of x.

By [6, Theorem 7.1.1] (see also Corollary [A.9)) there exists a measurable function £K(z)
such that the size of the unstable manifold of z is greater than 1/8(x) and moreover

for each y € W}

(2.13) d(f "z, f"y) < R(x)e®Vd(x,y)
i.e. W' is exponentially contracted. Let
(2.14) P, ={z: &(x) < 71}

In what follows for a given £ we will pick 7 small enough so that if we define (see
(2.4))
(2.15) P.:= P, NP,

then u(P;) > 1 — &P, where b = 101°.
We start with the following observation:

Lemma 2.9. There ezists a constant K' such that for every x € LyapReg,
1Dofell, Do fH | < K.
Proof. This follows from (A.1]) in Lemma [A.3] O



14 D. DOLGOPYAT, A. KANIGOWSKI, F. RODRIGUEZ-HERTZ

2.3. Cones. Let

(2.16) Cl={v=v"+v* cRP: [v*] < blv"|},

and

(2.17) Ce = {v=v"+v* € R : v < b}

be the b—cones around R* and R*. For x € LyapReg and y € @),, define the cones
(218) Chy) = (Dyh; Wl C2(y) = (Dyh YaCila

We have the following:

Lemma 2.10. For every 0,7 > 0 there exists ns, such that for every n = ns., every
NS ]575 N f_"lf’é and every y € Q;(En) we have

(1) if v € Cy(y) | Dyfrol| = 723 fo];

(2) if v € C&(y) then for each 0 < k < n it holds || D, ffv|| < 772e*%||v]|;

(3) DfF(Ci(W) C Chaiy (f"());

(4) DfC(y) D Chapry (f"(y)):

The proof is an immediate consequence of the definition of h, and the following

Lemma:

Lemma 2.11. There is as > 0 such that for every b < 1 there is Cy > 0 such that
for every 6 € (0,0q) there exists rs > 0 such that for every r € (0,15) satisfying
Cor® < b <1 every x € LyapReg and |w| < r,
Do fo(v)| = €7 forv ey, |Dyfe(v)] < ¥ forvecy,
Dy f.Cl C C"rissy and CE C Dy f,C% sy,
Proof. This is a straightforward consequence of f being C'** and Lemma . OJ
2.4. Conditional measure along unstables. For x € LyapReg, we let m? to be
Lebesgue measure on W,
Lemma 2.12. [0, Thm 8.6.8 and its proof and Thm 8.6.13 and Thm 9.3.4] For x €
LyapReg and z € WY, we define p(z,-) : W' — R,
H det (D fr-n| E“(f7"(2)))
det (D fr-n| E*(f (1))’

it 1s Holder continuous. Moreover defining p, =
P. > x — p, is Holder continuous and p(z,y)p(y, 2)

For W C W}, we define

p(z,y) =

p(x,-) we have that for every T,

pé)

Jar(e,y)dm; (y)
Jw P, y)dmi(y)
Note that if z € W} and we use p, to define 1y we will get the same formula.

For z € P,, we take a transversal T, = h,(graph(¢)), where ¢ : R® — R is
C' function with [|n]jc1 < Cy, and we define 77 = Uyep.no, Te N W, and Qr =
Uyep.no, Wy~ We have the following lemma:

(2.19) mi(A) =
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Lemma 2.13. ([39, §3.3]) Given 7 >0 and x € P;, if A C Q, then
pAnQ = [ aze) [ plegantiy)
s W2 NA

where VT is absolutely continuous w.r.t. Lebesque on 17 C T,,. Also we have that
m, (T \ T7)
mg: (1)

as 7 — 0 where mg 1s Lebesgue measure on the transversal T,.

—0

2.5. Measure theory.

Definition 2.14. A map 0 : (X1,11) — (Xa, va) between two measure spaces is called

e-measure preserving if there exists a set By C Xy, v1(Ey) < & and such that for every

A€ Xy \ E1, we have

va(0(A))
v1(A)
The following fact will be useful in constructing e-measure preserving maps. By

Lebesgue space we mean a probability measure defined on a Borel o-algebra in a Polish

space.

-1 <e.

Lemma 2.15. ([46]) Any two atomless Lebesque spaces are isomorphic.

2.6. K and Bernoulli properties. Let (X,B,u) be a standard probability Borel
space and let P = (P, ... F) and Q = (Q1, ..., Qk) be two finite measurable partitions
of X. Let PV Q be the partition into sets of the form P, NQ;, i,j € {1,...,k}. Let T
be an automorphism of (X, B, ). We say that P is generating if \/fz TP = B.

We say that a property holds for € a.e. atom of a partition Q if the union of all atoms
for which the property does not hold has measure < €.

We recall the definition of K-property:

Definition 2.16. Let T be an automorphism of (X, B, u) and let P be a finite partition
of X. We say that P is a K-partition if for every D € \/J_rz TP and every e > 0 there

exists No = No(e, D) such that for every N' > N = Ny, € a.e. atom A € \/%, TP
satisfies
nAND)
p(A)
We say that T has the Kolmogorov property (K property) if there exists a generating
K -partition. It then follows that every partition is a K-partition.

—u(D)| <e.

We will need the following simple modification of the original definition of the K-
property:
Lemma 2.17. T has the K property if there exists a generating partition P such that
for every D € B and every e > 0 there exists n € N and Ny = Ny(e, D) such that for
every N' > N > Ny, € a.e. atom A € \/% TP satisfies

(2.20) “(A;(—gnm —u(D)| <.
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Proof. The proof is an immediate consequence of the following observation: if A €
VY TP, then A = fm(A’) where A’ € \/N " TP. Since u(AN D) = u(A' N fD) it
easily follows that the statement of the lemma is equivalent to the original definition of
the K property. O

By [47] the K property is equivalent to completely positive entropy: every factor of
T € Aut(X, B, 1) has positive entropy.

Definition 2.18. T' € Aut(X, B, i) is Bernoulli if it is measure theoretically isomorphic
to the Bernoulli shift, i.e. the shift map on the space ({1,...,¢}2,p%), where p =
(p1,---,pe) 18 a probability vector.

For A C X, P4 denotes the induced partition of the space (A, j14), i.e

H(ANB)
1(A)

We introduce the following distance on the space of partitions of (X, u):

Pa=(FPiNA,...,P,NA)and pa(B) =

d(P,Q) =} n(PAQs).

Now let P* = (P5,...,Ps), s = 1,...,S be a sequence of finite partitions of (X, p)
and Q° = (9F,...,9;), s = 1,...,5 be a sequence of finite partitions of (Y,v). If
additionally (X ) = (Y,v), then

7 s s e 1 d 7/ DS s
APy (@) 1= 5 2 AP, Q)

More generally, if (P*)%_, and (Q%)%_, are partitions of different spaces, we say that
P~ Qi fors=1,...,5if u(P?) =v(Q;) fori=1,....,kand s =1,...,5. We can
then compare the distance between (P*)5_, and (Q*)%_, by setting

(P (@) = inf | A((PIL(Q5),

where the infimum is taken over sequences of partitions Q° of (X, ). We denote by
T™P the partition given by (T"Py,...,T"Py).

Definition 2.19 (Very weak Bernoulli,ywB). Let T € Aut(X,B,u) and let P be a
finite partition of X. Then P is a very weak Bernoulli partition (vwB partition) if for
every € > 0 there exists Ny € N such that for every N' > N > Ny every S > 0 and &
a.e. atom A of \/%l T (P), we have

d({T7"PY o AT "Plat,) <e.

The following classical theorem is a crucial tool in establis