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Abstract. We consider a finite region of a lattice of weakly interacting geo-
desic flows on manifolds of negative curvature and we show that, when rescaling
the interactions and the time appropriately, the energies of the flows evolve
according to a non linear diffusion equation. This is a first step toward the
derivation of macroscopic equations from a Hamiltonian microscopic dynamics
in the case of weakly coupled systems.

1. Introduction

One of the central problems in the study of non-equilibrium statistical physics is
the derivation of transport equations for conserved quantities, in particular energy
transport, from first principles, (see [6], and references therein, or [30], for a more
general discussion on the derivation of macroscopic equations from microscopic
dynamics).

Lately several results have appeared trying to bring new perspective to the above
problem in a collective effort to attack the problem from different points of views.
Let us just mention, as examples, papers considering stochastic models [3, 4, 5],
approaches starting from kinetic equations or assuming extra hypotheses [2, 26, 7]
or papers trying to take advantage of the point of view and results developed in
the field of Dynamical Systems [16, 13, 14, 15, 8, 9, 29]. This paper belongs to
the latter category but it is closely related to results obtained for stochastic models
(e.g., [25]).

We consider a microscopic dynamics determined by a (classical) Hamiltonian
describing a finite number of weakly interacting strongly chaotic systems and we
explore the following strategy to derive a macroscopic evolution: first one looks at
times for which we have an effective energy exchange between interacting systems,
then takes the limit for the strength of the interaction going to zero and hopes to
obtain a self-contained equation describing the evolution of the energies only. We
call such an equation mesoscopic since most of the degrees of freedom have been av-
eraged out. Second, one performs on such a mesoscopic equation a thermodynamic
limit to obtain a macroscopic evolution. In particular, one can consider a scaling
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limit of the diffusive type in order to obtain a non linear heat equation as in the
case of the so called hydrodynamics limit for particle systems, see [22, 31] for more
details. A similar strategy has been carried out, at a heuristic level, in [19, 20].

The first step of such a program is accomplished in this paper. It is interesting
to note that the mesoscopic equation that we obtain seems to have some very nat-
ural and universal structure since it holds also when starting from different models.
Indeed, essentially the same equation is obtained in [25] for a system of coupled
nonlinear oscillators in the presence of an energy preserving randomness. In addi-
tion, such an equation is almost identical to the one studied in [31] apart from the
necessary difference that the diffusion is a degenerate one. Indeed, since it describes
the evolution of energies, and energies are positive, the diffusion coefficients must
necessarily be zero when one energy is zero.

Since, due to the weak interaction, the energies vary very slowly, once the time
is rescaled so that the energies evolve on times of order one all the other variables
will evolve extremely fast. Thus our result is an example of averaging theory for
slow-fast systems. Yet, in our case the currents have zero average which means
that standard averaging theory (such as, e.g. [18]) cannot suffice. It is necessary to
look at longer times when the fluctuations play a fundamental role. The study of
such longer times can in principle be accomplished thanks to the theory developed
in [12].

Unfortunately, the results in [12] do not apply directly and we are forced to a
roundabout in order to obtain the wanted result. Not surprisingly, the trouble takes
place at low energies. We have thus to investigate with particular care the behavior
of the system at low energies. In particular, we prove that the probability for any
particle to reach zero energy, in the relevant time scale, tends to zero.

The structure of the paper is as follows: section 2 contains the precise description
of the microscopic model and the statement of the results. Section 3 describes the
logic of the proof at a non technical level and points out the technical difficulties
that must be overcame to make the argument rigorous. In the following section
we show how to modify the dynamics at low energies in such a way that existing
results can be applied. Then, in section 5, we investigate the modified dynamics
and show that its accumulation points satisfy a mesoscopic equation of the wanted
type. In section 6 we compute explicitly the properties of the coefficients of the
limit equation for the modified dynamics and in section 7 we use this knowledge to
show that the equation has a unique solution, hence the modified process converges
to this solution. In section 8 we discuss the limit equation for the original dynamics
under the condition that no particle reaches zero in finite time. The fact that this
condition holds in our model is proven in section 9. The paper ends with two
appendices. In the first, for the reader convenience, some known results from the
averaging theory for systems with hyperbolic fast motion are restated in a way
suitable for our needs. The second appendix contains some boring, but essential,
computations.

2. The model and the result

For d ∈ N, we consider a lattice Zd and a finite connected region Λ ⊂ Zd. As-
sociated to each site in Λ we have the cotangent bundle T ∗M of a C∞ compact
Riemannian d-dimensional manifold M of strictly negative curvature and the as-
sociated geodesic flow gt. We have then the phase space M = (T ∗M)Λ and we
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designate a point as (qx, px), x ∈ Λ. It is well known that the geodesic flows is a
Hamiltonian flow. If we define i : T ∗M → TM to be the natural isomorphism de-
fined by w(v) = 〈i(w), v〉G, G being the Riemannian metric, then the Hamiltonian
reads1 H0 =

∑
x∈Λ

1
2p

2
x and the symplectic form is given by ω = dq ∧ dp.2 Thus,

given x ∈ Λ, the equations of motion take the form (see [27, Section 1] for more
details)

q̇x = i(px) ,

ṗx = F̃ (qx, px) ,
(2.1)

where the F̃ is homogeneous in the px of degree two. Note that, by the Hamiltonian
structure, ex := 1

2p
2
x is constant in time for each x ∈ Λ. It is then natural to use the

variables (qx, vx, ex), where vx := (p2
x)−

1
2 i(px) belongs to the unit tangent bundle

T 1M of M .3 We have then the equations

q̇x =
√

2exvx ,

v̇x =
√

2exF (qx, vx) ,
ėx = 0,

(2.2)

where F is homogeneous of second degree in vx.
Next we want to introduce a small energy exchange between particles. To de-

scribe such an exchange we introduce a symmetric, non constant, function (poten-
tial) V ∈ C∞(M2,R) and, for each ε > 0, consider the flow gt

ε determined by the
Hamiltonian Hε =

∑
x∈Λ

1
2p

2
x + ε

2

∑
|x−y|=1 V (qx, qy), that is by the equations

q̇x = i(px) ,

ṗx = F̃ (qx, px)− ε
∑

|y−x|=1

dqxV (qx, qy).

Or, alternatively,4

q̇x =
√

2exvx

v̇x =
√

2exF (qx, vx) +
ε√
2ex

∑
|y−x|=1

{vxLxV −∇qxV (qx, qy)}

ėx = −ε
√

2ex

∑
|x−y|=1

LxV,

(2.3)

where 〈∇V,w〉G = dV (w) and

(2.4) Lx = vx∂qx
+ F (qx, vx)∂vx

denotes the generator associated to the geodesic flow of the x particle on T1M .

1By p2
x we mean 〈i(px), i(px)〉G(qx) = 〈px, px〉G̃ where G̃ = i∗(G).

2To be more precise, given the canonical projection π(q, p) = q, first define the one form,
on T (T ∗M), ω1

(q,p)
(ξ) = p(dπ(ξ)). Then ω := −dω1. Given coordinates q on U ⊂ M and

using the coordinates p for the one form p =
P

i pi dqi ∈ T ∗M , we have ω1 =
P

i pi dqi and

ω =
P

i dqi ∧ dpi, as stated.
3Clearly ex is the (kinetic) energy of the geodesic flow at x.
4In the interacting case one could chose to include the interaction in the energy and define

eε
x := 1

2
p2

x + ε
4

P
|x−y|=1 V (qx, qy). This is the choice made in [25]. Yet, in the present context

|ex − eε
x| ≤ |V |∞ε, hence the actual choice is irrelevant in the limit ε → 0 and ex turns out to be

computationally simpler.
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We will consider random initial conditions of the following type

E(f(q(0), v(0)) =
∫

(T1M)Λ
f(q, v)ρ(q, v)dm, ∀f ∈ C0((T1M)Λ,R)

ex(0) = Ex > 0,
(2.5)

where m is the Riemannian measure on (T1M)Λ and ρ ∈ C1.
Since the currents LxV have zero average with respect to the microcanonical

measure, one expects that it will take a time of order ε−2 in order to see a change
of energy of order one. It is then natural to introduce the process ex(ε−2t) and to
study the convergence of such a process in the limit ε→ 0.

Our main result is the following.

Theorem 1. Provided d ≥ 3, the process {ex(ε−2t)} defined by (2.3) with initial
conditions (2.5) converges to a random process {Ex(t)} with values in RΛ

+ which
satisfies the stochastic differential equation

dEx =
∑

|x−y|=1

a(Ex, Ey)dt+
∑

|x−y|=1

√
2β(Ex, Ey)dBxy

Ex(0) = Ex > 0,
(2.6)

where Bxy are standard Brownian motions which are independent except that

Bxy = −Byx.

The coefficients have the following properties: β is symmetric and a is antisym-
metric; β ∈ C0([0,∞)2,R+) and β(a, b)2 = abG(a, b) where G ∈ C∞((0,∞)2,R+)∩
C1((0,∞)× [0,∞),R+) and G(a, 0) = A(2a)−

3
2 for some A > 0. Moreover,

(2.7) a = (∂Ex
− ∂Ey

)β2 +
d− 2

2
(E−1

x − E−1
y )β2.

In addition, (2.6) has a unique solution and the probability for one energy to reach
zero in finite time is zero.

Remark 2.1. A direct computation shows that the measures with density hβ =∏
x∈Λ E

d
2−1
x e−βEx are invariant for the above process for each β ∈ R+. Indeed,

using (2.7), we can write the generator of the process (2.6) in the simple form

L =
1

2h0

∑
|x−y|=1

(∂Ex − ∂Ey )h0β
2(∂Ex − ∂Ey )

from which the reversibility of the generator is evident.

Remark 2.2. The case d = 2 is harder because the second term in (2.7) (which
otherwise would give the main contribution at small energies) is zero. We believe
the result to be still true,5 but a much more detailed (and messy) analysis of (2.6)
is needed to establish it. As this would considerably increase the length of section
9 without adding anything really substantial to the paper, we do not pursue such
matter.

Remark 2.3. Note that if we could apply [31] to perform the hydrodynamics limit,
then we would obtain the heat equation. Unfortunately, (2.6) does not satisfies the
hypotheses of Varadhan’s Theorem on several accounts; the most relevant being that

5That is the fact that zero is unreachale.
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the domain where the diffusion takes place is not the all space and a,β vanish
one the boundary of the domain. This is unavoidable as the energy is naturally
bounded below. Nevertheless, the results of this paper can be considered as a first
step along the bumpy road to obtaining the heat equation from a purely mechanical
deterministic model.6

Remark 2.4. As a last remark, let us comment on the choice of Zd. This is done
just to simplify notations: our arguments are of a local nature, hence the structure
of Zd does not play any role in the proof. In particular, one can prove, with exactly
the same arguments, the following extension of our result.

Consider a loopless symmetric directed graph G determined by the collection of
its vertexes V (G) and the collection of its directed edges E(G).7 At each vertex v ∈
V (G) we associate a mixing geodesic flow as before, consider then the Hamiltonian

Hε =
∑

v∈V (G)

1
2
p2

v +
ε

2

∑
(e1,e2)∈E(G)

V (qe1 , qe2).

We then have the exact analogous8 of Theorem 1 for the variables {Ev}v∈V (G) with
the only difference that the limiting equation now reads

dEv =
∑

(v,w)∈E(G)

a(Ev, Ew)dt+
∑

(v,w)∈E(G)

√
2β(Ev, Ew)dB(v,w)

Ev(0) = Ev > 0,
(2.8)

where again for each e ∈ E(G), the Be are independent standard Brownian motions
apart form the fact that B(v,w) = −B(w,v).

An interesting application of the above Remark is the case where G is a complete
graph (i.e. E(G) = {(v1, v2) : v1, v2 ∈ V (G)}) in which case all particles interact
with each other.

The rest of the paper is devoted to proving Theorem 1. Before going in details we
explain exactly how the various results we are going to derive are collected together
to prove the Theorem.

Proof of Theorem 1. Fix T > 0 and let Pε be the probability measure, on the
space C0([0, T ],RΛ

+), associated to the process {ex(ε−2t)}t∈[0,T ] defined by (2.3),
Pε,δ to the one defined by (4.1), P̃δ the one associated to the process {ez(t)} with
z(t) defined by (7.2) and P the one defined by (2.6). Also, let Ωδ = {τδ ≥ T}
where τδ = inf{t ∈ R+ : minx∈Λ Ex(t) ≤ δ}. By construction, for each F ∈ C0,
EPε(F1Ωδ

) = EPε,δ
(F1Ωδ

), EP̃δ
(F 1Ωδ

) = EP(F 1Ωδ
).

Proposition 7.4 implies that Pε,δ ⇒ P̃δ and, since Ωδ is a continuity set for P̃δ,
limε→0 Pε,δ(Ωδ) = P̃δ(Ωδ) = P(Ωδ).

6One could object that geodesic motion in negative curvature is not really mechanical. Yet, it
is possible to construct a bona fide mechanical system which motion is equivalent to a geodesic
flow in negative curvature [23]. In any case, by Maupertuis’ principle, any Hamiltonian system
can be viewed as a geodesic flow, possibly on a non compact manifold.

7Directed means that the edges e ∈ E(G) are ordered pairs (e1, e2), ei ∈ V (G), which is
interpreted as an edge going from e1 to e2. Symmetric means that if (e1, e2) ∈ E(G), then
(e2, e1) ∈ E(G). Loopless that, for each a ∈ V (G), (a, a) 6∈ E(G). This abstract setting reduces
to the previous one if we choose V (G) = Zd and E(G) = {(x, y) ∈ Zd × Zd : |x− y| = 1}.

8In particular the condition d ≥ 3 refers to the manifolds M not to the lattice or graph.
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Next, Lemma 9.1, based on estimate (8.1), tells us that limδ→0 P̃δ(Ωc
δ) = 0. Thus

lim
δ→0

lim
ε→0

Pε(Ωc
δ) = 0.

Hence Pε ⇒ P. The informations on the coefficients follow by collecting (8.3), (2.7)
(proven in Lemma 8.1), Lemmata 6.1 and 6.3. Finally, the uniqueness follows from
standard results on SDE and the unreachability of zero (Lemma 9.1). �

3. Heuristic

Let us give a sketch of the argument where we ignore all the technical difficulties
and perform some daring formal computations.

If we could apply [12, Theorem 7] to equation (2.3) we would obtain a limit-
ing process characterized by an equation that, after some algebraic manipulations
detailed in section 7, reads9

(3.1) dEx =
∑

|x−y|=1

a(Ex, Ey)dt+
∑

|x−y|=1

√
2β(Ex, Ey)dBxy

where β(Ex, Ey) = β(Ey, Ex) is symmetric and Bxy = −Byx are independent stan-
dard Brownian motions. The marginal of the Gibbs measure on the energy variables
reads

dµβ =
∏
x

E
d
2−1
x e−βExdEx =: hβ ∧x dEx,

for each β ∈ [0,∞). Hence we expect such a measure to be invariant for (3.1).
Even more, on physical grounds (see Lemma 7.1) one expects the process (3.1) to
be reversible with respect to these measures. A straightforward computation shows
that the generator associated to the above SDE reads

L =
∑

|x−y|=1

axy∂Ex +
1
2

∑
|x−y|=1

β2
xy(∂Ex − ∂Ey )2,

where axy = a(Ex, Ey), βxy = β(Ex, Ey). The adjoint with respect to µ0 reads

L∗ =
∑

|x−y|=1

{
−axy +

d+ 1
2

(E−1
x − E−1

y )β2
xy + (∂Ex − ∂Ey )β2

xy

}
∂Ex

+
1
2

∑
|x−y|=1

β2
xy(∂Ex − ∂Ey )2 − 1

h0

∑
|x−y|=1

∂Ex(h0axy)

+
1

2h0

∑
|x−y|=1

(∂Ex
− ∂Ey

)2(h0βxy).

Computing what it means L = L∗ implies (2.7).

Remark 3.1. Note that, as expected, axy = −ayx. Thus d
∑

x Ex = 0.

Going to a bit less vague level of analysis, one must notice that since Ex ≥ 0,
the diffusion equation (3.1) must be degenerate at zero, also it is not clear how
regular the coefficients a,β are. Hence, a priori, it is not even obvious that such
an equation has a solution and, if so, if such a solution is unique. To investigate
such an issue it is necessary to obtain some information on the behavior of the
coefficients at low energies.

9See Appendix A for a precise statement of the results in [12] relevant to our purposes.
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To this end one can use the explicit formula given in [12, Theorem 7] for the
diffusion coefficient. This allows to verify that the coefficients are smooth away
from zero. An explicit, but lengthy, computation yields, for Ex ≤ Ey,

β2
xy =

AEx√
2Ey

+O
(
E

3
2
x E−1

y

)
axy =

Ad

2
√

2Ey

+O
(√

Ex

Ey

)
,

(3.2)

see Lemma 8.1 for details. Thus, in particular, axyEx = d
2β2

xy + o(β2
xy).

We will see in section 9 that such a relation, provided d > 2, suffices to prove
that the set {(Ex) :

∏
x Ex = 0} is unreachable and hence to insure that equation

(3.1) has a unique solution.
In the rest of the paper we show how to make rigorous the above line of reasoning.

4. A modified dynamics

Since the geodesic flows on manifolds of strictly negative curvature enjoy expo-
nential decay of correlations [24, 11] we are in a setting very close to the one in
[12], i.e. we have a slow-fast system in which the fast variables have strong mixing
properties.

Unfortunately, the perturbation to the geodesic flows in (2.3) is not small when
ex = O(ε), so at low energies one is bound to lose control on the statistical properties
of the dynamics. The only easy way out would be to prove that the limit system
spends very little time in configurations in which one particle has low energy.10 If
this were the case, then one could first introduce a modified system in which one
offsets the bad behavior at small energies and then tries to remove the cutoff by
showing that, in the limit process, the probability to reach very small energies is
small. We will pursue precisely such a strategy.

We now define the modified process. Since our equations are Hamiltonian with
Hamiltonian H =

∑
x∈Λ

1
2p

2
x + ε

2

∑
|x−y|=1 V (qx, qy), the simplest approach is to

modify the kinetic part of the Hamiltonian making it homogeneous of degree one at
low velocities and decreasing correspondingly the interaction at low energies. More
precisely, given any two functions ϕ, φ ∈ C∞(R+\{0},R), consider the Hamiltonians
Hϕ,φ =

∑
x∈Λ ϕ(ex)+ ε

2

∑
|x−y|=1 φ(ex)φ(ey)V (qx, qy), which yield the equations of

motion

q̇x = ϕ′(ex)i(px) + ε
∑

|x−y|=1

φ′(ex)φ(ey)V (qx, qy)i(px)

ṗx = ϕ′(ex)F̃ (qx, px) + ε
∑

|x−y|=1

φ′(ex)φ(ey)V (qx, qy)F̃ (qx, px)

− ε
∑

|y−x|=1

φ(ex)φ(ey) dqxV

ėx = −ε
∑

|y−x|=1

φ(ex)φ(ey) dqxV (i(px)),

10To investigate low energy situations directly for the coupled geodesic flows seems extremely
hard: when the kinetic energy is comparable with the potential energy all kind of uncharted
behaviors, including coexistence of positive entropy and elliptic islands, could occur!
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with F̃ has in (2.1).11 Which, in the variables (qx, vx, ex), reads

q̇x =
√

2exϕ
′(ex)vx + ε

∑
|x−y|=1

√
2exφ

′(ex)φ(ey)V (qx, qy)vx

v̇x = ϕ′(ex)
√

2exF (qx, vx) + ε

{ ∑
|x−y|=1

φ′(ex)φ(ey)
√

2exV (qx, qy)F (qx, vx)

−
∑

|y−x|=1

φ(ex)φ(ey)√
2ex

∇qxV +
∑

|y−x|=1

vx
φ(ex)φ(ey)√

2ex
dqxV (vx)

}
ėx = −

∑
|y−x|=1

φ(ex)φ(ey)
√

2ex dqx
V (vx),

(4.1)

with F as in (2.2).
Since d

dtv
2
x = ε(v2

x − 1)
∑

|y−x|=1
φ(ex)φ(ey)√

2ex
dqx

V (vx), the manifold v2
x = 1 is an

invariant manifold for the equations (4.1), thus such equations determine a flow in
the variables (ξx, ex) = (qx, vx, ex) ∈ T 1M × R+.

Finally, we chose ϕ = ϕδ and φ = φδ such that, for all δ > 0,

(4.2) ϕδ(s) =

{
s if s ≥ δ

2
√
δs if s ≤ δ

8

; φδ(s) =
1

ϕ′δ(s)
=

{
1 if s ≥ δ
√

s√
δ

if s ≤ δ
8 ,

where φδ is increasing.
We denote the solution of the above equations (4.1) with initial conditions (ξ, e)

by (ξε,δ(t), eε,δ(t)).
Our goal is to apply [12, Theorem 7] to the flow (ξε,δ(t), eε,δ(t)), see Appendix A

for a simplified statement (Theorem A.1) adapted to our needs. Before discussing
the applicability of this a Theorem, there is one last issue we need to take care of:
the equation for e is clearly degenerate at low energies, this is related to the fact
that the energies in (4.1) are strictly positive for all times if they are strictly positive
at time zero.12 This may create a problem in the limiting process that is bound
to have a degenerate diffusion coefficient. To handle this problem it turns out to
be much more convenient to use the variables zx = ln ex. In this new variables we
finally have the equations we are looking for

q̇x = ωδ(zx)vx +
ε

2

∑
|x−y|=1

ζδ(zx)φδ(ezy )V (qx, qy)vx

v̇x = ωδ(zx)F (qx, vx) +
ε

2

∑
|x−y|=1

ζδ(zx)φδ(ezy )V (qx, qy)F (qx, vx)

− ε√
2

∑
|y−x|=1

e−
zx
2 φδ(ezx)φδ(ezy )∇qxV (qx, qy)

+
ε√
2

∑
|y−x|=1

vxe
− zx

2 φδ(ezx)φδ(ezy )LxV (ξx, ξy)

żx = −ε
√

2
∑

|y−x|=1

e−
zx
2 φδ(ezx)φδ(ezy )LxV (ξx, ξy),

(4.3)

11By dqxV we mean the differential of the function V (·, qy) for any fixed qy .
12Indeed, the equation for the energy can be written, near zero, as ėx = −εexG(e6=x, ξ), where

G is a bounded function, hence the solution has the form ex(t) = ex(0)e−ε
R t
0 G(e6=x(s),ξ(s))ds.
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Where Lx is as in equation (2.4) and

ωδ(z) =
√

2e
z
2ϕ′δ(e

z) =

{√
2e

z
2 if z ≥ ln δ√

2δ if z ≤ ln δ − ln 8

ζδ(z) =
√

2e
z
2 φ′δ(e

z) =

{
0 if z ≥ ln δ

1√
2δ

if z ≤ ln δ − ln 8

(4.4)

Remark 4.1. Note that we can chose ωδ ≥
√
δ and ζδ ≥ 0 decreasing.13 In

addition, it is possible to arrange that |ωδ|Cr(IL,R) ≤ Cre
L, where IL = (−∞, 2L),

and |ζδ|Cr(R,R) ≤ Crδ
− 1

2 , for each r ∈ N, L, δ ∈ R+. We will assume such properties
in the following.

Since the total energy is conserved, we can consider equations (4.3) on the set
(T 1M)Λ × (−∞, L]Λ for some L > 0. Hence, by the above remark together with
the (4.2), the vector field in (4.3) has bounded Cr norm, as a function of x, z, ε, for
each r ∈ N.

Let f̃δ(ξ, z, ε, δ) = ξε,δ(1), Fε,δ(ξ, z) = (ξε,δ(1), zε,δ(1)), and

(4.5) Aδ
x(ξ, z, ε) = −

√
2
∫ 1

0

∑
|x−y|=1

e−
zx(τ)

2 φδ(ezx(τ))φδ(ezy(τ))LxV (ξε,δ
x (τ), ξε,δ

y (τ))dτ

then

(4.6) Fε,δ(ξ, z) =
(
f̃δ(ξ, z, ε), z + εAδ(ξ, z, ε)

)
.

Lemma 4.2. Setting F̃δ(x, z, ε) = Fε,δ(x, z) we have, for each δ ∈ (0, 1), L > 0,
F̃δ ∈ C∞((T 1M)Λ × (−∞, L]Λ × [0, 1]), and ‖Aδ(·, ·, ε)‖Cr((T 1M)Λ×(−∞,L]Λ) ≤ Cr,δ,
for each r ∈ N, ε ∈ [0, 1]. In addition, for each β ∈ R+, the probability measure

dµδ,ε,β = Z̃−1
β e−βH̃δ,ε+

P
x

d
2 zxdqdvdz

H̃δ,ε(q, ν, z) =
∑
x∈Λ

ϕδ(ezx) +
ε

2

∑
|x−y|=1

φδ(ezx)φ(ezy )V (qx, qy),

is invariant for Fε,δ. Moreover, for each z̄ ∈ Rd and sub-manifold Σz̄ := {zx = z̄x},
the Dynamical System (Σz̄, F0,δ) has a unique SRB measure µz̄.

Proof. The first part of the statement follows from Remark 4.1 and subsequent
comments together with standard results of existence of solutions and smooth de-
pendence on the initial data from O.D.E.. The bound on Aδ is then immediate
from formula (4.5).

By the Hamiltonian nature of the equations (4.1) the measures

dµδ,β = Z−1
β e−βHϕδ,φδ dqdp ,

are invariant for the associated dynamics for each β > 0. By changing variables we
obtain the statement of the Lemma.

Finally, calling µ̃ the Riemannian measure on T 1M we have that µz̄ = ⊗|Λ|µ̃ is
a SRB measure for the map ξ 7→ f̃δ(ξ, z, 0), which turn out to be the product of

13Indeed,

φδ(s) = 1−
Z δ

min{s,δ}

ζδ(ln x)
√

2x
dx .

Remark that once ζδ is chosen all the functions are fixed.
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the time ωδ(zx) maps of the geodesic flow on T 1M . The uniqueness of the SRB
follows by the mixing of the geodesic flows [1] and the fact that the product of
mixing systems is mixing. �

5. Existence of the limit: δ > 0

We are finally ready to consider the limit ε→ 0, for the modified dynamics.

Proposition 5.1. For each δ ∈ (0, 1) there exists εδ > 0 such that the Dynamical
System defined by (4.6) satisfies the hypotheses of Theorem A.1 for ε ∈ [0, εδ].

Hence, the family zε,δ(ε−2t) is tight and its weak accumulation points are a
solution of the Martingale problem associated to the stochastic differential equation

dzδ
x = aδ

x(zδ)dt+
∑

y

σδ
xy(zδ)dBy,

zδ
x(0) = z̄x

(5.1)

where

(σδ)2xy(z) =
∑
n∈Z

∫
(T 1M)Λ

Aδ
x((f̃δ)n(ξ, z, 0)Aδ

y(ξ, z, 0)dµz

= 2
∫ +∞

−∞
dt

∑
|x−w|=1
|y−w′|=1

φδ(ezx)φδ(ezw)φδ(ezy )φδ(ezw′ )

e
zx+zy

2

× E
(
LxV (ξ0,δ

x (t), ξ0,δ
w (t)) · LyV (ξy, ξw′)

)
.

(5.2)

Here E is the expectation with respect to µz and ‖aδ‖C0 + ‖(σδ)2‖C1 <∞.

Proof. First of all notice that the hypotheses on the smoothness of Fε,δ and the
boundedness of Aδ are insured by Lemma 4.2. Next, notice that F0,δ(ξ, z) =
(fδ

z (ξ), z) with fδ
z (ξ)x = gωδ(zx)(ξx), where gt is the geodesic flow on the unit

tangent bundle T 1M , thus the fδ
z are FAE.14

Also we have that µz(Aδ(·, z, 0)) = 0. This follows by considering the transfor-
mation Θ(q, v) = (q,−v). Indeed Θ∗µz = µz while, the flow Ψt

δ,ε associated to (4.3)
satisfies Ψt

δ,ε ◦ Θ = Θ ◦ Ψ−t
δ,ε. On the other hand, using the antisymmetry of LxV

with respect to vx,

Aδ
x(Θ(ξ), z, 0) =−

√
2

∫ 1

0

∑
|x−y|=1

e−
zx
2 φδ(ezx)φδ(ezy )LxV ◦Ψτ

δ,0 ◦Θ(ξ)dτ

=
√

2
∫ 1

0

∑
|x−y|=1

e−
zx
2 φδ(ezx)φδ(ezy )LxV ◦Ψ−τ

δ,0 (ξ)dτ

=−Aδ
x(Ψ−1

δ,0(ξ), z, 0).

Thus µz(Aδ(·, z, 0)) = µz(Aδ(Θ(·), z, 0)) = −µz(Aδ(Ψ−1
δ,0(·), z, 0)) = −µz(Aδ(·, z, 0)),

by the invariance of the measure.
The last thing to check is the uniform decay of correlation. Since ωδ ≥

√
δ, the

results in [11, 24] imply15 that the fz are FAE with uniform exponential decay of

14FAEs are defined in Appendix A. In our case, the abelian action is the one determined by
the geodesic flows themselves, ×i∈Λgti .

15[11] proves the exponential decay of correlations for geodesic flows on negatively curved
surfaces, [24] extends the results to any negatively curved manifold.
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correlation. In fact, in Theorem A.1 the decay of correlations is meant in a very
precise technical sense. To see that the results in [24] imply the wanted decay we
must translate them into the language of standard pairs in which it is formulated
Theorem A.1. Let us start by stating the result in [24]: let ga be the time a map
of the geodesic flow on the unit tangent bundle. For each smooth function A let
‖A‖s = ‖A‖∞ + ‖∂sA‖∞ where ∂s is the derivative in the weak stable direction.
Then there exists C, c > 0 such that, for each z and ρ,A ∈ C1, holds true

(5.3) |E(ρ ·A ◦ g̃an)− E(A)E(ρ)| ≤ C‖ρ‖C1‖A‖se
−can.

Since, setting fδ
z (ξ) = f̃δ(ξ, z, 0), fδ

z = ×xg
ωδ(zx), and ωδ is uniformly bounded

from below, for E(A) = 0, it follows (suppressing, to ease notation, the superscript
δ)16

(5.4) |E(ρ ·A ◦ fn
z )| ≤ C|Λ| ‖ρ‖C1‖A‖se

−can.

To see that this is stronger than needed, consider a standard pair ` = (D, ρ).17

One can smoothly foliate a ε neighborhood of D and define a probability density ρε

supported in it such that ‖ρε‖C1 ≤ Cε−2, while ‖ρε‖C1 ≤ C when ρε is restricted to
a leaf of the foliation. Thanks to the α-Hölder regularity and the absolute continuity
of the weak stable foliation, one can take ρε so that

|E`(A)− E(ρεA)| ≤ Cεα‖A‖s.

Accordingly,

|E`(A ◦ fn
z )| ≤ |E(ρε ·A ◦ fn

z )|+ Cεα‖A ◦ fn
z ‖s ≤ C

{
ε−2e−can + εα

}
‖A‖s

≤ Ce−
αcan
2+α ‖A‖C1 ,

where, in the last equality, we have chosen ε = e−
can
2+α . Thus, all the hypotheses of

Theorem A.1 are satisfied and (5.2) follows by a direct computation. �

By Theorem A.1(b), in order to prove that zε,δ(ε−2t) has a limit it suffices to
prove that (5.1) has a unique solution. This would follow by standard results if
we knew that aδ is locally Lipschitz. In fact, [12] provides also an explicit formula
for aδ. Unfortunately this formula is much more complex than the formula for the
variance and is quite difficult to investigate. We will avoid a direct computation of
aδ and we will instead use the knowledge of the invariant measure to determine it.
Before doing that a deeper understanding of the variance is required.

6. Computing the variance

Let gt be the geodesic flow on the unit cotangent bundle of M . As already noted,
for each function h, h(ξ0,δ

x (t)) = h ◦ gωδ(zx)t(ξx) for all x ∈ Λ. For convenience let
us set $x := ωδ(zx). Also, it turns out to be useful to define two functions of two
variables: consider two geodesic flows on T 1M , let (ξ, η) be the variables of the
two flows respectively, E the expectation with respect to the Riemannian volume

16Just note that one can write E(ρ·A◦fn
z ) = E(E(ρ·A◦fn

z | ξy 6=x)) and that the relevant norms
of ρξy 6=x

(ξx) = ρ(ξx, ξy 6=x) and Aξy 6=x
(ξx) = A(ξx, fn

z (ξy 6=x)) are bounded by the full norms of ρ

and A. One can then apply (5.3) to E(ρ · A ◦ fn
z | ξy 6=x) = E(ρξy 6=x

Aξy 6=x
◦ f̃n

ωδ(zx)
). Proceeding

in such a way one variable at a time yields the result.
17Recall that D is a manifold of fixed size close to the strong unstable one and ρ a smooth

density on it.
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on (T 1M)2 and L1, L2 the generators associated to the geodesic flow of ξ and η
respectively, then we define ρ, ρ̃ : R2 → R by

ρ(a, b) :=
∫ ∞

−∞
dt E

(
L1V (gat(ξ), gbt(η)) · L1V (ξ, η)

)
,

ρ̃(a, b) :=
∫ ∞

−∞
dt E

(
L1V (gat(ξ), gbt(η)) · L2V (ξ, η)

)
.

(6.1)

Also, it is convenient to define

(6.2) ρxy := ρ(ωδ(zx), ωδ(zy)), ρ̃xy := ρ̃(ωδ(zx), ωδ(zy)).

Indeed, the understanding of the variance will be reduced shortly to understand-
ing the properties of ρxy. Here is a list of relevant properties whose proof can be
found in Appendix B.

Lemma 6.1. The function ρ̃ is non-positive and C∞ for a, b > 0. In addition,
for each a, b, λ > 0 we have ρ̃(a, b) = ρ̃(b, a) and ρ(λa, λb) = λ−1ρ(a, b). Finally,
ρ̃(a, b) = −a

b ρ(a, b).

Remark 6.2. Note that the previous Lemma implies a2ρ(a, b) = b2ρ(b, a).

Lemma 6.3. There exists A,B > 0 such that, for all a, b > 0,∣∣∣∣ρ(a, b)− Ab2

a3 + b3

∣∣∣∣ ≤ B ab3

a5 + b5
.

Finally, for all a, b > 0,

|∂aρ(a, b)| ≤
B ab2

a5 + b5
; a∂aρ(a, b) + b∂bρ(a, b) = −ρ(a, b).

We are now in the position to derive an helpful formula for the variance.

Lemma 6.4. The following formula holds true

(σδ)2xy(z) =


2e−zx

∑
|x−w|=1{φδ(ezx)φδ(ezw)}2ρxw if x = y

−2e−zyφδ(ezx)φδ(ezy )3ρxy if |x− y| = 1
0 if |x− y| > 1.

Proof. Remembering (5.2), given any two couples of neighboring sites x,w, y, w′

we want to compute∫ ∞

−∞
dt E

(
LxV (g$xt(ξx), g$wt(ξw)) · LyV (ξy, ξw′)

)
.

In fact, remembering the properties of the transformation Θ in the proof of Lemma
5.1, it suffices to compute the integral on [0,∞).

Since E(vx | q 6=x, v 6=x) = 0, it follows that the above integral is different from
zero only if x = y or x = w′ and w = y. On the other hand if x = y, since gat × gbt
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is a mixing flow for each a, b > 0, we can write∫ ∞

0

dt E
({

$−1
x

d

dt
V (g$xt(ξx), g$wt(ξw))− $w

$x
LwV (g$xt(ξx), g$wt(ξw))

}
· LxV (ξx, ξw′)

)
= $−1

x E (V (qx, qw)) E (LxV (ξx, ξw′))−$−1
x E (V (qx, qw) · LxV (ξx, ξw′))

− $w

$x

∫ ∞

0

dt E
(
LwV (g$xt(ξx), g$wt(ξw)) · LxV (ξx, ξw′)

)
= −δw,w′

$w

$x

∫ ∞

0

dt E
(
LwV (g$xt(ξx), g$wt(ξw)) · LxV (ξx, ξw)

)
= δw,w′

∫ ∞

0

dt E
(
LxV (g$xt(ξx), g$wt(ξw)) · LxV (ξx, ξw)

)
.

Thus, remembering (4.2), (4.4) and that $x = ωδ(zx),

σ2
xx = 2e−zx

∑
|x−w|=1

φδ(ezx)2φδ(ezw)2ρxw,

and σ2
xy = 0 if |x− y| > 1. If |x− y| = 1, then (remembering the symmetry of the

potential and using Lemma 6.1)

σ2
xy = 2φδ(ezx)2φδ(ezy )2e−

zx+zy
2 ρ̃xy = −2e−zyφδ(ezx)φδ(ezy )3ρxy.

�

7. The limit equation (δ > 0): structure

Having gained a good knowledge on the variance we are ready to write the limit
equation in a more explicit and convenient form.

We introduce standard Brownian motions Bxy indexed by oriented edges, so
that the motions associated to different non oriented edges are independent and
Bxy = −Byx. Considering the Gaussian processes Wx :=

∑
|x−y|=1 βxy(z)Bxy we

have

E(Wx(t)Wy(t) | z) =


∑

|x−w|=1 βxw(z)2 t for x = y

−βxy(z)βyx(z) t for |x− y| = 1
0 for |x− y| > 1.

We set18

(7.1) βxy(z) =
√

2e−
zx
2 φδ(ezx)φδ(ezy )

√
ρxy ,

hence, remembering Lemmata 6.4, 6.1 and equations (6.2),(4.4),(4.2),

(σδ)2xy(z) =


∑

|x−w|=1 β
2
xw if x = y

−βxyβyx if |x− y| = 1
0 if |x− y| > 1.

Then, we can write (5.1) as

(7.2) dzδ
x = aδ

x(zδ)dt+
∑

|x−y|=1

βxy(zδ) dBxy.

Let L be the operator in the Martingale problem associated to the diffusion
defined by (5.1).

18This is well defined since ρx,y ≥ 0 by Lemma 6.1.
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Lemma 7.1. If the manifold M is d dimensional, then for each β > 0,

e
P

x
d
2 zx−βϕδ(ezx )dz

is an invariant measure for the process defined by (7.2). In addition, the process
(7.2) is reversible. That is, calling Eβ the expectation with respect to the above
invariant measure,

Eβ(ϕLh) = Eβ(hLϕ)

for each smooth real functions ϕ, h.

Proof. Recall that Lemma 4.2 gives the invariant measures of the original Dynam-
ical System. In particular , for each ψ ∈ C0(R|Λ|,R)

|µδ,ε,β(ψ(zε,δ(ε−2t)))− µδ,0,β(ψ(zε,δ(ε−2t)))| ≤ Cε|ψ|∞

Thus

|µδ,0,β(ψ(zε,δ(ε−2t)))− µδ,0,β(ψ(zε,δ(0)))| ≤ 2Cε|ψ|∞.

Taking the limit ε → 0 along any subsequence leading to an accumulation point
we see that µδ,0,β is an invariant measure for the process (5.1). The claim of the
Lemma now follows by taking the marginal of µδ,0,β in the variables z.

In the same manner, using the same notation as in the proof of Lemma 5.1, for
each continuos functions ψ, g and converging sequence zεk,δ(ε−2

k t) we have

Eβ(ψ(z(t))g(z)) = lim
k→∞

µδ,εk,β(g · ψ ◦Ψε−2
k t

εk,δ ) = lim
k→∞

µδ,εk,β(ψ · g ◦Ψ−ε−2
k t

εk,δ )

= lim
k→∞

µδ,εk,β(ψ ◦Θ · g ◦Θ ◦Ψε−2
k t

εk,δ ) = Eβ(g ◦Θ(z(t))ψ ◦Θ(z)).

Since g, ψ are functions of the z only, it follows g ◦Θ = g, ψ ◦Θ = ψ and

Eβ(ψ(z(t))g(z)) = Eβ(g(z(t))ψ(z)).

Differentiating with respect to t at t = 0 yields the Lemma. �

Lemma 7.2. The drift aδ
x has the form

aδ
x =

∑
|x−y|=1

{
∂zx

[
e−zxφδ(ezx)2φδ(ezy )2ρxy

]
− ∂zy

[
e−zyφδ(ezx)φδ(ezy )3ρxy

]}
+
d

2

∑
|x−y|=1

[
e−zxφδ(ezx)2φδ(ezy )2 − e−zyφδ(ezx)φδ(ezy )3

]
ρxy.

Proof. The idea to compute the aδ
x is very simple: first compute L and L∗ and

then check what the reversibility condition implies. The operator associated to the
diffusion (5.1) is given by

L =
∑

x

aδ
x∂zx +

1
2

∑
x,y

(σδ)2xy∂zx∂zy .
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The adjoint L∗ with respect to the invariant measures in Lemma 7.1 can then be
computed by integrating by parts. Setting Γx(z) := d

2 − βφδ(ezx)−1 we have

L∗ψ = −
∑

x

{∂zxa
δ
x + aδ

xΓx}ψ −
∑

x

aδ
x∂zxψ

+
1
2

∑
xy

[
∂zx

∂zy
(σδ)2xy + 2Γx∂zy (σδ)2xy + ΓxΓy(σδ)2xy + δxy∂zxΓx(σδ)2xy

]
ψ

+
∑
xy

[
∂zy (σδ)2xy + Γy(σδ)2xy

]
∂zxψ +

1
2

∑
xy

(σδ)2xy∂zx∂zyψ.

This implies

aδ
x =

1
2

∑
y

[
∂zy (σδ)2xy + Γy(σδ)2xy

]
and the Lemma follows by direct algebraic computations using Lemma 6.4. �

The next result is an obvious fact that is nevertheless of great importance.

Lemma 7.3. The function H :=
∑

x ϕδ(ezx) is constant in time.

Proof. It is useful to notice that, setting ψx := ezx

φδ(ezx ) and κxy = ψxβxy, κxy = κyx.
By Ito’s formula we have

dH =
∑

x

ψxaxdt+
∑

|x−y|=1

κxydBxy +
1
2

∑
x

∂zψx

∑
|x−y|=1

β2
xydt.

The second term is zero by the antisymmetry of Bxy, thus (using Lemma 7.2 and
the symmetry of κxy again)

dH =
1
2

∑
|x−y|=1

[
ψx∂zxβ

2
xy − ψy∂zxβxyβyx

]
dt

+
d

2

∑
|x−y|=1

[
ψ−1

x − ψ−1
y

]
κ2

xydt+
1
2

∑
|x−y|=1

β2
xy∂zψxdt = 0.

�

We conclude with the main result of this section.

Proposition 7.4. For each δ > 0 the family zε,δ(ε−2t) converges weakly, for ε→ 0,
to the process z(t) determined by the SDE (7.2).

Proof. From Lemma 7.2 and Lemma 6.1 it follows that aδ ∈ C∞, this, together
with the boundedness and convergence results established in Lemma 5.1 and the
standard results on the uniqueness of the solution of the SDE, imply that all the
accumulation points of zε,δ(ε−2t) must coincide, hence the Proposition. �

8. The limit equation (δ = 0): properties and stopping times

It is natural to consider the stopping time τδ := inf{t ∈ R+ : minx∈Λ zx ≤ ln δ}.
In addition, Lemma 7.3 suggests the convenience of going back to the more physical
process Ex(t) = ϕδ(ezx(t∧τδ)) = ezx(t∧τδ).
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Lemma 8.1. For each t ≤ τδ, the process Ex satisfies the SDE

dEx =
∑

y

a(Ex, Ey)dt+
√

2β(Ex, Ey)dBxy

where a,β ∈ C∞((0,∞)2,R) are respectively anti-symmetric and symmetric func-
tions that satisfy (2.7), (3.2). In addition, if d ≥ 3, then for each constant

M ≥ max

{
1,
d− 1 + 8B

A

d− 2

}
,

if Ey > MEx, then

(8.1) a(Ex, Ey)Ex ≥ β(Ex, Ey)2.

Proof. By Ito’s formula and (7.2) we have19

(8.2) dEx =

ezxax +
1
2
ezx

∑
|x−y|=1

β2
xy

 dt+
∑

|x−y|=1

ezxβxydBxy.

Using (7.1),(6.2), (4.4) and Lemma 6.1 we can write

(8.3) ezxβxy =
√

2Exρ(
√

2Ex,
√

2Ey) =:
√

2β(Ex, Ey).

Lemma 7.2, equations (4.2), (6.2) and (4.4) yield

ax =
∑

|x−y|=1

[
∂Exρ− ∂Eyρ

]
+
d− 2

2

∑
|x−y|=1

[
E−1

x − E−1
y

]
ρ.

Using equation (8.2) we finally obtain (2.7) and from Lemma 6.3 follows (3.2).
Moreover, by Lemma 6.3,

∂Exρxy =
1√
2Ex

∂aρ(
√

2Ex,
√

2Ey)

∂Eyρxy = − 1
2Ey

{
ρ(

√
2Ex,

√
2Ey) +

√
2Ex∂aρ(

√
2Ex,

√
2Ey)

}
= −β(Ex, Ey)2

2ExEy
− Ex

Ey
∂Ex

ρxy.

Hence

Exa(Ex, Ey) = β2 + E2
x∂Exρxy − E2

x∂Eyρxy +
d− 2

2
β2 − d− 2

2
ExE−1

y β2

=
{
d

2
− d− 1

2
Ex

Ey

}
β(Ex, Ey)2 + E2

x

{
1 +

Ex

Ey

}
∂Ex

ρxy.

The regularity of the coefficients follows from the previous results and some alge-
braic computations. At last, for Ey > MEx,

Exa(Ex, Ey) ≥
{
d

2
− d− 1

2M

}
β(Ex, Ey)2 − B(1 +M−1)

2M
Ex

(2Ey)
1
2
.

19Here we suppress the δ-dependence since we stop the motion before seeing the region in
which the dynamics has been modified.
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On the other hand

(8.4) β(Ex, Ey)2 = Exρ(
√

2Ex,
√

2Ey) ≥ Ex

[
A√
2Ey

− B
√

2Ex

2Ey

]
≥ AEx

4
√

2Ey

,

from which the Lemma follows. �

9. The limit equation (δ = 0): unreachability of zero energy

Our last task it to prove that the stopping time τδ tends to infinity when δ tends
to zero or, in other words, energy zero is unreachable for the limit equation.

Fix any T > 0.
For each subset Γ ⊂ Λ let us define the energy of the cluster EΓ :=

∑
x∈Γ Ex.

Also, for each δ > 0, n ∈ {1, . . . , |Λ|}, let us define the stopping times

τn
δ := inf{t ∈ [0,∞) : ∃ Γ ⊂ Λ, |Γ| = n, EΓ(t) ≤ δ} ∧ T.

Note that τ1
δ = τδ ∧ T , where τδ is defined at the beginning of section 8.

Lemma 9.1. Let P be the measure associated to the process (2.6), then

lim
δ→0

P
({
τ1
δ < T

})
= 0.

Proof. We we will prove that for each η > 0 and n ∈ {1, . . . |Λ|} there exists
δn = δn(η), such that

P
({
τn
δn
< T

})
≤ 2−nη.

The proof is by (backward) induction. The case n = |Λ| follows by the energy
conservation by choosing δ|Λ| < EΛ

2 .
Next, suppose the statement true for n+ 1 ≤ |Λ|. It is convenient to define, for

each Γ ⊂ Λ the stopped process ÊΓ(t) = EΓ(t∧ τn+1
δn+1

) and the set Ω = {τn+1
δn+1

≥ T}.
Then, for each 0 < δ < δn+1, we have

P ({τn
δ < T}) ≤ P ({τn

δ < T} ∩ Ω) + 2−(n+1)η

≤ P

 ⋃
Γ⊂Λ
|Γ|=n

{
inf

t∈[0,T ]
ÊΓ(t) ≤ δ

} + 2−(n+1)η.

It thus suffices to show that there exists δn ≤ δn+1 such that, for each Γ ⊂ Λ,
|Γ| = n, we have

P
({

inf
t∈[0,T ]

ÊΓ(t) ≤ δn

})
≤ 2−(|Λ|+n+1)η ≤

(
|Λ|
n

)−1

2−(n+1)η.

Let us fix Γ ⊂ Λ, |Γ| = n.
Observe that if Ω holds but EΓ(t) ≤ δn+1

M+1 then Ey ≥ Mδn+1
M+1 ≥ MEΓ ≥ MEx for

all y 6∈ Γ and x ∈ Γ. In the following we will chose M as in the statement of Lemma
8.1.

Next, we define the process Y = ln EΓ which satisfies

(9.1) dY =
∑

(x,y)∈B(Γ)

{
a(Ex, Ey)EΓ − β(Ex, Ey)2

2E2
Γ

dt+
√

2β(Ex, Ey)E−1
Γ dBxy

}
,

where B(Γ) = {(x, y) ∈ Λ2 : x ∈ Γ, y 6∈ Γ, |x− y| = 1}.
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Observe that by Corollary 8.1 the drift is positive, indeed∑
(x,y)∈B(Γ)

(
a(Ex, Ey)EΓ − β(Ex, Ey)2

)
2E2

Γ

≥
∑

(x,y)∈B(Γ)

(
a(Ex, Ey)Ex − β(Ex, Ey)2

)
2E2

Γ

≥ 0.

In addition, arguing as in (8.4), if EΓ(t) ≤ δn+1
M+1 we have, for some constant C > 0,

(9.2) E−2
Γ β(Ex, Ey)2 ≤ 2

Ex

E2
Γ

[
A√
2Ey

+
B
√

2Ex

2Ey

]
≤ C

E
3
2
Γ

.

Therefore

Y (t ∧ τn+1
δn+1

) ≥ Y (0) +
∫ t∧τn+1

δn+1

0

∑
(x,y)∈B(Γ)

√
2β(Ex, Ey)E−1

Γ dBxy =: M(t).

Note that M is a Martingale. Let τ∗ = inf{t : M(t) ≤ ln δn+1} ∧ T . Consider the
new martingale M̃(t) = M(t)−M(t ∧ τ∗) and the stopping time

τ̂ = inf{t : M̃(t) ≤ ln δn − ln δn+1 or M̃(t) ≥ −1
2

ln δn+1} ∧ T.

Setting p = P({M(τ̂) = ln δn}) we obtain

0 ≤ p(ln δn − ln δn+1)− (1− p)
1
2

ln δn+1,

which implies

P({M(τ̂) = ln δn}) ≤
ln δn+1

2 ln δn − ln δn+1
.

Set δn = δα
n+1, α > 1 to be chosen later. The probability that M, starting from

ln δn+1 reaches ln δn before reaching 1
2 ln δn+1 is smaller than (2α− 1)−1. Accord-

ingly, the probability that the martingale reaches ln δn before downcrossing L times
the interval [ln δn+1,

1
2 ln δn+1] is smaller than 1 − (1 − (2α − 1)−1)L ≤ α−1L. On

the other hand by Doob’s inequality the expectation of the number of downcross-
ing is bounded by 2

ln δ−1
n+1

E((M − 1
2 ln δn+1)+). Since M − 1

2 ln δn+1 ≥ 0 implies

EΓ ≥
√
δn+1, by (9.2) follows

E((M− 1
2

ln δn+1)+) ≤ Cδ
− 3

4
n+1,

for some constant C independent on ε. From this it immediately follows that the
probability to have more than L downcrossing is less that L−1δ−1

n+1. In conclusion,

P
({

inf
t∈[0,T ]

ÊΓ(t) ≤ δn

})
≤ C(α−1L+ L−1δ−1

n+1)

which yields the wanted estimate by first choosing L2 = αδ−1
n+1 and then setting

α = C2δ−1
n+12

2|Λ|+2n+4η−2.20 �

Corollary 9.2. The set {∃x : Ex = 0} is inaccessible for the limiting equation.

20Note that δn ∼ δ
Cδ−1

n+1
n+1 for some constant C. So, for large Λ, δ1 is absurdly small. Yet, this

suffices for our purposes.
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Appendix A. An averaging Theorem

In this appendix, for the reader convenience, we recall [12, Theorem 7] stating
it in reduced generality but in a form directly applicable to our setting.

Let M be a C∞ Riemannian manifold, z ∈ Rd and fz ∈ Diff∞(M,M) a family
of partially hyperbolic diffeomorphisms.21

We say that {fz} is a family of Anosov elements (FAE) if there exists Abelian
actions gz,t, t ∈ Rdc where dc = dimEc, such that fz ◦ gz,t = gz,t ◦ fz and
span{∂tigz,t} = Ec.

Next, we need to discuss decay of correlations that in [12] is meant in a very
precise technical sense. The basic concept is the one of standard pairs. For the
present purposes a standard pair can be taken to be a probability measure deter-
mined by the couple ` = (D, ρ) where D is a C2 dim(Eu)-dimensional manifold D
close to the strong unstable manifold and a smooth function ρ ∈ C1(D,R+) such
that

∫
D
ρ = 1.22 We set E`(A) =

∫
D
Aρ. The point is that it is possible to choose

a set Σ of manifolds D of uniform bounded diameter and curvature such that, for
each D ∈ Σ, fzD can be covered by a fixed number of elements of Σ. For each
C > 0 we consider the set E1 = {(D, ρ) : D ∈ Σ, ‖ρ‖C1(D,R) ≤ C} and let E2 be
the convex hull of E1 in the space of probability measures.

It is easy to check that one can chose Σ and C such that for all ` ∈ E1 there
exists a family {`i} ⊂ E1 such that E`(A◦fz) =

∑nz

i=1 c
z
i E`i(A). In addition one can

insure that any measure with C1 density with respect to the Riemannian volume
belongs to the weak closure of E2 (see [12] for more details).

We say that the family {fz} has uniform exponential decay of correlations if
there exists C1, C2 > 0 such that, for each z ∈ Rd there exists probability measures
µz such that for each n ∈ N, standard pair ` ∈ E1 and functions A ∈ C1(M,R) it
holds

|E`(A ◦ fn
z )− µz(A)| ≤ C1e

−C2n|A|C1 .

Consider now the function F ∈ C∞(M × Rd × R+,M × Rd),

(A.1) F (x, z, ε) = (f̃(x, z, ε), z + εA(x, z, ε)),

and the associated dynamical systems Fε(x, z) = F (x, z, ε), such that f̃(x, z, 0) =
fz(x). Let (xε

n(x, z), zε
n(x, z)) := Fn

ε (x, z). Then for each g ∈ Cr(M,R+), µ(g) = 1
we can define the measure µg(h) := µ(g · h) and consider the Dynamical Systems
(Fε,M × Rd) with initial conditions z = z0 and x distributed according to the
measure µg. We can then view zε

n as a random variable, clearly E(ψ(zε
n)) = µg(ψ̃ ◦

Fn
ε ), where ψ̃(x, z) = ψ(z).

Theorem A.1 ([12]). Let F, Fε, fz be defined as in (A.1) and subsequent lines.
Let fz be FAE with uniform exponential decay of correlation. Suppose that there
exists ε0, Cr ∈ R+ such that supε≤ε0

‖A(·, ·, ε)‖Cr ≤ Cr and µz(A(·, z, 0)) = 0 for
all z. Also assume that zε

0 = z∗ and xε
0 has a smooth distribution on M as described

above, then

21By this we mean that, for each fixed z, at each point x ∈ M the tangent space of TxM
can be written as Eu(x) ⊕ Ec(x) ⊕ Es(x), where the splitting is invariant with respect to the
dynamics, i.e. dxfE∗(x) = E∗(f(x)) for ∗ ∈ {u, c, s}. In addition, there exists constants λ1 ≤
λ2 < λ3 ≤ λ4 < λ5 ≤ λ6, with λ2, λ−1

5 < 1, such that λ1 ≤ α(df |Es ) ≤ ‖df |Es‖ ≤ λ2,

λ3 ≤ α(df |Ec ) ≤ ‖df |Ec‖ ≤ λ4 and λ5 ≤ α(df |Eu ) ≤ ‖df |Eu‖ ≤ λ6, where α(A) = ‖A−1‖−1.
22The integral is with respect the volume form on D induce by the Riemannian metric.
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a) The family {zε
dtε−2e} is tight.

b) There exists functions σ2 ∈ C1(Rd, SL(d,Rd)), σ2 > 0, a ∈ C0(Rd,Rd) such that
the accumulation points of {zε

dtε−2e} are a solution of the Martingale problem
associated to the diffusion

dz = adt+ σdB

z(0) = z∗,

where {Bi}d
i=1 are independent standard Brownian motions and

σ2(z) =
∞∑

n=−∞

∫
M

A(x, z, 0)⊗A(fn
z x, z, 0)µz(dx).

Moreover ‖a‖C0 + ‖σ2‖C1 <∞.

Appendix B. The properties of ρxy.

Here we collect, a bit boring, proofs of the Lemmata concerning ρxy.

Proof of Lemma 6.1. The non-negativity follows from the fact that the quantity
is an autocorrelation, see footnote 24 for details. By definition

∂n
a ∂

m
b ρ̃(a, b) =

∫ ∞

−∞
dt tn+mE

(
(Ln+1

1 Lm
2 V ) ◦ gat ⊗ gbt · L2V

)
= (−1)n+m

∫ ∞

−∞
dt tn+mE

(
(Ln+1

1 Lm
2 V ) · L2V ◦ gat ⊗ gbt

)
.

Applying (5.3) to the above formula yields

|∂n
a ∂

m
b ρ̃(a, b)| ≤ Cn,m

∫ ∞

0

dt tn+me−c min{a,b}t ≤ Cn,m min{a, b}−n−m−1.

This proves the smoothness of ρ̃. To continue, consider

ρ̃(λa, λb) =
∫ ∞

−∞
dt E

(
(L1V ) ◦ gaλt ⊗ gbλt · L2V

)
= λ−1ρ̃(a, b)

by the change of variables t→ λt. The symmetry follows by a change of variables
as well. Finally,

ρ̃(a, b) =
∫ ∞

−∞
dt E

(
(L1V ) ◦ gat ⊗ gbt · L2V

)
=

∫ ∞

−∞
dt E

(
L1V · (L2V ) ◦ gat ⊗ gbt

)
= b−1

∫ ∞

−∞
dt

d

dt
E

(
L1V · V ◦ gat ⊗ gbt

)
− a

b

∫ ∞

−∞
dt E

(
L1V · (L1V ) ◦ gat ⊗ gbt

)
.

The lemma follows then by the mixing of gat⊗gbt (being the product of two mixing
flows) and the definition of ρ. �

To continue it is useful to define and study the function Γ(τ) := ρ(τ, 1).
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Lemma B.1. There exists A,B > 0 and D ∈ R such that∣∣∣∣Γ(τ)− A

1 + τ3

∣∣∣∣ ≤ Bτ

1 + τ5
, ∀τ > 0,

|Γ′(τ)−Dτ | ≤ Bτ2, ∀τ ∈ (0, 1],

|Γ′(τ) + 3Aτ−4| ≤ Bτ−5, ∀τ ≥ 1.

Proof. Let us start by assuming τ ≤ 1. By setting V (q1) = E(V | q1, v1), and
taking care of adding and subtracting that is needed to write convergent integrals,

Γ(τ) =2
∫ ∞

0

dt E
(
L1V · L1V ◦ gτt ⊗ gt)

)
=2

∫ ∞

0

dt
[
E

(
L1V · L1V ◦ id⊗ gt

)
− E((L1V )2)

]
+ 2

∫ ∞

0

dt

∫ τt

0

ds
[
E

(
L1V · L2

1V ◦ gs ⊗ gt
)
− E(L1V · L2

1V ◦ gs)
]

+ 2
∫ ∞

0

dt E(L1V · L1V ◦ gτt)

The third term here vanishes since it is the variance of a coboundary. That is,∫ ∞

0

dt E(L1V · L1V ◦ gτt) = τ−1

∫ ∞

0

dt
d

dt
E(L1V · V ◦ gt) = 0.

Also, setting Ṽ = V − V ,∫ ∞

0

dt

∫ τt

0

ds
[
E

(
L1V · L2

1V ◦ gs ⊗ gt
)
− E(L1V · L2

1V ◦ gs)
]

=
∫ ∞

0

ds

∫ ∞

τ−1s

dt E
(
L1Ṽ · L2

1Ṽ ◦ gs ⊗ gt
)

= O
(∫ ∞

0

ds

∫ ∞

τ−1s

e−ctdt

)
= O(τ)

were we have used (5.3) after conditioning with respect to q1, v1. Thus23

Γ(τ) =2
∫ ∞

0

dt
[
E

(
∂q1V · ∂q1V ◦ id⊗ gt

)
− E((∂q1V )2)

]
+O(τ) = A+O(τ).

(B.1)

The fact that A > 0 follows from general theory of mixing flows combined with
cocycle rigidity of geodesic flows [21, 10].24

23Here we use the fact that E(v1 ⊗ v1 | q1, η) = 1.
24 Indeed, for each T > 0 and f ∈ C∞, E(f) = 0,

0 ≤ E
 ˛̨̨̨Z T

0
f ◦ gt dt

˛̨̨̨2!
= 2

Z T

0
dt(T − t)E(f ◦ gt · f) = 2T

Z T

0
dt E(f ◦ gt · f) +O(1).

Thus the autocorrelation must be non negative. If it is zero then
R T
0 f◦gt dt has uniformly bounded

L2 norm. This implies that there exists a weakly converging subsequence to some L2 function
h such that E(h) = 0. It is easy to check that such a function is smooth in the stable direction
(just compare with the average on stable manifolds) and, for each smooth function ϕ, E(hLϕ) =
−E(fϕ). Thus E(hLnϕ) = −E(fLn−1ϕ) = (−1)nE(Ln−1f ϕ), which implies Lnh ∈ L2, i.e. h is
smooth along weak-stable leaves. Next, letting Θ(q, ν) = (q,−ν), we have E(fϕ) = E(h ◦Θ ·Lϕ),
that is E((h + h ◦ Θ)Lϕ) = 0 for each smooth ϕ. In turns, this implies h = −h ◦ Θ a.s.. Indeed,
given ρ ∈ L2, if E(ρ) = 0 and E(ρLϕ) = 0 for all smooth ϕ, then one can choose smooth ρn that
converges to ρ in L2, thus Lρn converges weakly to zero, but then there exist convex combinations
ρ̃n of the {ρm}m≤n such that Lρ̃n converges to zero strongly (since the weak closure of a convex
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Next, consider the case τ ≥ 1. By Lemma 6.1 we have

(B.2) Γ(τ) = ρ(τ, 1) = τ−1ρ(1, τ−1) = −τ−2ρ̃(τ−1, 1) = τ−3Γ(τ−1).

Thus Γ(τ) = A
1+τ3 +O(τ−4). This readily implies the first part of the Lemma.

Let us compute the derivative

Γ′(τ)
2

=
∫ ∞

0

dt tE
(
L1V · L2

1V ◦ gτt ⊗ gt
)

=
∫ ∞

0

dt t

∫ τt

0

ds
{
E

(
L1V · L3

1V ◦ gs ⊗ gt
)
− E

(
L1V · L3

1V ◦ gs
)}

+
∫ ∞

0

dt t

∫ τt

0

ds E
(
L1V · L3

1V ◦ gs
)

=
∫ ∞

0

ds

∫ ∞

τ−1s

dt tE
(
L1Ṽ · L3

1Ṽ ◦ gs ⊗ gt
)

+
∫ ∞

0

dt
t

τ2
E

(
L1V · L2

1V ◦ gt
)

=
∫ ∞

0

ds

∫ ∞

τ−1s

dt tE
(
L1Ṽ · L3

1Ṽ ◦ id⊗ gt
)
−

∫ ∞

0

dt
E

(
L1V · L1V ◦ gt

)
τ2

+
∫ ∞

0

ds

∫ ∞

τ−1s

dt t

∫ s

0

drE
(
L1Ṽ · L4

1Ṽ ◦ gr ⊗ gt
)

=−
∫ ∞

0

ds

∫ ∞

τ−1s

dt tE
(
L2

1Ṽ · L2
1Ṽ ◦ id⊗ gt

)
−

E
(
L1V )E(V

)
− E(L1(V

2
)

2 )
τ2

+O
(∫ ∞

0

ds τ−1s2e−csτ−1
)

=− τ

∫ ∞

0

dt t2 E
(
L2

1Ṽ · L2
1Ṽ ◦ id⊗ gt

)
+O(τ2) =: Dτ +O(τ2).

On the other hand, differentiating (B.2) yields, for τ large,

Γ′(τ) = −3τ−4Γ(τ−1)− τ−5Γ′(τ−1) = −3Aτ−4 +O(τ−5)

which completes the proof of the Lemma. �

Remark B.2. Note that Γ(0) is not defined as the corresponding integral diverges.
Nevertheless, we can set Γ(0) = A by continuity.

Proof of Lemma 6.3. Note that, by Lemma 6.1,

ρ(a, b) = b−1ρ(ab−1, 1) = b−1Γ(ab−1).

Hence the Lemma follows from Lemma B.1. �

set agrees with its strong closure) and, since L is a closed operator on L2, it follows that ρ is in
the domain of L and Lρ = 0. In addition, the ergodicity of the flow implies that the only L2, zero
average, solution of Lρ = 0 is ρ = 0. Finally, since h is smooth along the weak-stable foliation
and h ◦Θ is smooth along the unstable foliation, then h has a continuos version by the absolute
continuity of the foliations and is smooth by [17], hence Lh = f . That is, if the autocorrelation
is zero, then f is a smooth coboundary. At last, the claim follows since a smooth function of the
coordinates only which is a coboundary must be identically zero, [10, Corollary 1.4]. Accordingly,R∞
−∞ dt E

`
∂q1V (q1, q2)∂q1V (q1, gt(q2, v2)) | q1, v1

´
must be strictly positive for positive measure

set of q1 otherwise, by the symmetry of the potential, the potential would be constant.
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