
GEOMETRIC AND MEASURE-THEORETICAL STRUCTURES

OF MAPS WITH MOSTLY CONTRACTING CENTER

DMITRY DOLGOPYAT, MARCELO VIANA AND JIAGANG YANG

Abstract. We show that every diffeomorphism with mostly contracting cen-
ter direction exhibits a geometric-combinatorial structure, which we call skele-
ton, that determines the number, basins and supports of the physical measures.
Furthermore, the skeleton allows us to describe how the physical measure bi-
furcate as the diffeomorphism changes. In particular, we use this to construct
examples with any given number of physical measures, with basins densely

intermingled, and to analyse how these measures collapse into each other -
through explosions of their basins - as the dynamics varies. This theory also
allows us to prove that, in the absence of collapses, the basins are continuous
functions of the diffeomorphism.
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1. Introduction

The notion of mostly contracting center refers to partially hyperbolic diffeo-
morphisms and means, roughly, that all Lyapunov exponents along the invariant
center bundle are negative. It was introduced by Bonatti, Viana [4] as a more or
less technical condition that ensured existence and finiteness of physical measures.
Since then, it became clear that maps with mostly contracting center have several
distinctive features, that justify their study as a separate class of systems.

For instance, Andersson [2] proved that they form an open set in the space of
C1+ε diffeomorphisms, and that the physical measures vary continuously on an
open and dense subset. Castro [9, 10] and Dolgopyat [12] studied the mixing prop-
erties of such systems. Moreover, Dolgopyat [13] obtained several limit theorems in
a similar context. In addition, Melbourne, Matthew [20] proved an almost sure in-
variance principle (a strong version of the central limit theorem) for a class of maps
that includes some partially hyperbolic diffeomorphisms with mostly contracting
center. Burns, Dolgopyat, Pesin [6] studied maps with mostly contracting center in
the volume preserving setting, obtaining several interesting results about ergodic
components, stable ergodicity, and other aspects of the dynamics. Moreover, Burns,
Dolgopyat, Pesin, Pollicott [7] studied stable ergodicity of Gibbs u-states, in the
general (non-volume preserving) setting.

Date: October 2, 2015.
M.V. and J.Y. were partially supported by CNPq, FAPERJ, and PRONEX.

1



2 DMITRY DOLGOPYAT, MARCELO VIANA AND JIAGANG YANG

Before all that, Kan [17] exhibited a whole open set of maps on the cylinder with
two physical measures whose basins are both dense in the ambient space. His con-
struction was extended by Ilyashenko, Kleptsyn, Saltykov [16]. See also [3, § 11.1.1].
As it turns out, these maps have mostly contracting center. This construction can
also be carried out in manifolds without boundary, but then it is not clear whether
coexistence of physical measures can still be a robust phenomenon. This is among
the questions we aim to answer in this paper: we find negative answers in some
situations.

Systems with mostly contracting center have been found by several other au-
thors. Let us mention, among others: Mañé’s [19] examples of robustly transi-
tive diffeomorphisms that are not hyperbolic (see also [4] and [3, § 7.1.2]); Dol-
gopyat’s [14] volume preserving perturbations of time one maps of Anosov flows;
volume preserving diffeomorphisms with negative center Lyapunov exponents and
minimal unstable foliations, see [28] and also [4, 6, 7]; accessible skew-products
M ×S1 → M ×S1 over Anosov diffeomorphisms which are not rotation extensions,
see [28]. New examples will be given in Section 3.

In what follows we give the precise statements of our results.

1.1. Partial hyperbolicity, physical measures and skeletons. In this paper,
a diffeomorphism f : M → M is called partially hyperbolic if there is a continuous
invariant splitting TM = Ecs ⊕ Eu of the tangent bundle and there are constants
c > 0 and σ > 1 such that

(a) ‖Dfnvu‖ ≥ cσn‖vu‖ for every vu ∈ Eu and every n ≥ 1 (we say that Eu

is uniformly expanding).
(b) Ecs is dominated by Eu:

‖Dfnvu‖

‖Dfnvcs‖
≥ cσn ‖vu‖

‖vcs‖

for every nonzero vu ∈ Eu, vcs ∈ Ecs, and every n ≥ 1.

The unstable bundle Eu is automatically uniquely integrable: there exists a unique
foliation Fu of M with C1 leaves tangent to Eu at every point. This unstable
foliation Fu is invariant, meaning that f(Fu(x)) = Fu(f(x)) for every x ∈ M and
the leaves are, actually, as smooth as the diffeomorphism itself.

We call u-disk any embedded disk contained in a leaf of the unstable foliation.
A partially hyperbolic map f : M → M has mostly contracting center (Bonatti,
Viana [4]) if, given any u-disk Du, one has

lim sup
n→∞

1

n
log ‖Dfn(x) | Ecs(x)‖ < 0

for every x in some positive Lebesgue measure subset Du
0 ⊂ Du.

A physical measure for f : M → M is an invariant probability µ whose basin

B(µ) = {x ∈ M :
1

n

n−1
∑

j=0

δfj(x) converges to µ in the weak∗ topology}

has positive volume. Bonatti, Viana [4] proved that every C1+ε diffeomorphism
with mostly contracting center has a finite number of physical measures, and the
union of their basins contains almost every point in the ambient space. See [6, 12]
for several related results. The set of Lebesgue density points of B(µ) will be called
essential basin of µ and will be denoted Bess(µ).

Let f : M → M be a C1+ε partially hyperbolic diffeomorphism with mostly
contracting center. We say that a hyperbolic saddle point has maximum index if
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the dimension of its stable manifold coincides with the dimension of the center-
stable bundle Ecs. A skeleton of f is a collection S = {p1, · · · , pk} of hyperbolic
saddle points with maximum index satisfying

(i) For any x ∈ M there is pi ∈ S such that the stable manifold W s(Orb(pi))
has some point of transversal intersection with the unstable leaf Fu(x)
through x.

(ii) W s(Orb(pi)) ∩Wu(Orb(pj)) = ∅ for every i 6= j, that is, the points in S
have no heteroclinic intersections.

Observe that a skeleton may not exist (for instance if f has no periodic points).
Also, the skeleton needs not be unique, when it exists. On the other hand, existence
of a skeleton is a C1-robust property, as we will see in a while.

Theorem A. Let f be a C1+ε diffeomorphism with mostly contracting center.
Then f admits some skeleton. Moreover, if S = {p1, . . . , pk} is a skeleton then for
each pi ∈ S there exists a distinct physical measure µi such that

(1) the closure of Wu(Orb(pi)) and the homoclinic class of the orbit Orb(pi)
both coincide with suppµi, which is the finite union of disjoint u-minimal
component, i.e., each unstable leaf in every component is dense in this
setting.

(2) the closure of W s(Orb(pi)) coincides with the closure of the essential basin
of the measure µi.

In particular, the number of physical measures is precisely k = #S. Moreover,
supp(µi) ∩ supp(µj) = ∅ for 1 ≤ i 6= j ≤ k.

In the proof (Section 2) we just pick, for each physical measure µi a hyperbolic
periodic point pi ∈ suppµi with maximum index: such points constitute a skeleton.
When their stable manifolds are everywhere dense, we get from part (b) of the
theorem that there exist several physical measures, whose basins are intermingled.
Such examples, that generalize the main observation of Kan [17], are exhibited in
Section 3.

1.2. Variation of physical measures. Theorem A provides us with a tool to
mirror physical measures into hyperbolic periodic points, and this can be used to
describe the way physical measures vary when the dynamics is modified. Starting
from a skeleton S = {p1, . . . , pk} for f , we may consider its continuation S̃ =

{p1(g), . . . , pk(g)} for any nearby g. Then any maximal subset of S̃ satisfying
condition (ii) is a skeleton for g. That is the main content of the following theorem:

Theorem B. There exists a C1+ε neighborhood U of f such that, for any g ∈ U ,
any maximal subset of the continuation {p1(g), . . . , pk(g)} which has no heteroclinic
intersections is a skeleton. Consequently, the number of physical measures of g is
not larger than the number of physical measures of f .

In fact, these two numbers coincide if and only if there are no heteroclinic in-
tersections between the continuations pi(g). Moreover, in that case, each physical
measure of g is close to some physical measure of f , in the weak∗ topology.

In addition, restricted to any subset of U where the number of physical measures
is constant, the supports of the physical measures and the closures of their essential
basins vary in a lower semi-continuous fashion with the dynamics, both in the sense
of the Hausdorff topology.

Of course, this implies that the number of physical measures is an upper semi-
continuous function of the dynamics. Consequently, this number is locally constant
on an open and dense subset of diffeomorphisms with mostly contracting center.
These facts had been proved before by Andersson [2]. One important point in our
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approach is that we give a definite explanation for possible “collapse” of physical
measures: one physical measure is lost for each heteroclinic intersection that is cre-
ated between the continuations of elements of the skeleton. The precise statements
are in Propositions 3.6 and 3.7.

We also want to explain how the basins of the physical measures vary with the
dynamics in the following measure theoretical sense. Define the pseudo-distance
d(A,B) = vol(A∆B) in the space of measurable subsets of M .

Theorem C. Let O be any subset of C1+ε diffeomorphisms with mostly contracting
center such that all the diffeomorphisms in O have the same number of physical
measures. Then their basins Bi(f) vary continuously with f ∈ O, relative to the
pseudo-distance d.

In Subsection 3.3 we will show how this theory can be applied to various exam-
ples, including those of Kan [17]. In particular, Theorem C shows that the basins
are quite stable from a measure-theoretical point of view.

2. Geometric structure of physical measures

Let f be a C1+ε partially hyperbolic diffeomorphism with mostly contracting
center. As before, Ecs ⊕ Eu denotes the corresponding invariant splitting and
ics = dimEcs. We call Gibbs u-state of f any invariant probability absolutely
continuous along strong unstable leaves. It follows that the support is u-saturated,
that is, it consists of entire unstable leaves.

The notion of Gibbs u-state goes back to Pesin, Sinai [23] and was used by Bon-
atti, Viana [4] to construct the physical measures of diffeomorphisms with mostly
contracting center. Indeed, they showed that such diffeomorphisms have finitely
many ergodic Gibbs u-states, and these are, precisely, the physical measures.

Gibbs u-states also provide an alternative definition of mostly contracting center:
f has mostly contracting center if and only if all Lyapunov exponents along the
bundle Ecs are negative for every ergodic Gibbs u-state. This is related to the fact
that, given any disk D inside an unstable leaf, any Cesaro accumulation point of
the iterates of (normalized) Lebesgue measure on D is a Gibbs u-state. In fact,
more is true: every accumulation point of

1

n

n−1
∑

j=0

δfj(x)

is a Gibbs u-state, for almost every x ∈ D. Another useful property is that the space
G(f) of all Gibbs u-states is convex and weak∗ compact. The extremal elements are
the ergodic Gibbs u-states. Moreover, G(f) is an upper semi-continuous function
of f , in the sense that the set {(f, µ) : µ ∈ G(f)} is closed. Proofs of these facts
can be found in Chapter 11 of [3].

The following fact will be used several times in what follows:

Proposition 2.1 (Viana, Yang [28]). If f is a C1+ε diffeomorphism with mostly
contracting center then the supports of its physical measures, µ1, . . . , µl are pairwise
disjoint. Moreover, the support of every µi has finitely many connected components
and each connected component is minimal for the unstable foliation (every unstable
leaf is dense).

2.1. Proof of Theorem A. The first step is to construct a skeleton:

Proposition 2.2. Every C1+ε partially hyperbolic diffeomorphism with mostly con-
tracting center admits some skeleton.
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Proof. Since the center Lyapunov exponents are all negative, every physical mea-
sure µi, 1 ≤ i ≤ l is a hyperbolic measure (meaning that all the Lyapunov exponents
are different from zero). So, by Katok [18], there exist periodic points qi with max-
imum index and whose stable manifold intersects transversely the unstable leaf of
some point in the support of µi. Since the support is u-saturated, invariant, and
closed, it follows that qi ∈ suppµi. For each i we choose one such periodic point
qi; we are going to show that {q1, . . . , ql} is a skeleton for f .

Consider any x ∈ M and let D be a disk around x inside the corresponding
unstable leaf. Let µ be any Cesaro accumulation point of the iterates of the volume
measure volD on D. As observed before, µ is a Gibbs u-state and, hence, may

be written as µ =
∑l

i=1 aiµi. Choose i such that ai is non-zero. Let B be a
neighborhood of qi small enough that the unstable leaf through any point in B
intersects the stable manifold W s(qi) transversely. Then µi(B) > 0, because qi ∈
suppµi, and so µ(B) > 0. Consequently, there is n arbitrarily large such that
(fn

∗ volD)(B) > 0. This implies that the unstable manifold of fn(x) intersects
W s(qi) transversely. By invariance, it follows that Fu(x) intersects transversely
the stable manifold of some iterate of qi. This proves condition (i) in the definition
of skeleton.

Condition (ii) is easy to prove. Indeed, on the one hand, Wu(Orb(qi)) is con-
tained in suppµi. On the other hand, this support can not intersect W s(Orb(qj))
for any j 6= i: otherwise, qj would be in suppµi, which would contradict the fact
that the supports are pairwise disjoint. Thus, there can indeed be no heteroclinic
connections. �

Now, we use the skeleton to analyse the physical measures:

Proposition 2.3. Let f be a C1+ε diffeomorphism with mostly contracting center.
Suppose that S = {p1, · · · , pk} is a skeleton of f . Then

(a) #S coincides with the number of physical measure of f ;
(b) the closure of Wu(Orb(pi)) coincides with supp(µi) = H(pi, f);
(c) the closure of W s(Orb(pi)) coincides with the closure of Bess(µi).

Proof. To prove claim (a) it suffices to show that all skeletons have the same number
of elements (because the claim holds for the skeleton constructed in Proposition 2.2).
Let S ′ = {q1, . . . , ql} be any other skeleton. By condition (i) in the definition,
for each qj ∈ S ′ there is some pi ∈ S such that Wu(qj) intersects W s(Orb(pi))
transversely. Choose any such pi (we will see in a while that the choice is unique).
For the same reason, for this pi there exists some qt ∈ S ′ such thatWu(pi) intersects
W s(Orb(qt)) transversely. It follows that Wu(qj) accumulates on Orb(qt) which,
by condition (ii) in the definition, can only happen if qj = qt. Thus, pi and qj are
heteroclinically related to one another. Since different elements of either skeleton
do not have heteroclinic intersections, this implies that pi is unique and the map
qj 7→ pi is injective. Reversing the roles of the two skeletons, we also get an injective
map pi 7→ qj which, by construction, is the inverse of the previous one. Thus, these
maps are bijections and, in particular, #S = #S ′.

Now take S ′ to be the skeleton obtained in Proposition 2.2. Up to renumbering,
we may assume that the i = j in the previous construction. Also by construction,
each pi is contained in the closure ofWu(Orb(qi)), which coincides with the support
of µi. Since the unstable foliation is minimal in each connected component of the
support, this implies that the closure of Wu(Orb(pi)) coincides with supp(µi).
To finish the proof of claim (b) it remains to show that this coincides with the
homoclinic class of pi. We only have to prove that H(pi) contains the closure of
Wu(Orb(pi)), since the converse is an immediate consequence of the definition of
homoclinic class.
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To this end, let D be any disk contained in the unstable manifold of Orb(pi).
Let µ be any Cesaro accumulation point of the iterates fn

∗ volD. This is a Gibbs
u-state and it gives full measure to suppµi (because Wu(Orb(pi)) ⊂ suppµi and
the latter is a compact invariant set). Given that there are finitely many ergodic
Gibbs u-states, and their supports are disjoint, this implies that µ = µi. Then,
by the same argument that we used in the previous proposition, there exists some
large m large such that fm(D) intersects W s(pi) transversely. Since D is arbitrary,
this means that homoclinic points are dense in the unstable manifold of Orb(pi),
which implies the claim.

It remains to prove the claim (c). Let D be any disk contained in Wu(pi). By
Theorem 11.16 in [3], for Lebesgue almost every x ∈ D the sequence

1

n

n−1
∑

j=0

δfj(x)

converges to some Gibbs u-state. This Gibbs u-state must be µi, because by Propo-
sition 2.1 and part (b) of Proposition 2.3, this is the unique ergodic Gibbs u-state
that gives weight to the closure of Wu(O(pi)). This proves that the basin of µi

intersects D on a full Lebesgue measure subset.
We claim that there exists a positive Lebesgue measure subset D1 inside that

intersection such that the stable set of any point y ∈ D1 contain an ics-dimensional
disk W s

loc(y) with uniform size; moreover, these local stable disks constitute an
absolutely continuous lamination (that is, the holonomy maps of this lamination
preserve zero measure sets). Indeed, let Λ be any compact (non-invariant) set with
µ(Λ) > 0 such that every point in Λ has a Pesin stable manifold with uniform
size, and these stable manifolds constitute an absolutely continuous lamination
(existence of such sets is a classical fact in Pesin theory [24]). It follows from the
previous paragraph that the forward trajectory of almost every x ∈ D accumulates
on Λ. Thus one can find a neighborhood V of x inside D such that some large
iterate fn(V ) intersects Λ on a positive Lebesgue measure subset. Just take D1 =
V ∩ f−n(Λ). See also [28, Lemma 6.6] for a similar statement.

Let x0 ∈ D0 be a Lebesgue density point for D1 inside D0. Since the basin
contains the stable sets of all points in D1, and these are transverse to D0, it
follows that every point in the local stable disk of x0 is also a Lebesgue density for
the basin in ambient space. In particular, W s

loc(x0) is contained in Bess(µi). Since
f−n(W s

loc(x0) accumulates on W s(Orb(pi)) and the essential basin is f -invariant,
it follows that W s(Orb(pi)) is contained in the closure of Bess(µi).

Now we prove the converse inequality. Let x0 be any Lebesgue density point
of the basin of µi in ambient space. Using the fact that the unstable foliation
is absolutely continuous (see [5]), we can find a small disk D around x0 inside
the corresponding unstable leaf such that LebD(D ∩ B(µi)) > 0. Let B be a
neighborhood of pi small enough that Fu(y) intersects W s(pi) transversely, for
every y ∈ B. Take x ∈ D ∩ B(µi). While proving part (b) we have shown that
for such a point there exists arbitrarily large values of n ≥ 1 such that fn(x) ∈ B.
Then fn(D) intersects W s(pi) transversely and, hence, W s(Orb(pi)) intersects D.
Since D is arbitrary, it follows that x0 is in the closure of W s(Orb(pi)). �

Combining Propositions 2.2 and 2.3 yields Theorem A.

2.2. Proof of Theorem B. It will be convenient to separate the two conditions in
the definition of skeleton. Let us call pre-skeleton any finite collection {p1, · · · , pk}
of saddles with maximum index satisfying condition (i), that is, such that every
unstable leaf Fu(x) has some point of transverse intersection with W s(Orb(pi)) for
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some i. Thus a pre-skeleton is a skeleton if and only if there are no heteroclinic
intersections between any of its points.

One reason why this notion is useful is that the continuation of a pre-skeleton is
always a pre-skeleton:

Lemma 2.4. Let f be a partially hyperbolic diffeomorphism which has a pre-
skeleton S = {p1, · · · , pk}. Let pi(g), i = 1, . . . , k be the continuation of the saddles
pi for nearby diffeomorphism g. Then S(g) = {p1(g), · · · , pk(g)} is a pre-skeleton
for every g in a neighborhood of f .

Proof. This is a really a simple consequence of the fact that the unstable foliation
depends continuously on the point and the dynamics. Let us detail the argument.
Given any x ∈ M , take i such that the unstable leaf Fu(x) has some transverse
intersection ax with the stable manifold of some point in the orbit of pi ∈ S. Fix
Rx > 0 large enough so that ax is in the interior of the Rx-neighborhood Fu

Rx
(x)

of x inside Fu(x) and in the interior of the Rx-neighborhood W s
Rx

(Orb(pi)) of the
orbit of pi inside its stable manifold. Then, since unstable leaves vary continu-
ously with the point, for any y in a small neighborhood Ux of x, there exists ay
close to ax such that Fu

Rx
(y) and W s

Rx
(Orb(pi)) intersect transversely at ay. Let

{U(x1), . . . , U(xm)} be a finite covering of M and let R = max{Rx1
, . . . , Rxm

}.
Thus, Fu

R(x) has some transverse intersection with ∪k
i=1W

s
R(Orb(pi)) for every

x ∈ M . Since unstable leaves also vary continuously with the dynamics, it follows
that there is a C1 neighborhood U of f such that Fu

R(x, g) has some transverse
intersection with ∪k

i=1W
s
R(pi(g)) for every x ∈ M and every g ∈ U . �

Another reason why the notion of pre-skeleton is useful to us is that every pre-
skeleton contains some skeleton. To prove this it is convenient to introduce the
following partial order relation, which will also be useful later on. For any two
elements of a pre-skeleton S = {p1, . . . , pk} define: pi ≺ pj if and only if

Wu(Orb(pi)) has some transverse intersection with W s(Orb(pj)).

It follows from the inclination lemma of Palis ([21, § 7]) that ≺ is transitive and
thus a partial order relation. We say that pi ∈ S is a maximal element if pj ≺ pi
for every pj ∈ S such that pi ≺ pj . Two maximal elements pi and pj are equivalent
if pi ≺ pj and pj ≺ pi. We call slice of S any subset that contains exactly one
element in each equivalence class of maximal elements.

Lemma 2.5. Let f be a partially hyperbolic diffeomorphism which has a pre-
skeleton S = {p1, · · · , pk}. Any slice of S is a skeleton.

Proof. Let S ′ be a subset as in the statement. Begin by noting that S ′ is also a
pre-skeleton. Indeed, since S is assumed to be a pre-skeleton, for any x ∈ M there
exists pi ∈ S such that Fu(x) has some transverse intersection with W s(Orb(pi)).
Moreover, there exists some maximal element pj of S such that pi ≺ pj . Using the
λ-lemma, it follows that Fu(x) has some transverse intersection with W s(Orb(pj)).
Moreover, up to replacing pj by some other maximal element equivalent to it, we
may suppose that pj ∈ S ′. This proves our claim. Finally, by definition, there is no
heteroclinic intersection between the elements of S ′. So, S ′ is indeed a skeleton. �

Now we are ready to give the proof of Theorem B. The set S = {p1, · · · , pk}
is a pre-skeleton of f , of course. So, by Lemma 2.4, there is a C1 neighborhood
V of f such that S(g) = {p1(g), . . . , pk(g)} is a pre-skeleton for every g ∈ V .
Since diffeomorphisms with mostly contracting center form a C1+ε open set (by
Andersson [2]), we may find a C1+ε neighborhood U ⊂ V such that every g ∈ U has
mostly contracting center. By Lemma 2.5, every slice S ′(g) of S(g) is a skeleton for
g. Since #S ′(g) ≤ #S(g) = S(f), it follows from Theorem A that the number of
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physical measures of g ∈ U is not larger than the number of physical measures of
f . Indeed, these two numbers coincide if and only if S(g) is a skeleton for g, that
is, if there are no heteroclinic intersections between the continuations pi(g). This
proves the first part of the theorem.

Now let (fn)n be a sequence of diffeomorphisms converging to f in the C1+ε

topology and suppose that S(fn) = {p1(fn), · · · , pk(fn)} is a skeleton of fn for any
large n. Let µ1(fn), . . . , µk(fn) be the physical measures (ergodic Gibbs u-states).
By Theorem A, we may number these measures in such a way that each µi is
supported on the closure of Wu(Orb(pi(fn))). Up to restricting to a subsequence,
we may assume that µi(fn) converges, in the weak∗ topology, to some f -invariant
measure µ∗

i . By semicontinuity of the space of Gibbs u-states, every µ∗
i is a Gibbs

u-state for f . Write µ as a convex combination µ∗
i =

∑k
j=1 ajµj of the physical

measures of f . We claim that ai = 1. Indeed, suppose that there is j 6= i such that
aj > 0. Then

lim sup
n

supp(µi(fn)) ⊃ supp(µj(f)).

By Theorem A, we have that supp(µi(fn)) = closure of Wu(Orb(pi), fn). For
n large, this implies that Wu(Orb(pi(fn)), fn) has some transverse intersection
with W s

loc(Orb(pj(f)), f), because the unstable manifolds of hyperbolic periodic
points vary continuously with the dynamics. Using the corresponding fact for sta-
ble manifolds, we conclude that Wu(Orb(pi(fn)), fn) has some transverse intersec-
tion with W s

loc(Orb(pj(fn)), fn). This contradicts the assumption that S(fn) =
{p1(fn), · · · , pk(fn)} is a skeleton of fn. This proves our claim, which yields the
second part of the theorem.

By the stable manifold theorem (see [21, Theorem 6.2] and [22, page 154]), for
each R > 0, the local invariant manifolds W s

R(Orb(pi(g))) and Wu
R(Orb(pi(g)))

vary continuously with g. This implies that their closures vary in a lower semi-
continuous fashion with g, relative to the Hausdorff topology. By parts (b) and
(c) of Proposition 2.3, this means that both the supports and the closures of the
essential basins of the physical measures vary lower semi-continuously with the
dynamics, as claimed in the third part of the theorem.

The proof of Theorem B is complete.

2.3. Local description of the continuation of physical measures. Our next
goal will be to analyse how physical measures and their basins vary with the dy-
namics. Here we find a couple of conditions that ensure continuous dependence.
This is a prelude to the next section, where we will analyse how physical measures
may collapse as their basins explode.

Take f to be a diffeomorphism with mostly contracting center with a skeleton
S = {p1, . . . , pk}. Let S(g) = {p1(g), . . . , pk(g)} be its continuation for nearby
diffeomorphisms g.

Corollary 2.6. Let i ∈ {1, . . . , k} and (fn)n be a sequence converging to f in
Diff1+ε(M) such that for every n the point pi(fn) is a maximal element of S(fn)
and no other element of S(fn) is equivalent to pi(fn). Then each fn has a physical
measure µi(fn) on the closure of Wu(Orb(pi(fn))) such that these physical measures
converge to µi in the weak∗ topology as n → ∞.

Proof. By Lemma 2.5, each fn admits a physical measure µi(fn) supported on the
closure of the unstable manifold of Orb(pi(fn)). Suppose that (µi(fn))n does not
converge to µi. We may assume that the sequence converges to some measure µ.
Then µ is a Gibbs u-state of f and so we may write it as

µ = a1µ1 + · · ·+ aiµi + · · ·+ akµk.
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Since µ 6= µi, there exists j 6= i such that aj 6= 0. By the same argument as in the
proof of Theorem B, we have that Wu(Orb(pi(fn)), fn) intersects W

s(Orb(pj), f)
transversely at some point, for every large n. Consequently, if n is large enough then
Wu(Orb(pi(fn)), fn) has some transverse intersection with W s(Orb(pj(fn)), fn).
This implies that pi(fn) ≺ pj(fn), which contradicts the assumption that pi(fn) is
maximal and its equivalence class is formed by a single point. �

Given r ≥ 1 and two saddle points p(f) and q(f) of diffeomorphism f , we say
that q is not Cr attainable from p if there is a Cr neighborhood V of f such that
Wu(p(g), g) ∩W s(q(g), g) = ∅ for any g ∈ V , where p(g) and q(g) are the analytic
continuations of p(f) and q(f), respectively.

Corollary 2.7. Assume that pi(f) ∈ S is not C1+ε attainable from any pj(f) ∈ S
with j 6= i. Then the physical measure µi(f) is stable, in the sense that for every g
in a C1+ε neighborhood of f there exists a physical measure µi(g) which is close to
µi(f) in the weak∗ topology.

Proof. Let V be a neighborhood of f as in the definition of non-attainability. Let
S ′(g) be any slice of S(g). By Lemma 2.5, S ′(g) is a skeleton for g. The assumption
implies that pi(g) is a maximal element of S ′(g) and its equivalence class consists
of a single point. So, the conclusion follows from Corollary 2.6. �

3. Exploding basins

We start by giving a geometric and measure-theoretical criterion for a partially
hyperbolic diffeomorphism to have mostly contracting center, using the notion of
skeleton and a local version of the mostly contracting center property. Then we use
this criterion to give new examples of diffeomorphisms with any finite number of
physical measures, whose basins are all dense in the ambient space.

Such examples are not stable: the number of physical measures may decrease
under perturbation. Indeed, for any proper subset of physical measures one can
find a small perturbation of the original diffeomorphism for which those physical
measures disappear (their basins are engulfed by the basins of the physical measures
that do remain).

Using different perturbations, one can approximate the original diffeomorphism
f by other diffeomorphisms fn having a unique physical measure µn, in such a way
that (µn)n converges to any given Gibbs u-state of f . In particular, such examples
are statistically unstable: the simplex generated by all the physical measures does
not vary continuously.

3.1. Criterion. Take f to be a partially hyperbolic diffeomorphism with invariant
splitting Eu ⊕ Ecs. As before, denote ics = dimEcs. We start with a semi-local
version of the notion of mostly contracting center.

Let Λ be a compact u-saturated f -invariant subset of M . We say that f has
mostly contracting center at Λ if the center Lyapunov exponents are negative for
every ergodic Gibbs u-state supported on Λ. Then, we say that Λ is an elementary
set if there exists exactly one ergodic Gibbs u-state µ supported in Λ and it satisfies
suppµ = Λ.

The same arguments as in Theorem A also yield a corresponding semi-local
statement: If Λ is an elementary set and µ is the corresponding Gibbs u-state, then

• µ is a physical measure;
• Λ has finitely many connected components and the unstable foliation is
minimal in each connected component;

• if p ∈ Λ is any hyperbolic saddle with maximum index, then the closure of
W s(Orb(p)) coincides with the closure of the essential basin of µ.
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Λ contains some hyperbolic saddle with maximum index, by arguments in the proof
of Proposition 2.2.

Proposition 3.1. Let Λ1 , . . . , Λk be pairwise disjoint elementary sets, µ1, . . . , µk

be the corresponding Gibbs u-states, and pi ∈ Λi, i = 1, . . . , k be hyperbolic saddles
with maximum index. If {p1, . . . , pk} is a pre-skeleton, then it is a skeleton, and f
has mostly contracting center. Moreover, {µ1, . . . , µk} are the physical measures of
f , and their basins cover a full Lebesgue measure subset.

Proof. If some unstable manifold Wu(Orb(pi)) intersects some stable manifold
W s(Orb(pj)) then, by the inclination lemma [21, § 7], the closure of Wu(Orb(pi))
intersects the closure of Wu(Orb(pj)). By the definition of elementary sets, this
implies that Λi intersects Λj and, in view of our assumptions, that can only happen
if i = j. This proves that {p1, . . . , pk} is a skeleton.

Now let us check that f has mostly contracting center. It is part of the definition
of elementary set that the center Lyapunov exponents of µj are all negative, for
every j = 1, . . . , k. So, to prove that f has mostly contracting center it suffices to
show that f has no any other ergodic Gibbs-u states. Suppose there exists some
ergodic Gibbs-u state µ /∈ {µ1, · · · , µk}. It follows from the definition that there
exists a u-disk D contained in some unstable leaf that intersects the basin of µ on a
full Lebesgue measure set D0 ⊂ D. We claim that there exist n0 ≥ 1 and 1 ≤ i ≤ k
such that fn0(D0) intersects the basin of µi. Of course, this contradicts the fact
that µ 6= µi. Thus, we are left to justify our claim.

Since {p1, · · · , pk} is a pre-skeleton, there exist n ≥ 1 and 1 ≤ i ≤ k such that
fn(D) intersects W s(pi) transversely at some point (otherwise, the Hausdorff limit
of fn(D) would contain some unstable leaf disjoint from ∪k

i=1W
s(O(pi)), which

would contradict the definition of pre-skeleton). Again by the definition of Gibbs
u-state, there exists a u-disk D′ ⊂ suppµi and a full Lebesgue measure subset
D′

0 ⊂ D′ formed by regular points of µi. Since the center Lyapunov exponents are
negative, it follows from Pesin theory that there exists a lamination whose laminae
are local stable manifolds W s

loc(x) of almost every point x ∈ D′
0. Moreover, this

stable lamination is absolutely continuous.
Theorem 11.16 in [3] gives that the time average of Lebesgue almost every x ∈

Wu(pi) is a Gibss u-state. By the definition of elementary set, this Gibbs u-state
must be µi. Moreover, the orbit of any such x must accumulate on the whole
suppµi = Λi. In particular, Wu(Orb(pi)) is dense in suppµi. Assuming that
n0 is large enough, fn0(D) is close to Wu(Orb(pi)) and, in particular, it cuts
∪x∈D′

0
W s

loc(x). The intersection is contained in the basin of µi, since W s
loc(x) ⊂

B(µi) for every x ∈ D′
0. Moreover, by absolute continuity of the lamination, the

intersection has positive Lebesgue measure. This implies that fn(D0) intersects
the basin of µi. �

3.2. New Kan-type examples. In this subsection, we use Proposition 3.1 to
construct new examples of diffeomorphisms with mostly contracting center and
several physical measures, such that every basin intersects every open set on a
positive measure subset.

Proposition 3.2. For any k ≥ 1, there is a diffeomorphism f ∈ Diff2(T 2 × S2)
such that f has mostly contracting center and k physical measures µ1, . . . , µk such
that suppµi = T 2 ×Ai for some Ai ⊂ S2 and the basin B(µi) is dense in T 2 × S2,
for every i. Moreover, the same remains true for any diffeomorphism in a C2-
neighborhood which preserves the set T 2 ×Ai for all i = 1, . . . k.

Proof. Let k be fixed and g ∈ Diff1(T 2) be a Cr Anosov diffeomorphism with 2k
fixed points, denoted as p1, p

′
1, . . . , pk, p

′
k. Our example will be a partially hyperbolic
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skew product map

f : T 2 × S2 → T 2 × S2, f(x, y) = (g(x), hx(y)),

whose center foliation is the vertical foliation by spheres, W c(x) = {x} × S2. It is
easy to see that, for any x ∈ T 2,

W s(W c(x), f) = W s(x, g)× S2 and Wu(W c(x), f) = Wu(x, g)× S2.

For x and x̃ in the same stable manifold of g, let Hs
x,x̃ : W c(x) → W c(x̃) be the

stable holonomy, defined as the projection along strong stable leaves of f . Let the
unstable holonomy Hu

x,x̃ : W c(x) → W c(x̃) be defined analogously, for x and x̃ in
the same unstable leaf of g.

Assuming that hx is uniformly close to the identity in the C2 topology, the
partially hyperbolic map f is center bunched (see [26] or [8]), so that these holonomy
maps are all C1 diffeomorphisms; moreover, they are close to the identity in the C1

topology. In what follows we consider k ≥ 3: the cases k = 1, 2 are easier.
For the time being, take k to be even; the odd case will be treated at the end of

the proof. Let C and C′ be two smooth closed curves in S2 intersecting transversely
on exactly k points, A1, . . . , Ak. Take these points to be listed in cyclic order. Then
consider points B1, . . . , Bk ∈ C, such that each Bi lies in the circle segment between
Ai and Ai+1 (with Ak+1 = A1). For each i = 1, . . . , k, let Xi be a Morse-Smale
vector field on the sphere such that:

(i) Ω(Xi) = {A1, B1, . . . , Ak, Bk};
(ii) Ai is a sink, A1, . . . , Ai−1, Ai+1, . . . , Ak are saddles and B1, . . . , Bk are

sources;
(iii) the basin of the attractor Ai is the complement of segment Si ⊂ C connect-

ing all the saddles and sources.

Figure 1 illustrates the case k = 4 and i = 1: then S1 is just the segment of C from
B1 to B4 that does contain A1.

C

A1

A2

A3

A4
B1

B2B3

B4

Figure 1. Morse-Smale vector field on the sphere

Analogously, consider points B′
1, . . . , B

′
k ∈ C′, such that each B′

i lies in the
segment of C′ between Ai and Ai+1. Then let X ′

i, i = 1, . . . , k, be a Morse-Smale
vector field on the sphere satisfying (i), (ii) and (iii), with Bi replaced by B′

i and Si

replaced by a segment S′
i ⊂ C′. Let us consider a partially hyperbolic skew-product

f : T2 × S2 → T
2 × S2 satisfying

(1) A1, . . . , Ak are fixed points of hx(·) for any x ∈ T 2.
(2) hpi

= time-ε map of Xi and hp′

i
= time-ε of X ′

i, for some small ε > 0.

(3) f is C2 close to (g(x), id).
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Condition (1) means that each Ti = T
2×{Ai}, i = 1, . . . , k is an F -invariant torus;

clearly, the restriction F | Ti is an Anosov map. It is also clear that the three
conditions are compatible, as long as we choose ε in (2) sufficiently small. For
example, we may take hx to be the identity map on S2 for every x outside small
neighborhoods of p1, . . . , pk and p′1, . . . , p

′
k. Then, we may modify these maps hx

to make them contracting at each Ai (preserving the previous three conditions), so
that

(4)
∫

Ti
log ‖Dhx(Ai)‖ dµi(x) < 0 for i = 1, . . . , k, where µi denotes the (unique)

Gibbs u-state of F | Ti.

This last condition implies that the center Lyapunov exponents of every µi are
negative, and so Ti is an elementary set.

Lemma 3.3. The set {pi ×Ai}ki=1 is a skeleton.

Proof. As a first step, we prove that every strong unstable leaf Fu(z) has a point
of transverse intersection with the stable manifold of some (pi, Ai). Observe that
W s(W c(p1), f) = W s(p1, g) × S2. Also, W s(p1, g) intersects the g-unstable mani-
fold of any point in T

2 transversely (recall that g : T2 → T
2 is Anosov). It follows

that, for any z ∈ M , Fu(z) intersects W s(W c(p1), f) transversely at some point a.
There are three possibilities:

(a) a ∈ W s((p1, A1), f);
(b) a ∈ W s((p1, Ai), f) for some i 6= 1;
(c) a ∈ Fs(Bj) for some 1 ≤ j ≤ k.

In case (a) we are done. As for case (b), we claim that it implies that Fu(z)
has some transverse intersection W s((pi, Ai), f). Indeed, the hypothesis implies
that the iterates fn(Fu(z)) accumulate on the unstable leaf Fu(p1, Ai) of the fixed
point (p1, Ai). The latter is contained in the Anosov torus Ti, which also contains
(pi, Ai) and its strong stable leaf Fs(pi, Ai). In fact, Fu(p1, Ai) and Fs(pi, Ai)
are transverse inside Ti. Thus, it follows that the iterates fn(Fu(z)) accumulate
on (pi, Ai). Since (pi, Ai) has stable index 3, we get that fn(Fu(z)) has some
transverse intersection with W s((Ai, pi), f) for every large n. Taking pre-images,
we get our claim. Thus, in case (b) we are done as well.

Now, we consider case (c). For n large, fn(Fu(z)) = fn(Fu(a)) = Fu(fn(a))
is close to Fu(p1, Bj). Let q ∈ T

2 be a point of transverse intersection between
Wu(p1, g) and W s(p̃1, g). Then the consider the map

H = Hs
q,p̃1

◦Hu
p1,q : W c(p1) → W c(p̃1).

As observed above, under our assumptions the map H is C1 close to the identity
map in the second coordinate. So, in view of our conditions on C and C′ (more
specifically, the assumption that they meet at A1, . . . , Ak only, and they do so
transversely), we have that H(Bj) /∈ C′. Consequently, H(Bj) ∈ W s((p̃1, A1). This
means that the strong unstable leaf Fu(p1, Bj) has some transverse intersection
with W s((p̃1, A1), f). Then the same is true for fn(Fu(z)) if n is large enough.
Now observe that (p1, A1) and (p̃1, A1) are homoclinically related, meaning that
the unstable manifold of any point has some transverse intersection with the stable
manifold of the other. So, the previous conclusion implies that fn(Fu(z)) has some
transverse intersection with W s((p1, A1), f). This reduces the present situation to
case (a).

Thus, we have shown that {pi × Ai}ki=1 is a pre-skeleton. Next, notice that
Wu((pi, Ai), f) = Fu(pi × Ai) is contained in Ti for every i. Since these tori are
pairwise disjoint, and each one of them is fixed under f , we have that Ti is in the
complement of W s((pj , Aj), f) for every j 6= i. So, the points (pi, Ai) can have no
heteroclinic intersections. This finishes the proof that {pi×Ai}ki=1 is a skeleton. �
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Let us proceed with the proof of Proposition 3.2. Applying Proposition 3.1 to
the elementary sets Ti and the skeleton {pi × Ai}ki=1 provided by Lemma 3.3, we
find that f has mostly contracting center with k physical measures µ1, . . . , µk such
that suppµi = Ti for every i.

Lemma 3.4. W s((pi, Ai), f) is dense in T
2 × S2 for every i = 1, . . . , k.

Proof. By construction, the stable manifold of Ai for the flow Xi is dense in the
sphere W c(pi); recall Figure 1. It follows that the stable manifold W s((pi, Ai), f)
is dense in W s(W c(pi), f). Moreover, the latter is dense in T

2 × S2 because it
coincides with W s(pi, g) × S2 and the stable manifold W s(pi, g) is dense in T

2.
This proves the lemma. �

Then, by Theorem A, the basin of each physical measure µi is dense in T
2 ×S2.

This completes the proof of Proposition 3.2 in what concerns the map f . We
are left to show that the conclusions extend to any C1+α diffeomorphism f̃ in a
neighborhood which leaves every Ti fixed.

Begin by observing that f̃ | Ti is close to f | Ti and, in particular, it is Anosov. It

follows that f̃ admits a unique Gibbs u-state supported on Ti (the physical measure
of that Anosov diffeomorphism) and that Gibbs u-state is close to µi. The latter
ensures that the center Lyapunov exponents remain negative, and so Ti remains
an elementary set for f̃ . Each fixed point (pi, Ai) admits a continuation (pi(f̃), Ai)

for f̃ . By Lemma 2.4, these points form a pre-skeleton for f̃ . So, we are still in
a position to use Proposition 3.1 to conclude that f̃ has mostly contracting center
and exactly k physical measures, µ̃1, . . . , µ̃k, with µ̃i supported on T

i for every i.
The proposition also states that {pi(f̃)×Ai}ki=1 is actually a skeleton for f̃ .

We are left to prove that the basin of every µ̃i is dense. By Theorem A, it suffices
to show that the stable manifold of every (pi, Ai) is dense. The center foliation of
f coincides with the trivial fibration {x} × S2, which is normally hyperbolic and
smooth. Thus, by the stability theorem of Hirsch, Pugh, Shub [15], the perturbation

f̃ admits an invariant center foliation of T2 × S2 whose leaves are C1+α spheres
uniformly close to the trivial fibers. In particular, the center leaf through each
point (pi(f̃), Ai) is close to {pi}×S2. That implies that the restriction of f̃ to that

center leaf is Morse-Smale and the stable manifold of (pi(f̃), Ai) is dense in it. So,

the stable manifold of (pi(f̃), Ai) is dense in the stable manifold ofW c(pi(f̃ , Ai), f̃).
The stability theorem also says that there exists a homeomorphism h of T2×S2 that
maps the center leaves of f to the center leaves of f̃ and which is a leaf conjugacy:

h(W c(z, f)) = W c(h(z), f̃) for every z ∈ T
2 × S2.

Then the stable manifold of W c(pi(f̃ , Ai), f̃) is just the image under h of the stable

manifold ofW c(pi, f). That guarantees that the stable manifold ofW c(pi(f̃ , Ai), f̃)
is dense in T

2 × S2. In this way we have recovered all the ingredients we used for
f and so at this point our arguments extend to f̃ , as claimed.

Finally, to construct examples with an odd number of physical measures, it
suffices to show that one can modify the diffeomorphism f above, in such a way

that the physical measures of the resulting diffeomorphism f̂ are precisely µ1, . . . ,
µk−1. Let q ∈ T 2 be a point of transverse intersection between Wu(pk, g) and
W s(p1, g). Let Y

t, t ∈ R be a smooth flow on T 2 × S2 such that

(1) Y t is supported on a small neighborhood of (q, Ak);
(2) Y t preserves the center foliation;
(3) for any t > 0, the map Y t sends (q, Ak) to some (q, C) with C /∈ C.
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Pick f̂ = Y t◦f for any t > 0. Condition (3) implies that for f̂ the unstable manifold
of (pk, Ak) intersects the stable manifold of (p1, A1). So

(1) {(p1, A1), . . . , (pk−1, Ak−1)}

is a pre-skeleton for f̂ . Conditions (1) and (2) ensure that the unstable manifold
of each (pi, Ai) remains unperturbed and thus is still contained in T 2 × {Ai}, for

i = 1, . . . , k − 1. This ensures that the set in (1) is actually a skeleton, and so f̂
has exactly k − 1 physical measures. All the other stated properties are obtained
just as in the previous case. �

3.3. Collapse of measures and explosion of basins. In this subsection, we
prove that the examples we have just constructed are statistically unstable: the
simplex generated by all the physical measures does not vary continuously with
the dynamics, as physical measures may collapse, with their basins of attraction
exploding, after small perturbations of the diffeomorphism. In fact, we obtain two
different instability results:

• For any proper subset of physical measures, one can find a small pertur-
bation of the original diffeomorphism for which those physical measures
vanish: their basins are engulfed by the ones of the remaining physical
measures.

• For any Gibbs-u state µ of the original diffeomorphism (not necessarily
ergodic), one can find diffeomorphisms fn converging to f , such that every
each fn has a unique physical measure µn and the sequence (µn)n converges
to µ in the weak-* topology.

In all that follows f : M → M is a partially hyperbolic diffeomorphism with
k = 3 physical measures, as constructed in the previous section (the constructions
extend to arbitrary k in a straightforward way). Let us first describe our perturba-
tion technique. It is designed to create new heteroclinic intersections, thus reducing
the number of saddle points in the skeleton.

For distinct i, j ∈ {1, 2, 3}, let qi,j ∈ T 2 be a point of transverse intersection of
Wu(pi, g) and W s(pj , g). Consider a smooth flow Y t

i,j on T 2 × S2 such that:

(1) Y t
i,j is supported on a small neighborhood of (qi,j , Ai);

(2) Y t
i,j preserves the center foliation of f ;

(3) for any t > 0, the map Y t
i,j sends (qi,j , Ai) to some (qi,j , Ci) with Ci /∈ C.

We will always consider perturbations ft1,t2,t3 of the original f of the form

ft1,t2,t3 = Y t1
1,2 ◦ Y

t2
2,3 ◦ Y

t3
3,1 ◦ f t1, t2, t3 close to zero.

Observe that ft1,t2,t3 |pi × S2 = f |pi × S2, since pi × S2, i = 1, 2, 3 are away from
the regions of perturbation. By Lemma 2.4, {pi×Ai}

3
1 is a pre-skeleton of ft1,t2,t3 .

Denote p4 = p1 and A4 = A1 and q3,4 = q3,1.

Lemma 3.5. The strong unstable leaf Fu((pi, Ai), ft1,t2,t3) has some transverse
intersection with W s((pi+1, Ai+1), ft1,t2,t3), for every ti > 0.

Proof. Let j = i + 1. By construction, the strong unstable leaf of (pi, Ai) for
tt1,t2,t3 contains the point Y ti

i,j(qi,j , Ai), which is the strong stable leaf of some point

in {pj}× (S2 \ C). The latter is in the stable manifold of (pj , Aj). Clearly, the two
manifolds intersect transversely at this point. �

We are ready to state and prove our first instability result:

Proposition 3.6. Given any proper subset Γ of the set {µ1, µ2, µ3} of physical

measures of f , one can find f̃ arbitrarily close to f such that the set of physical
measures of f̃ is {µ1, µ2, µ3} \ Γ.
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Proof. First, suppose that #Γ = 1, say, Γ = {µ1}. Consider f̃ = ft1,0,0 with t1 > 0.
The measures µ2 and µ3 are still ergodic Gibbs-u states and physical measures for
f̃ , since f̃ coincides with f on the neighborhood of their supports, T2 and T3.
Moreover, the unstable manifolds of (p2, A2) and (p3, A3) are still contained in T2

and T3, respectively, and so these points have no heteroclinic intersections. On
the other hand, by Lemma 3.5, (p1, A1) ≺ (p2, A2). Thus, {(p2, A2), (p3, A3)} is a

skeleton of f̃ , by Lemma 2.5. So, by Theorem A, the diffeomorphism f̃ has exactly
two physical measures, µ1 and µ2.

Now suppose that #Γ = 2, say, Γ = {µ1, µ2}. Consider f̃ = ft1,t2,0 with t1 > 0

and t2 > 0. Then, just as before, (p1, A1) ≺ (p2, A2) and (p2, A2) ≺ (p3, A3) for f̃ .

Then, by Lemma 2.5, {(p3, A3)} is a skeleton of f̃ and, by Theorem A, the map f̃
has a unique physical measure, µ3. �

The same arguments show that if t1, t2, t3 are all positive then ft1,t2,t3 has a
unique physical measure (the points (pi, Ai) are all heteroclinically related), which
need not be close to any of the physical measures of the original map f .

Proposition 3.7. For each Gibbs u-state ν of f there exists a sequence (fn)n such
that every fn has a unique physical measure µn and the sequence (µn)n converges
to ν as n → ∞.

Proof. Notice that ν is an element of the simplex

∆ = {(s1µ1 + s2µ2 + s3µ3) : s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, s1 + s2 + s3 = 1},

since every Gibbs u-state is a linear combination of the ergodic Gibbs u-states and,
for f , these are precisely the physical measures. Clearly, it is no restriction to
suppose that µ belongs to the interior of ∆. Let P : M → V be any continuous
affine map from the Banach space M of finite signed measures on T

2 × S2 to the
affine plane V ⊂ M generated by ∆ such that P | V = id. Existence of such a map
follows from the Hahn-Banach theorem.

For n ≥ 1 and 0 < δ < 1/n, consider the hexagon

Hn(δ) = {(t1, t2, t3) : t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, t1 + t2 + t3 =
1

n
,

t1 + t2 ≥ δ, t1 + t3 ≥ δ, t2 + t3 ≥ δ}.

Every triple (t1, t2, t3) ∈ Hn(δ) has at least two positive coordinates. Hence, by the
same arguments as in the proof of Proposition 3.6, the corresponding map ft1,t2,t3
has exactly one Gibbs u-state µt1,t2,t3 , which is also the unique physical measure.
This defines a map Φ(t1, t2, t3) = µt1,t2,t3 with values in the space of probability
measures on T

2 × S2. By upper semi-continuity of the space of Gibbs u-states, Φ
is continuous on Hn(δ) and the image Φ(Hn(δ)) is contained in a neighborhood of
the simplex ∆.

Let α be the distance from µ to the boundary of ∆. We claim that for each
n there exists 0 < δn < 1/n such that the image of H̃n = Hn(δn) under Φ is a
topological simplex (α/4)-close to ∆ in the space M, in the following sense:

(i) the two simplices have the same vertices and

(ii) every edge of Φ(H̃n) is contained in the (α/4)-neighborhood of the corre-
sponding edge of ∆.

It follows that for every large n the image P (Φ(H̃n)) is a topological simplex
(α/2)-close to ∆ in the plane V . By a topological degree argument, it follows that

P (Φ(H̃n)) contains µ: otherwise, it would be retractable to the boundary of ∆,

which is nonsense. This means that there exists (t1(n), t2(n), t3(n)) ∈ H̃n such that
P (µt1(n),t2(n),t3(n)) = µ. Let

fn = ft1(n),t2(n),t3(n) and µn = µt1(n),t2(n),t3(n).



16 DMITRY DOLGOPYAT, MARCELO VIANA AND JIAGANG YANG

The definition of H̃n implies that ti(n) → 0 when n → ∞ for every i. Thus, (fn)n
converges to f . By upper semi-continuity of the space of Gibbs u-states, every
accumulation point of the sequence (µn)n is contained in ∆. Also, by construction,
P (µn) = µ for every n. Since P is continuous and its restriction to ∆ is injective,
this implies that (µn)n converges to µ.

We are left to prove the claim above. Let I1, I2, I3 and J1, J2, J3 be the boundary
segments ofHn(δ), with Ij contained in {tj = 0} and Jj contained in {tj+tj+1 = δ}
(denote t4 = t1 and µ4 = µ1). If (t1, t2, t3) ∈ Ij then tj is the unique vanishing
parameter and so µt1,t2,t3 = µj . This means that Φ(Ij) = {µj} for j = 1, 2, 3, which
gives part (i) of the claim. It also follows that Φ(Jj) is a continuous curve from µj to
µj+1. Using upper semi-continuity once more, this curve must be contained in the
(α/4)-neighborhood of the space of Gibbs u-states of ft1,t2,t3 with tj = tj+1 = 0,
provided δ is small enough. To conclude, it suffices to observe that the latter is
precisely the edge [µj , µj+1] of ∆. �

4. Continuity of basins

In this section, we prove Theorem C. Indeed, we prove the following somewhat
more explicit fact:

Proposition 4.1. Let k ≥ 1 and O be a subset of the space of C1+α diffeomor-
phisms of M with mostly contracting center such that every f ∈ O has exactly k
physical measures, µ1(f), . . . , µk(f). Let {fn}∞n=1 be any sequence in O converging
to some f ∈ O. Then, up to suitable numbering,

d
(

B(fn, µi(fn)), B(f, µi(f))
)

→ 0 for every 1 ≤ i ≤ k.

The conclusion holds, in particular, within the family of examples constructed
in Subsection 3.2 or, more precisely, in the last part of Proposition 3.2.

Proof. Let {p1(f), · · · , pk(f)} be a skeleton of f ∈ O with pi(f) ∈ suppµi(f) for
each i. As we have seen before, the continuations pi(g), 1 ≤ i ≤ k of the saddle
points pi(f) constitute a skeleton for every g in a small neighborhood relative U ⊂ O
(because the number of physical measures remains the same).

Lemma 4.2. Let l be the product of the periods of p1(f), . . . , pk(f). If ν is a
Gibbs u-state of any iterate fn, n ≥ 1 then

(2)
1

l

l−1
∑

j=0

f j
∗ν is a Gibbs u-state of f .

Proof. We begin by claiming that f l
∗ν = ν. For proving this claim, it suffices to

consider the case when ν is ergodic for fn. Notice that fn has mostly contracting
center and

{f j(pi(f)) : 1 ≤ i k and 0 ≤ j < per(pi(f))}

is a pre-skeleton for fn. Thus, by Theorem A, the support of ν contains some f j(pi).
The measure f l

∗ν is still fn-invariant and fn-ergodic. Then, since f preserves
absolute continuity along unstable manifolds, f l

∗ν is still a Gibbs u-state for fn.
Since its support also contains f j(pi), it follows from Theorem A that f l

∗ν and ν
coincide, as claimed. Then the measure in (2) is f -invariant and, using once more
the fact that f preserves absolute continuity along unstable manifolds, it is a Gibbs
u-state for f , as we wanted to prove. �

Lemma 4.3. There exists λ0 > 0 and for every large N ≥ 1 there exists a relative
neighborhood UN ⊂ O of f such that

∫

log ‖DgN | Ecs‖ dν ≤ −2Nλ0
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for every g ∈ UN and any Gibbs u-state ν of gN .

Proof. Since f has mostly contracting center, the largest center exponent

lim
n

∫

1

n
log ‖Dfn | Ecs‖ dµi,

is negative for every i = 1, . . . , k. Since every Gibbs u-state is a convex combination
of µ1(f), . . . , µk(f), it follows that there exist N ≥ 1 and λ0 > 0 such that

(3)

∫

log ‖DfN | Ecs‖ dµ ≤ −8Nλ0

for every Gibbs u-state µ of f . Now let ν be any Gibbs u-state for fN . It follows
from (3) and Lemma 4.2 that

(4)
1

l

l−1
∑

j=0

∫

log ‖DfN | Ecs‖ ◦ f j dν ≤ −4Nλ0.

For any N ≥ l and x ∈ M , we have

DfN | Ecs(f j(x)) = Df j | Ecs(fN (x)) ◦DfN | Ecs(x) ◦Df−j | Ecs(f j(x)).

Hence, denoting C = max log ‖Df‖+max log ‖Df−1‖,

log ‖DfN | Ecs‖ ◦ f j ≥ log ‖DfN | Ecs‖ − Cj ≥ log ‖DfN | Ecs‖ − Cl.

Combining this inequality with (4), we obtain
∫

log ‖DfN | Ecs‖ dν ≤ −4Nλ0 + Cl ≤ −3Nλ0

as long as we take N ≥ Cl/λ0. By upper semi-continuity of the set of Gibbs
u-states, it follows that

∫

log ‖DgN | Ecs‖ dν ≤ −2Nλ0

for any Gibbs u-state ν of gN and any g in a neighborhood UN of f . �

Fix N to be a multiple of l large enough that Lemma 4.3 is satisfied. For each
1 ≤ i ≤ k, choose a small neighborhood Vi of pi(f). Fix ρ > 0 small, such that
the ρ-neighborhood Wu

ρ (pi(g), g) of pi(g) inside its unstable manifold Wu(pi(g), g)
is contained in Vi for every g ∈ U and every i. For each g ∈ U and i = 1, . . . , k,
define Λi(m, g) to be the subset of points x ∈ Wu

2ρ(pi(g), g) such that

1

n

n−1
∑

j=0

log ‖DgN | Ecs(gjN (x))‖ ≤ −Nλ0 for all n ≥ m.

Lemma 4.4. There exists a relative neighborhood U ⊂ UN of f and there exist
constants K > 0 and θ < 1 such that

vol(Wu
2ρ(pi(g), g) \ Λi(m, g)) ≤ Kθm for every g ∈ U and m ≥ 1.

Proof. Let g ∈ UN and l be the Lebesgue measure on the u-disk Wu
ρ (pi(g), g).

Define
A(x) = ‖DgN | Ecs(gN (x))‖

for x ∈ M . Then let I be the set (compact interval) of values of
∫

Adν over all

Gibbs u-states of gN . By Lemma 4.3, I is contained in (−∞,−2Nλ0). Then,
for each fixed g, the claim is contained in the conclusion of [11, Proposition 1]
(or [13, Theorem 1], in the special case when there exists a unique Gibbs u-state)
for ε = λ0). Moreover, the constants may be taken uniform over all g in some
neighborhood U ⊂ UN of f : see [13, Section 7] for the case when there is a unique
Gibbs u-state, and [11, Exercise 7] for the general case. �
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For each large m ≥ 1 there exists δm > 0 such that for any g ∈ U the Pesin
stable manifold of every y ∈ Λi(m, g) has uniform size δm (meaning that it contains
a dimEcs-disk of radius δm around y). Indeed, the uniform bound on the size of
the stable manifold follows from the same arguments as [1, Lemma 3.7], applied to
the inverse of g.

Moreover, these local Pesin stable manifolds define a lamination W s(Λi(m, g))
which is absolutely continuous (see [24, 25]): the corresponding holonomy maps
h : D1 → D2 between disks D1 and D2 transverse to the lamination are absolutely
continuous, with Jacobian given by

(5) Jh(y) = lim
k

det(Dgk | TyD1)

det(Dgk | Th(y)D2)
=

∞
∏

j=0

det(Dg | Tgj(y)g
j(D1))

det(Dg | Tgjh(y)gj(D2))

for y ∈ D1 ∩W s(Λi(m, g)). In particular, for any m ≥ 1 there exists γm > 0 such
that the Jacobian is bounded above by 2, for any g ∈ U and any disks D1 and D2

in the γm-neighborhood of Wu
2ρ(pi(g), g) in the C1 topology.

Let K > 1 be an upper bound for the distortion of backward iterates of any f
along unstable disks:

(6)
det(Df−n | Tx1

D)

det(Df−n | Tx2
D)

≤ K

for any x1, x2 ∈ D and any u-disk of f with radius 1. Fix κ > 0 such that
vol(Wu

ρ/2(z)) ≥ κ for every z ∈ M .

Lemma 4.5. Given ε > 0 there exists m ≥ 1 such that

vol
(

D \B(g, µi(g)))
)

<
εκ

4K

for any g ∈ U and any disk D in the γm-neighborhood of Wu
2ρ(pi(g), g) in the C1-

topology.

Proof. By [3, Theorem 11.16], Lebesgue almost every point in Wu(pi(g), g) is in
the basin of some Gibbs u-state. Since pi(g) is in the support of µi(g), by the
definition of skeleton, and the supports are disjoint, we get that almost every point
in Wu

2ρ(pi(g), g) is in B(g, µi(g)). Then the same is true for (every point in the
Pesin stable manifold through) almost every point in Λi(m, g). By Lemma 4.4,
we may fix m ≥ 1 such that the Lebesgue measure of the complement of Λi(m, g)
in Wu

2ρ(pi(g), g) is less than (εκ)/(8K). In view of the previous observations, and
the fact that the Jacobian is bounded by 2, it follows that the Lebesgue measure
of the complement of B(µi(g)) in D is less than (εκ)/(4K) for any D in the γm-
neighborhood of Wu

2ρ(pi(g), g), as claimed. �

Now we apply to the diffeomorphism f the local Markov construction in [27,
Section 4.2]: for any small δ > 0 we may find a family {U(z) : z ∈ W s

δ (pi, f)} of
embedded u-disks such that

Wu
ρ (z) ⊂ U(z) ⊂ Wu

2ρ(z) for every z ∈ W s
δ (pi),

and, for any j ≥ 1 and z, ζ ∈ W s
δ (pi), either

f−j(U(z)) ∩ U(ζ) = ∅ or f−j(U(z)) ⊂ U(ζ).

Given ε > 0, fix m ≥ 1 as in Lemma 4.5 from now on. Then, take δ ∈ (0, δm)
such that Wu

2ρ(z) is in the (γm/2)-neighborhood of Wu
2ρ(pi) for every z ∈ W s

δ (pi).
Denote by Fi the union of the disks U(z), z ∈ W s

δ (pi).
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Lemma 4.6. Up to zero Lebesgue measure,
∞
⋃

j=0

f−j
(

Fi ∩W s(Λi(m, f))
)

= B(µi).

Proof. By [3, Theorem 11.16], Lebesgue almost every point in the unstable manifold
of pi is in the basin of some Gibbs u-state. Recalling that pi is in the support of
µi, by the definition of skeleton, and the supports are disjoint, we get that almost
every point in Wu

2ρ(pi) is in the basin B(µi). Since the basin is saturated by stable
sets, and the lamination Ws(Λi(m, f) is absolutely continuous, it follows that

W s(Λi(m, f)) ⊂ B(µi) up to zero Lebesgue measure.

Since the basin is an invariant set, this implies the inclusion ⊂ in the statement.
The converse is a corollary of [28, Proposition 6.9]. Indeed, this proposition

implies that V = ∪k
i=1∪

∞
j=0f

−j(Fi∩W s(Λi(m, f))) contains a full Lebesgue measure
subset of every strong-unstable disk. By the absolute continuity of the strong
unstable foliation, this implies that V contains a full volume subset of the ambient
manifold. Since we already know that each Vj = ∪∞

j=0f
−j(Fi ∩W s(Λi(m, f))) is

contained in the corresponding basin B(µj), and the basins are pairwise disjoint,
it follows that Vj = B(µj) up to measure zero. The proof is complete. �

By Lemma 4.6, we may fix N ≥ 1 such that

(7) vol
(

B(µi) \
N
⋃

j=0

f−j(Fi)
)

<
ε

2
.

In view of our choice of δ > 0, we may find a neighborhood Ũ ⊂ U of f such that
gjf−j(U(z)) is contained in some disk D in the γm-neighborhood of Wu

2ρ(pi(g), g)

for every z ∈ W s
δ (pi) and 0 ≤ j ≤ N . Reducing Ũ if necessary, and recalling (6),

we may suppose that
det(Dg−j | Tx1

D)

det(Dg−j | Tx2
D)

≤ 2K

for any 0 ≤ j ≤ N , any x1, x2 ∈ D and any disk D in the γm-neighborhood
of Wu

2ρ(pi(g), g). It is clear that gjf−j(U(z)) converges to U(z) ⊃ Wu
ρ (z) when

g → f . Thus, recalling our choice of κ and further reducing Ũ if necessary, we may
suppose that

vol
(

gjf−j(U(z))
)

≥ κ

for any 0 ≤ j ≤ N and any g ∈ Ũ .

Lemma 4.7. For every z ∈ W s
δ (pi) and j ≥ 0 and g ∈ Ũ ,

vol
(

f−j(U(z)) \B(g, µi(g)))
)

<
ε

2
vol

(

f−j(U(z))
)

.

Proof. Let D be a disk in the γm-neighborhood of Wu
2ρ(pi(g), g) and containing

gjf−j(U(z)). By Lemma 4.5,

vol
(

gjf−j(U(z)) \B(g, µi(g))
)

≤ vol
(

D \B(g, µi(g))
)

<
εκ

4K
and so,

vol
(

gjf−j(U(z)) \B(g, µi(g))
)

vol
(

gjf−j(U(z))
<

ε

4K
.

Then, since the basin B(g, µi(g)) is a g-invariant set,

vol(f−j(U(z)) \B(µi))

vol(f−j(U(z)))
≤ 2K

vol
(

gjf−j(U(z)) \B(g, µi(g))
)

vol
(

gjf−j(U(z))
<

ε

2
,

as claimed. �
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Corollary 4.8. For every g ∈ Ũ ,

(8) vol
(

N
⋃

j=0

f−j(Fi) \B(g, µi(g))
)

<
ε

2
.

Proof. Define the return time r(z) of each z ∈ W s
δ (pi) to be the smallest n ∈

N ∪ {∞} such that fn(U(z)) intersects (and thus is contained in) some U(ζ), ζ ∈
W s

δ (pi). Observe that
N
⋃

j=0

f−j(Fi)

is the pairwise disjoint union of the pre-images f−j(U(z)) with z ∈ W s
δ (pi) and

0 ≤ j ≤ min r(z)− 1, N . For each one of these pre-images, Lemma 4.7 gives that

vol
(

f−j(U(z)) \B(g, µi(g)))
)

<
ε

2
vol

(

f−j(U(z))
)

.

So, by the Cavalieri principle,

vol
(

N
⋃

j=0

f−j(Fi) \B(g, µi(g))
)

< ε vol
(

N
⋃

j=0

f−j(Fi)
)

≤
ε

2
.

This proves the claim. �

Combining (7) and (8), we find that

(9) vol
(

B(µi) \B(g, µi(g))
)

< ε for every g ∈ Ũ .

Since, for both f and g, the basins are pairwise disjoint and their union has total
measure,

B(g, µi(g)) \B(µi) ⊂
⋃

j 6=i

B(µj) \B(g, µi(g))

up to measure zero, for every i. Thus, it also follows from (9) that

(10) vol
(

B(g, µi(g)) \B(µi)
)

< (k − 1)ε for every g ∈ Ũ .

The relations (9) and (10) mean that d(B(µi), B(g, µi(g)) < kε for every g ∈ Ũ ,
and so the argument is complete. �
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[19] R. Mañé. Contributions to the stability conjecture. Topology, 17:383–396, 1978.
[20] I. Melbourne and M. Nicol. Almost sure invariance principle for nonuniformly hyperbolic

systems. Comm. Math. Phys., 260:131–146, 2005.
[21] J. Palis and W. de Melo. Geometric theory of dynamical systems. An introduction. Springer

Verlag, 1982.
[22] J. Palis and F. Takens. Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurca-

tions. Cambridge University Press, 1993.
[23] Ya. Pesin and Ya. Sinai. Gibbs measures for partially hyperbolic attractors. Ergod. Th. &

Dynam. Sys., 2:417–438, 1982.
[24] Ya. B. Pesin. Families of invariant manifolds corresponding to non-zero characteristic expo-

nents. Math. USSR. Izv., 10:1261–1302, 1976.
[25] C. Pugh and M. Shub. Ergodic attractors. Trans. Amer. Math. Soc., 312:1–54, 1989.
[26] C. Pugh and M. Shub. Stably ergodic dynamical systems and partial hyperbolicity. J. Com-

plexity, 13:125–179, 1997.
[27] M. Viana. Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov ex-

ponents. Ann. of Math., 167:643–680, 2008.
[28] M. Viana and J. Yang. Physical measures and absolute continuity for one-dimensional center
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