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Abstract

Using various facts about principal bundles over a space, we give a unified treatment of several
theorems about the structure of stable separable continuous-trace algebras, their automorphisms,
and their AT-theory. We also present a classification of real continuous-trace algebras from the
same point of view.
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This paper collects together a number of observations about continuous-trace
C* -algebras, especially in the stable separable case. While I do not claim any
great originality for any of these remarks, I have tried to do everything from
the uniform point of view of the topology of bundles, which I have found
helpful over the years. Thus I hope these comments will be of some value to
others. I would like to thank the Centre for Mathematical Analysis, and in
particular the organisers of the August 1987 miniconference on operator al-
gebras and harmonic analysis, for helping to make this project possible. Parts
of Section 3 below were presented at the conference on operator algebras in
Santa Barbara, California, in 1986.

This research was partially supported by the National Science Foundation of the U.S.A., Grant
no. DMS-87-00551. The paper was written while the author was visiting the Centre for Mathe-
matical Analysis at the Australian National University, Canberra, July-August, 1987.
© 1989 Australian Mathematical Society 0263-6115/89 $A2.00 + 0.00

368



[2] Continuous-trace algebras 369

1. Complex stable continuous-trace algebras and their automorphisms

Recall that a C*-algebra A (for the moment we are working over C—we
will consider the real case separately, later) is said to have continuous trace
if A is Hausdorff and if the continuous-trace elements

{a € A+\ Trn(a) < oo for all n e A, and n >-> Tr n(a) is continuous on A}

are dense in A+. Fix once and for all a separable, infinite-dimensional Hilbert
space W and let 3J{%?) and X — 3£{%?) denote the algebras of bounded and
compact operators on %?, respectively. We shall need to rely constantly on
the following basic results of Dixmier and Douady ([5]—see also [4] for a
good exposition), which for simplicity we state only in the separable case,
though they basically also apply when A is paracompact.

THEOREM 1.1 (Dixmier and Douady [5]). Let Abe a separable continuous-
trace algebra with spectrum X. Then A = ro(sf), the algebra of sections
vanishing at infinity of a continuous field s/ of elementary C*-algebras over X.
To s/ is associated a characteristic class 8{A) e H3(X, Z) (Cech cohomology).
If A is stable, that is A = A®3£, then srf is locally trivial, with fibres = 3F.
In this case, A is determined, up to automorphisms fixing X pointwise, by
S(A). And any class 6 e H3(X,I) arises from a {unique) stable separable
continuous-trace algebra As over X.

This theorem makes possible the understanding of stable separable contin-
uous-trace algebras from the point of view of bundle theory. To fix notation,
let

U{D) = the unitary group of a C*-algebra D, with the norm topology,
U = {ue U{&{W))\u - 1 e JT},
% = Ui&ffi)), but with the weak operator topology,
py/ = flf/T, which may be identified with Aut(^) , the group of

'-automorphisms of X with the topology of pointwise
convergence, via the isomorphism u »-> Ad u,

& = 3B{3r)l3F{Sr\ the Calkin algebra.
It is well known that U, %', P%, U{&(%')), and U(0) all have the homotopy
types of countable CW-complexes. In fact, ^ [5, Section 11, Lemma 3] and
U{^{^)) [9] are contractible, P%( is a AT(Z,2) space (since it is the base
space of a locally trivial principal T-bundle with contractible total space)
and U and U{€) are classifying spaces for K~x and K°, complex A^-theory
(see for instance [8, III.7.10]; these facts go back to Atiyah and Janich). Also
note that via the identification of P% with A u t ^ , P% acts on U and on
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Now fix a second-countable locally compact space X and let 8 € H3(X, Z).
We may view 8 as a homotopy class of maps X —* K(l, 3) =; BP%f, or as
defining a principal P^-bundle

IP

X.

(It will be easiest to let P% act on Y on the right.) Then we may form the as-
sociated bundle s?s — Y$ Xp&Jzf, where P2< acts on 3? by *-automorphisms,
and we have A$ — T0(X,s/s). Thus knowledge of the C*-algebra As is equiv-
alent to understanding of the principal P^-bundle p: Ys —> X.

Now we may use this picture to describe the automorphisms of As and
to recover some results of Phillips and Raeburn [13]. It is clear that the
automorphisms of As correspond exactly to bundle automorphisms of stfs —>
X, and thus, since P% is the full *-automorphism group of the fibres of J^,
to the P^-equivariant self-homeomorphisms of Ys.

Next, introduce sheaves 1% and ^ over X by taking germs of P^-equi-
variant maps on 1^. More precisely, let ^Ad and P%/\& denote ^ and
viewed as /^-spaces via the right adjoint action:

u • v = v 'xuv, ue%f, i) e P%f the image of v G %.

For an open set V in X, we let

T(V,is) = {P^-equivariant continuous

Y(V,&S) = {P^-equivariant continuous maps p~x{V)

where p: Y$ —» X is the bundle projection. It is easy to see that ijj and ^
define sheaves over X, and in fact, they are locally isomorphic to ^ and
P%'. respectively, the sheaves of germs of continuous functions on X with
values in V and P ^ . For if V is sufficiently small, p~l{V) = V x P%, and
a P^-equivariant map on p~1(V) is determined uniquely by its values on
F x { l } .

Let Autx As denote the group of automorphisms of Ag which fix the spec-
trum X pointwise, and let Inn As denote the group of inner automorphisms
(= {Adu\u e U(M(As))}). Let Homeo^X denote the group of homeomor-
phisms $: X —> X with (\>*5 = 8.

THEOREM 1.2 (Phillips and Raeburn [13]). There are short exact sequences
of groups

(a) 1 -> Autx As -> A u t ^ - • Homeo^ X -+ 1,
(b) 1 -> I n n ^ -» A u t x ^ - • H2{X,Z) -» 1.
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PROOF, (a) Obviously any P^-equivariant homeomorphism of 1^ sends
fibres of p to fibres of p, and thus gives rise to a homeomorphism of X,
which fixes S since it lifts to the bundle Yg. So the only thing non-obvious
is the surjectivity. But if (p e Homeo<? X, then <f>* Ys is isomorphic to Yg as
a principal P^-bundle. Choose a P^-bundle isomorphism y/. We have a
commutative diagram

and 0 o ^ is a P^-equivariant homeomorphism of I j , lifting <f>.
(b) The second part of the theorem will follow easily from the following.

PROPOSITION 1.3. There is a short exact sequence of sheaves (of groups over
X)

where T is the sheaf of germs of continuous T-valuedfunctions. Furthermore,
there is a natural isomorphism

Autx As =

and Inn Ag is identified with the image in this group ofH°(X, Wg).

PROOF. The first statement is immediate from the exact sequence

1 -» T -»

and the fact that the adjoint action of P% on T is trivial so that a
equivariant map p~l{V) —> T factors uniquely through V.

For the second statement, suppose <j>: Yg —> Yg is P^-equivariant and
commutes with projection to X, that is, represents an element of AutxAg.
Then we may write <f>(y) = y • g(y), where g: Y —> P'U', since </>(y) and y lie in
the same fibre of p and P% acts simply transitively on fibres. Furthermore,
given v e P%, we have

• v) = <f>{y) • v (by equivariance of <f>)

= y • g(y)i) = (y • v) • v~lg(y)v,
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so g(y • v) = v~lg(y)v for y € Y, v e P%f, and g is equivariant for the right
adjoint action of P% on itself. Reversing the calculations, such a g defines
a P^-equivariant map <f>: Ys -> Ys by 4>{y) = y • g(y). Thus

Autx Ag = {P^-equivariant continuous maps Yg —»• P&Ad}-

On the other hand, a unitary of the multiplier algebra of As is represented
[2, Corollary 3.5] by a section of the bundle of copies of % associated to
p: Yg —> X, that is, by a continuous section X —> Y X/>g/Ad ̂ . Here P^" acts
via the left adjoint action on %. But given such a section s: x = p(y) i->
[(y, u)] and a choice of y € p~l(x), the M e ^ is uniquely determined by y,
that is, may be written as g(y) for g: Y -* % continuous, and the condition
[(y» g(y))] = i(y •*, g(y • *))] in the fibre product forces g(y -v) = v-1-g(y) =
v~lg(y)v, so g is equivariant for the right adjoint action of P ^ . Once again,
the argument is reversible, so U{M(AS)) = H°(X, S's) (as groups; to make the
isomorphism topological, one should use the strict topology on multipliers).

It is now easy to see that the action of unitary multipliers by inner auto-
morphisms is given by the natural map H°(X,Bs) -»• H°(X,&s)-

PROOF OF 1.2 (continued). To finish the proof, we consider the cohomol-
ogy exact sequence

H°(X,T) -» H°(X,gs) ^ H°(X,&i) - H\X,1_)

By 1.3, the image of a may be identified with Ian As sitting inside
In fact, H°(X,T) = C(X,J) is just the centre of U{M{AS)) = H°(X,gs) and
a = Ad, which kills the centre. Furthermore, because of the exact sequence
1 -> Z -» R -> T -* 1 and the fact that R is a fine sheaf, Hl (X, T) = H2(X, Z).
Finally, recall that Ŝ  is locally isomorphic to ^ [5, Section 11, Lemma 4],
this is a soft sheaf (since V is contractible), and since softness is a local
property, (§j$ is soft as well. Hence Hx(X,^s) — 1 and the theorem follows.

2. Twisted A^-theory

Given a second-countable locally compact space X and S e //3(Ar, Z), we
define the corresponding twisted K-groups of X by

K-l(X,d) = Ki(As),

where As is as defined above. When 8 is a torsion class and X is a finite CW-
complex, then there is a (non-unique) continuous-trace algebra Bs over X
with Dixmier-Douady invariant 8 and with all irreducible representations of
Bs of bounded finite degree; in fact, Bg is an Azumaya algebra over C(X) in
the usual sense of ring theory [7]. In this case there is a spectrum-preserving
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strong Morita equivalence between Bg and Ag, so our twisted ^-groups agree
with those denned by Donovan and Karoubi [6]—see also [12]. The twisted
AT-groups may be computed purely topologically using the following elemen-
tary proposition.

PROPOSITION 2.1. Suppose X is compact. There are natural identifications

and

Here [ , Yv denotes the space ofhomotopy classes of P%-equivariant maps,
that is, 7To(Map( , )p^), and Pf/ acts on U and on U($) via its action by
'-automorphisms ofJT.

PROOF. Recall that AT^^^) is the group of path-components of {u e U {A%) |
u- 1 € As), where Ag denotes the C*-algebra obtained from As by adjoining
an identity. (This is because As is stable—see, for instance, [15, Theorem
4.1].) But {M 6 U(Ag)\u - 1 € Ag} is obviously isomorphic to the group of
sections of the f/-bundle associated to p, that is, to sections X —> Yg xP^ U.
As in the proof of Proposition 1.3 above, such sections may be identified
with /'^'-equivariant maps 1^ —> U. This gives the calculation of K~l(X,S).
The calculation of Ko(Ag) is similar, using the identification of Ko(Ag) with
the path components of the unitary groups of @g = F(X, Ys *p& S) (see for
instance [11]).

Now we may rederive a result (Theorem 6.5) of [14]. We also obtain a
new way of controlling the differentials in the spectral sequence.

THEOREM 2.2. Let X be a finite CWJ-complex and 8 e H3(X, Z). There is
a strongly convergent spectral sequence

and in fact there is a commuting diagram of spectral sequences ofLeray-Serre,
Atiyah-Hirzebruch, G. Segal ([17, Proposition 5.2]) type

H"(X,K"{pt)) = > K*(X,6),

i I
HP(X,RK«(K(1,2))) >/?Ar*(yj) (representable K-theory).

Both spectral sequences are periodic of period 2 in q, with E^q = Ofor q odd,
and for q even, RK9(K(1,2)) = l[[c]], where the generator c corresponds to
the first Chern class.
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PROOF. The forgetful maps [YS,U(S)]P^ -+ [YS,U{&)], [YS,U]P* —
[Ys, U] induce natural maps K*(X,d) —» RK*{YS). The spectral sequence
compatible with this may be obtained by the method of [17, Proposition 5.2]
or merely by filtering Ys according to the skeletal filtration of X (cf. [1, Part
III, Section 7]. Over a single cell R" c X, we have p~l(Rn) = R" x P&,
so K*(R",6) = K*(R"). Similarly RK*{p-l(D"), p~l{dDn)) = K*(Rn) ®
RK°{P^). Thus we can argue exactly as in [1, Part III, Section 7].

For the final remark, recall P ^ ~ K(l, 2) ~ BJ, so that by the Atiyah and
Segal theorem [3], RK~X{P^) = 0 and RK°(P&) = R(T) ~ = l[t, r » ] ~, the
completion of the Laurent polynomial ring in one variable with respect to
the /-adic topology, where the augmentation ideal / is generated by c = t - 1.
This gives the formal power series ring Z[[c]]. (It is not necessary to invert
t = c + 1 since r 1 = (1 +c)~ ' = 1 -c + c2 .)

The usefulness of the diagram

HP{X,K"{pt)) > K*{X,8)

i I
HP(X,RK"(K(1,2))) >RK'(YS,S)

may be illustrated by the following example which was also considered in
[14, Section 6], from a somewhat different point of view. Let X — S3, let
x be the standard generator of H3(S3,1), and let S = Nx, N el. Then the
homotopy sequence of the fibration P% —> Y$ —> S3 reduces to

,2)) - nn{Ys) - nn(S
3) - nn

so Ys is 1-connected and we have an exact sequence

0 - n3(Ys) - Z -£» Z - ^(y,,) - 0.

Thus if y is the standard generator of H2(K(l,2),l), in the cohomology
spectral sequence H?(X, Hg(K(l, 2), Z)) => H*(YS, Z), we have only the single
differential c/3: E\A -» £P+3-«-2 sending l®.y G £°>2 to iVxOl € £3'° and thus
sending \®yn G f j ' 2 " to (Afw)^:®^"-1 G E\ln~2. From this one can compute
the differential J3 in the spectral sequence HP(X,RKl(K(l, 2))) =• RK*(YS).
We do not need the full result, but anyway, from the commutative diagram

Z s H°(S3,K3(pt)) —£-+ //3(53,K°(pt)) = Z

1 I
= H°(Si,RK2(K(Z,2))) - ^ — H3(S\RK°(K(1,2))) =
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we can deduce that di in the top spectral sequence is multiplication by N,
that is, cup-product with 8.

3. The real case

In this section we make a few remarks on real continuous-trace algebras,
amplifying comments in [10]. A real C*-algebra A is a Banach *-algebra over
R which is isometrically *-isomorphic to a norm-closed *-algebra of operators
on a real Hilbert space. Giving such an A is obviously equivalent to giving its
complexification Ac, together with the conjugation a of Ac of period 2. Al-
ternatively, one may specify the map a »-> <x(a)*, a complex-linear involutive
'-preserving antiautomorphism of Ac- Such involutions have been studied
intensively in connection with the theory of Jordan algebras of operators.

We call a real C-algebra A a real continuous-trace algebra if Ac is of
continuous trace. Such an algebra has certain obvious invariants, namely the
spectrum X = (AC)A , the involutive homeomorphism x induced on X by ex,
and the Dixmier-Douady class 8 € H3(X, Z). The following fact was pointed
out to me by Phil Green many years ago.

PROPOSITION 3.1. With notation as above, x*(d) = -8.

PROOF. This follows from the fact (due to Phil Green—see [12] for a
detailed exposition) that if B is any complex continuous-trace algebra, then
S(Bop) = -S(B), where Bop is B with multiplication reversed. We apply this
to B = Ac- The conjugation a induces an isomorphism B —• Bop which on
B = X is given by r, and thus r*(8(Bop)) = S(B), that is x*{-8) = 8.

COROLLARY 3.2. Suppose 8 € H3(X, Z) and 8 is not conjugate to -8 under
a homeomorphism of X. Then the complex stable continuous-trace algebra As
has no real structure. In particular this applies if X is an oriented 3-manifold
with no orientation-reversing homeomorphism, and 8 ^ 0 in H3(X, Z) = Z.

Now let <%R,<%C, and <%U be separable infinite-dimensional real, complex,
and quaternionic Hilbert spaces, respectively. Let 3£{%fa) = 3^,X(%c) =
S?', and ^ ( ^ H ) = ^ H be the corresponding algebras of compact operators.
We call A stable if A = A ®<%R\ here ® denotes of course the tensor product
of real C*-algebras. Observe that since %?c = ^R ®R C and JJH = ^ R ® R H, we
have 3? = 3Z* ® C , ^ H = <^R ® H, so all three of ^ , ^ r , and 5?H are stable.
These are, in a sense to be made precise shortly, the prototypes for all stable
separable real continuous-trace algebras.
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Now consider a stable separable real continuous trace algebra A. Then Ac
is stable in the sense of complex algebras, so Ac = As for 8 e //3(X,Z) as
above. The involutive homeomorphism x of X defines a closed subset Xx

which as we explained in [10] splits into a disjoint union of two closed sub-
sets XR and X». These are defined by the property that if x e Xx, so that x
defines an irreducible complex representation of Ac which is the complexi-
fication of an irreducible representation of A, then in one case the image of
A is isomorphic to Xn and in the other case it is isomorphic to J%». (This
makes sense since J%R and Xw both have complexification X, the latter since
(JTH)c = pfR ® H)c = X ®c (H ® R C ) S J <8>c M2 = M2{Jf) = X.) Fur-
thermore T acts freely on X - Xx. Thus A splits as an extension
(*) 0^Al-+A^A2®A3^>0,

where A\ is of complex type and A2 and Ay are of real and quaternionic types,
respectively. The notion of type may be formally defined by the property
that A is of real (respectively, complex, quaternionic) type if each irreducible
representation of A (on a real Hilbert space) has image isomorphic to XR
(respectively, X,XH). While the extension (*) may presumably be relatively
complicated to describe, we shall at least give a classification of the algebras
of pure type. The letter w is used in the theorem since it basically stands for
a Stiefel-Whitney class.

THEOREM 3.3. Let A be a stable separable real continuous-trace algebra
of real {respectively quaternionic) type, with {Ac)A = X. Then A = To{s/),
where sf is a locally trivial bundle of real C* -algebras over X, with fibres
isomorphic to XR {respectively XH). The bundle s/ —* X is determined by a
characteristic class w e H2{X, 22), and this determines A up to spectrum-fixing
isomorphism. The Dixmier and Douady invariant of Ac is given by 0{w),
where /?: H2{X,22) —» H3{X,1) is the Bockstein homomorphism {that is,
connecting homomorphism in the long exact cohomology sequence associated
to the short exact sequence 0—>2—>l->22—>0 of constant sheaves).

Conversely, given w e H2{X,12), there exist unique corresponding stable
separable real continuous-trace algebras A*, and A" of real and quaternionic
type, respectively, giving rise to the characteristic class w. These are related

Finally, 8 e H3{X, Z) arises as the Dixmier-Douady class of Ac, for some
stable separable real continuous-trace algebra A of real or quaternionic type, if
and only if 28 = 0. When this holds, the possible A's of the same type may be
parameterised {up to spectrum-fixing isomorphism) by p~x{8) c H2{X,Z2).

PROOF. The local triviality may be proved by exactly the same method
used in [5] in the complex case. Alternatively, we may begin with the result
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of Theorem 1.1 that Ac = ro(.#fc), where sfc is a locally trivial bundle of
complex C* -algebras over X, with fibres s 3?. The conjugation er, being an
isometric '-automorphism of Ac, must then be given by a continuous section
of the bundle of conjugations of the fibres of Ac of real (respectively, quater-
nionic) type. Now note that if we fix an identification of %?c with «#R <8>R C,
and thus a "standard" conjugation ~ of real type, then any other conjugation
of X must be of the form a: x •-+ uxu*, where u G % is determined up to
a scalar and uti = y G C in order to guarantee that a2 = id. This means,
since u~l = u* = a' (t the transpose) that u = yu', hence, since ' has only
the eigenvalues ±1, that y = 1 (real case) or y = - 1 (quateraionic case).
Thus the real conjugations correspond to symmetric unitaries modulo scalars
and the quateraionic conjugations correspond to skew-symmetric unitaries
modulo scalars. Now we can prove that A = ro(sf) with sf a locally trivial
bundle of the sort described in the theorem. Since sfc is locally trivial, it is
no loss of generality to assume Ac = CQ{X,^). Then by what we have seen,
a is given by a continuous map

/ : X -> {u e P%S\u' = ±u},

and
A = {<f> G C0(X,JT)\iKx) = f(x) • J(x) for all x G X}.

If (in the real case) / can be factored as gg', where g: X —• P^ is continuous,
then <f>i-* g(j> gives a spectrum-preserving isomorphism from Co(X,3fc) to A.
Now if / lifts to a map X —* {u G ^/\u' = u), then / has such a factorization
(by simple spectral theory), and as / always has such liftings locally (by local
triviality of the projection ^ —> P%f), we deduce that A comes from a locally
trivial field of elementary real C* -algebras. The quaternionic case is similar.

Thus we have proved the first part of the theorem, and the rest reduces
to bundle theory. The automorphism group of <%R is P(f — <f/{±l}, where
<f is the orthogonal group of ^ R with the weak operator topology, and {±1}
is of course the centre of <f. As in the complex case, & is contractible,
so Aut(^p) is a classifying space for Z2, that is, a K(Z2, l)-space. A sim-
ilar analysis applies in the quatemionic case, with & replaced by S'/i (the
infinite-dimensional symplectic group). Thus in both the real and quater-
nionic cases, srf comes from a principal bundle Y over X whose fibres are
topological groups with the homotopy type of a K(22,1). Thus the possibil-
ities for Y are given by [X,K(l2,2)] = H2(X,22). It is also clear that any
w e H2(X,Z2) defines a principal bundle Yw and then bundles of algebras
with fibres isomorphic to 3fa or 3H\\. The sections of these bundles which
vanish at infinity then give the algebras A* and A". The relation between
these comes from the familiar isomorphisms

JTH, JTH (8)H = Jfe ® (H<g>R H) £ JTR ® M4(R) = JTR.
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It remains to prove the statement about 5 = S(AC). Given Yw, realised
say as a bundle with fibres P&, the bundle Y# with fibres P%f is obviously the
associated bundle coming from the inclusion Ptf —• P2C. From the homotopy
point of view this is just the natural map of classifying spaces Bl2 -* BT.
But from the short exact sequence of abelian groups 1—• Z2 —» T i T -• 1 we
obtain a fibration BZ2 —> BJ -* BJ, and hence the Bockstein exact sequence

• • • - [X, K(2,2)] i> [X, K(l, 2)] - [X, K(l2,2)] A [X, K(l, 3)] - • • • .

So a principal P^-bundle with Dixmier-Douady class 8 has a reduction to
a principal /Vf-bundle if and only if 23 - 0. In this case, from the exact
sequence, the possible reductions are given by /?"' (<5). The quatemionic case
is homotopy-theoretically the same, so this completes the proof.

Note also that all the comments we made about automorphisms and K-
theory of Ag have obvious analogues in the real and quatemionic cases, with
the proofs the same as in Sections 1 and 2. We merely state the results.

THEOREM 3.4. Let X be a second-countable locally compact space, let w e
H2 (X, Z2), and let Aw denote either A%, or A". There are short exact sequences
of groups:

(a) 1 —> Autx Aw —> Aut^u, -+ Homeo^, X —> 1,
(b) 1 - I n n ^ -» A u t x ^ - Hl(X,l2) - 1.

THEOREM 3.5. Let X, w be as above and define K0~'{X,w) = KOj(A*).
(One can also define KSp~'(X,w) using A\^, but these are the same groups
with a degree shift of 4, by periodicity of the real Clifford algebras.) If X is a
finite CW-complex, there is a commuting diagram of Atiyah-Hirzebruch-type
spectral sequences

HP{X,KOq(pt))

>RKO*(YW).

Here the groups RKO^iBlrf are computed in [3].
We proceed now to the study of algebras of complex type, which is slightly

harder because of the presence of the involution x. This obviously is a nec-
essary ingredient in the classification.

THEOREM 3.6. Let A be a stable separable real continuous-trace algebra
of complex type, with (^4c)A = X and induced involution x. Let X = X/x.
Then A = V0{s/), where srf is a locally trivial bundle of real C*-algebras
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over X, with fibres isomorphic to Jf. The structure group of the bundle stf is
PW = 2f'/T, where W is the group of unitary or conjugate-unitary operators
on %c, with the weak operator topology. There are group extensions

1 - ^ g / _ > £ / " _ * z 2 - > 1, 1 - + P ^ ^ P g " - Z2 — 1,

where Z2 is the cyclic group of two elements, identified with Gal(C/R).
Thus stf is the JT-bundle associated to a principal P^'-bundle Y —> X.

The classifying element of this bundle in Hl(X,P%^) = [X,BP%('\ maps to
the classifying element of the two-fold covering p: X —• X defined by x in
Hx (X, Z2) = \X, BZ2]. Conversely, to any element 4> e [X, BP%f'] mapping to
the classifying element for x in Hl (X, Z2) is a stable separable real continuous-
trace algebra A^ of complex type with ( ( ^ ) c ) ~ = X and x as given. A^ is
unique up to spectrum-fixing *-isomorphisms. The Dixmier-Douady class of
(A^c is the homotopy class 8 e [X, BP%\ = H3(X, Z) defined by the pull-back
diagram

X

X —?-» BPW.
{Note that BPW, a K(1,3)-space, is a double cover ofBPW.)

PROOF. Once again, there are two ways of proving the local triviality. One
is by imitating the method of [5]. We give the other method, which is to make
use of the fact that Ac = ro(X,s/c), where s/c is a locally trivial bundle of
elementary complex C* -algebras. Now in the complex case, each irreducible
quotient of A is isomorphic to Jf, which has complexification = ^ @Jt.
So T acts freely and p: X —> X is a two-to-one covering. Since p is locally
trivial, to prove local triviality of A we may without loss of generality replace
X by an open set over which p is trivial, and assume X - X II X with x
interchanging the two copies. Then S, the Dixmier-Douady invariant of Ac,
is of the form (Si,-Si), Si e H3(X,1), so Ac = ASl ® A_Sl. Then A is
the fixed point algebra of a, and we claim projection onto the first factor
of ASl gives a real linear {A does not have a natural complex structure) *-
isomorphism A —• Agr Indeed, this is immediate since complexifying gives
a *-homomorphism Ac —>• {ASl)c which is injective and locally surjective,
hence an isomorphism. Thus A = ro( j / ) , with srf a locally trivial bundle
over ~X with fibres = ^ .

Next, observe that the structure group of the bundle J / is the group of
'-automorphisms of 3? viewed as a real algebra. Any such *-automorphism
induces a real-linear automorphism of the centre C of the multiplier algebra,
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that is, an element of the Galois group Gal(C/R). If this Galois element is
trivial, the automorphism is complex-linear, hence of the form Ad u for some
u G %. Otherwise it is conjugate-linear and must come from a conjugate-
unitary M G F . (The M can be recovered up to scalars from the action of the
automorphism on rank-one projections.) So this proves the second statement.

Finally, we must prove the statement about classification. The bundle sf
must arise from a principal PW-bundle over X, and since we need com-
patibility with the principal P^-bundle defining s/c over X, everything else
follows.

Note that given <f> e [~X, BPf/'] compatible with the covering p : I - » I
defined by x: X —> X with X = X/x, we can once again define twisted
AT-groups KR~'{X,x,<f>) = KO^A^). In fact, given x, there is always a
"trivial" choice for cf>, with A$ = CQ{X, T) ® 3?, where as in [16, Propo-
sition 2.2], C0(X,r) = {/ e C0(X)\f = fox}. This shows that the fi-
bration BP% —* BP%' —• B~Li splits, and is really just a twisted prod-
uct K(l,3) x K(l2,1), where the generator of ni(K(l2,1)) acts by - 1 on
nj(K(l, 3)). Thus to describe <f>, it is equivalent to give a class in 7/3(Ar,J2'),
where 3? is a sheaf on X locally isomorphic to Z. This may be viewed as a
twisted Dixmier and Douady class.
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