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THE BEHAVIOR OF FOURIER TRANSFORMS FOR
NILPOTENT LIE GROUPS

RONALD L. LIPSMAN AND JONATHAN ROSENBERG

Abstract. We study weak analogues of the Paley-Wiener Theorem for both
the scalar-valued and the operator-valued Fourier transforms on a nilpotent
Lie group G. Such theorems should assert that the appropriate Fourier trans-
form of a function or distribution of compact support on G extends to be

“holomorphic” on an appropriate complexification of (a part of) Ĝ. We prove
the weak scalar-valued Paley-Wiener Theorem for some nilpotent Lie groups
but show that it is false in general. We also prove a weak operator-valued
Paley-Wiener Theorem for arbitrary nilpotent Lie groups, which in turn es-
tablishes the truth of a conjecture of Moss. Finally, we prove a conjecture
about Dixmier-Douady invariants of continuous-trace subquotients of C∗(G)
when G is two-step nilpotent.

0. Introduction

The classical Paley-Wiener Theorems characterize the Fourier transforms of var-
ious classes of generalized functions of compact support on Rn, as classes of holo-
morphic functions on Cn with exponential growth in imaginary directions and sat-
isfying suitable growth or decay conditions in real directions, depending on the
class of functions or distributions considered. A long-standing problem in abstract
harmonic analysis has been to find analogues of these theorems with Rn replaced
by a non-commutative locally compact group. In searching for such analogues, one
immediately encounters four difficulties:
(0.1) It is not clear what the correct analogue of the Fourier transform should be

for a (generalized) function ϕ on a non-commutative locally compact group
G. In general there are two main candidates, the operator-valued Fourier
transform ϕ̂op : π 7→ π(ϕ), with π ranging over Ĝ, the set of equivalence
classes of irreducible unitary representations of G, and (when it makes sense)
the scalar-valued Fourier transform ϕ̂ : π 7→ Trπ(ϕ). However, depending on
the context, it might be appropriate to consider non-unitary representations
as well. (Still another candidate for a Fourier transform, based more on the
theory of deformation quantization than on representation theory, is discussed
in [ArnG]. We will not consider it in this paper.)

(0.2) Since different representations of G act on different Hilbert (or Banach or
Fréchet) spaces, and representations are only defined up to equivalence, it is
not clear how to study the variation of π(ϕ) with π.
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1032 RONALD L. LIPSMAN AND JONATHAN ROSENBERG

(0.3) In general, a “dual” object for a non-commutative group, for example Ĝ, has
“singularities,” due to the fact that representations tend to come in “series”
which can degenerate or run into one another. It is not clear what sort of
continuity, let alone holomorphicity, to expect of Fourier transforms at these
singularities.

(0.4) When G = Rn, Ĝ ∼= Rn has a natural complexification, Cn. For a general
locally compact group G, even leaving aside the problem of singularities, it is
not clear how to define an analytic structure on Ĝ.

Our objective in this paper is to discuss some methods for overcoming these diffi-
culties to obtain information about the Fourier transform in the case of nilpotent
Lie groups. In fact, connected and simply connected nilpotent Lie groups are the
non-commutative groups “closest in appearance” to Rn. Although we shall make
some progress in studying Fourier analysis on them, we are still very far from a
complete understanding.

Let G be a connected and simply connected nilpotent Lie group with Lie algebra
g. The Kirillov orbit method identifies Ĝ with the quotient space g∗/G of the dual
of g under the coadjoint action, even as a topological space [Br, Joy]. We denote
the irreducible representation attached to an orbit O (well-defined up to unitary

equivalence) by πO, or by πf if O = G · f . For ϕ ∈ C∞c (G) and π ∈ Ĝ, π(ϕ) is
a trace-class operator; furthermore, ϕ 7→ Trπ(ϕ) is a tempered distribution on G
(though not necessarily a measure, as it is for semisimple Lie groups). Thus for
ϕ ∈ C∞c (G), the scalar-valued Fourier transform of ϕ is well-defined as a map ϕ̂ :
g∗/G→ C, O 7→ Tr πO(ϕ). When G is nonabelian, the linear map ϕ 7→ ϕ̂ is never
injective, but one can hope to characterize its image as a space of functions on g∗/G
satisfying certain continuity and holomorphicity conditions. Such a characterization
we will call a strong scalar-valued Paley-Wiener Theorem for G. As far as we know,
there is almost nothing in the literature on such theorems, except in very special
cases.

The operator-valued Fourier transform ϕ̂op : ϕ 7→ π(ϕ) for a nilpotent Lie group
is harder to define as an actual operator-valued function, for the reason discussed
in (0.2) above. Nevertheless, the following comments are in order:
(0.5) If ϕ ∈ L1(G), ϕ̂op makes sense as an element of the C∗-algebra C∗(G) (the

universal C∗-algebra completion of L1(G)). Via the theory of realization of
C∗-algebras as algebras of sections of bundles (see e.g. [Fell] or [Ros]), ϕ̂op can
then often be interpreted as a section of a bundle whose fibers are C∗-algebras.
If (and only if) this bundle can be trivialized, then the operator-valued Fourier
transform of ϕ can be interpreted as an ordinary operator-valued function.
Even when this is the case, the precise form of the function will depend on
the trivialization of the bundle.

(0.6) If ϕ is a tempered distribution on G (and not necessarily an L1 function),

then for π ∈ Ĝ, π(ϕ) makes sense as an unbounded closed operator on the
Hilbert space of π, or else as a continuous operator on the Fréchet space of
C∞-vectors of the the representation. Both interpretations give the same
(unambiguous) notion of vanishing of ϕ̂op at a specific representation π.

(0.7) Since the map ϕ 7→ ϕ̂op from L1(G) to C∗(G) is injective, one can hope
to describe the operator-valued Fourier transform as a specific bijection from
certain spaces of functions or distributions on G to certain subspaces of C∗(G)
or spaces of operator-valued functions. Such a description we will call a
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FOURIER TRANSFORMS FOR NILPOTENT LIE GROUPS 1033

strong operator-valued Paley-Wiener Theorem for G. As far as we know,
such theorems have been proved only for Heisenberg groups and certain other
special cases: see [Ando], [Kum], and [Sev1, Sev2].

There seems to be very little hope for proving either scalar-valued or operator-
valued strong Paley-Wiener Theorems for arbitrary nilpotent Lie groups. However,
limited progress has been made in proving weaker substitutes. The papers [Moss]
and [Park], motivated in part by [ScSi], proposed and managed to prove certain
cases of:

0.8. Moss’s Conjecture. Let G be a connected and simply connected nilpotent
Lie group, and let ϕ be a distribution on G with compact support. If ϕ̂op vanishes

on a set of positive Plancherel measure in Ĝ, then ϕ = 0.

One of the goals of this paper is to prove this conjecture in the generality in
which we have stated it. (Moss and Park only studied the case where ϕ is given by
an L∞ function, and used methods which do not generalize to arbitrary nilpotent
Lie groups.) We will in fact prove in §2 something much more precise (see Corollary
2.15 below), which one can call a weak operator-valued Paley-Wiener Theorem for
G. Here we rely on fundamental work of Niels Pedersen [Ped1, Ped2], which asserts
that one can partition g∗/G into a finite union of algebraic varieties defined over
R, in such a way that the representations corresponding to the Kirillov orbits in
any given set of the partition can all be realized on a fixed Hilbert space in a
very convenient way. Once one does this, our weak operator-valued Paley-Wiener
Theorem asserts that for ϕ a distribution with compact support, π 7→ ϕ̂op(π) is
“holomorphic” over each variety in the partition, in the sense that a large collection
of its matrix coefficients extend to be analytic functions on the complexification of
that variety.

Our search for a proof of Moss’s conjecture led us also to try to prove:

0.9. Conjectured weak scalar-valued Paley-Wiener Theorem. For ϕ ∈
C∞c (G), the scalar-valued Fourier transform ϕ̂ extends to be holomorphic on a cov-
ering of the complexification of some algebraic variety defined over R which param-
eterizes the “generic” irreducible unitary representations of G.

Remark. A quick calculation for the Heisenberg group of dimension 2n+ 1 shows
that this couldn’t be true without passage to a covering, since the formula for ϕ̂
involves a factor of |ξ|−n, where ξ is the parameter giving the central character of
the representation. When n is odd, this factor would appear not to be holomorphic
in ξ, but we can rewrite it as (ξ2n)−

1
2 , which now extends to a holomorphic function

on the double cover of the punctured ξ-plane. �
In §1 of this paper, we prove this weak scalar-valued Paley-Wiener Theorem for

certain nilpotent Lie groups, and show how it leads to a proof of Moss’s conjecture
for these groups. More surprisingly, however, we show that Conjecture 0.9 is false
in general . The analogue of Moss’s conjecture also fails for the scalar-valued Fourier
transform: it is possible for ϕ̂ to vanish on a set of positive Plancherel measure in
Ĝ without vanishing identically. Curiously, this fact is related to the Paley-Wiener
Theorem for the classical Radon transform, as discussed in [Hel]. The analysis of
certain counterexamples, which is also in §1, shows however that there is a sense in
which Conjecture 0.9 is “close enough” to being true so that one can still deduce
proofs of some cases of Moss’s conjecture from an analysis of the scalar-valued
Fourier transform.
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Finally, in §3 of this paper, we study the problem raised in (0.5) above about
trivialization of the bundles of C∗-algebras which are implicit in the operator-valued
Fourier transform. For 2-step nilpotent groups, we are able to prove a conjecture
about this formulated by one of us in [RaRo, §4] and in [Ros, §3], thereby extending
results in [Echt, §6].

1. The scalar-valued Fourier transform

In this section we let G denote a connected and simply connected nilpotent
Lie group with Lie algebra g, and we study the scalar-valued Fourier transform
ϕ 7→ ϕ̂. Note that ϕ̂ is well-defined as a function on Ĝ if ϕ ∈ C∞c (G), but that also
(by the Plancherel Theorem) ϕ̂(π) is well-defined for almost all π (with respect to
Plancherel measure) if ϕ = ϕ1 ∗ ϕ2, ϕ1, ϕ2 ∈ L1(G) ∩ L2(G). In this latter case,
the exceptional null set of π’s where ϕ̂(π) is undefined will depend on ϕ.

A weak scalar-valued Paley-Wiener Theorem and Moss’s conjecture for
nilpotent Lie groups with square-integrable representations. Conjecture
0.9, the weak scalar-valued Paley-Wiener Theorem, would if true be a natural
generalization of the fact that the Fourier transform of ϕ ∈ C∞c (Rn) extends to
an entire holomorphic function on Cn. In this subsection we will observe that
a slightly more precise form of Conjecture 0.9 holds for nilpotent Lie groups with
square-integrable representations, and leads immediately to an easy proof of Moss’s
Conjecture (0.8) for these groups. Then in the next subsection we will carry out a
similar analysis for a much larger class of nilpotent Lie groups, and will find that
Conjecture 0.9 fails even for some two-step nilpotent groups.

First we recall some of the theory developed in [MoorWo], for which an alterna-
tive reference is [CorGr, §4.5]. Let G be a connected and simply connected nilpotent
Lie group. If π is an irreducible unitary representation of G, the projective kernel of
π is the set of elements of G mapped under π to scalar operators. This is always a
connected normal subgroup N of G, containing the center Z of G. The representa-
tion π is said to be square-integrable modulo N if the absolute values of its matrix
coefficients descend to L2 functions on G/N . By [MoorWo, Theorem 1], this is
equivalent to the condition that the Kirillov orbit corresponding to π be flat , i.e.,
of the form O = f + n⊥, where n is the Lie algebra of N , and also equivalent to the
condition that the alternating bilinear form Bf , defined by Bf (X, Y ) = f([X, Y ]),
should descend to a non-degenerate form on g/n.

1.1. Theorem. Let G be a connected and simply connected nilpotent Lie group
with Lie algebra g. Let Z and z be the centers of G and g, respectively, and suppose
G has irreducible unitary representations which are square-integrable modulo Z.
Fix Lebesgue measures on z and on g/z, and take Lebesgue measure on g to be the
product of these two. Relative to our fixed Lebesgue measure on g/z, for f ∈ g∗,
we can define P (f), the Pfaffian polynomial of the alternating bilinear form Bf ,
viewed as an alternating form on g/z. (As a function of f ∈ g∗, it only depends on

the image ḟ of f in g∗/z⊥ = z∗.) Let V (R) = {ḟ ∈ z∗ : P (f) 6= 0}, and let V (C)

be its complexification {ḟ ∈ z∗C : P (f) 6= 0}. Then V is a smooth affine algebraic
variety defined over R, connected in the (complex ) Zariski topology and with V (R)
Zariski-dense in V (C), and there is a natural map ψ : V (R) → g∗/G having the
following properties:

(a) ψ is injective, and the complement in g∗ of the inverse image of ψ(V (R)) has
Lebesgue measure zero.
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(b) The pull-back under ψ of some quasi-image in g∗/G of Lebesgue measure on
g∗ is quasi-equivalent to a smooth measure on V (R).

(c) For ϕ ∈ C∞c (G), v 7→ ϕ̂(ψ(v)) extends to a holomorphic function on a double
cover of V (C).

Furthermore, if ϕ ∈ C∞c (G) and if ϕ̂op vanishes on a set of positive Plancherel

measure in Ĝ, it follows that ϕ ≡ 0.

Proof. (i) Define ψ by sending ḟ ∈ V (R) to f+z⊥, where f lies in the inverse image

of ḟ in g∗. By [MoorWo], this gives a bijection from V (R) to the set of G-orbits in
g∗ corresponding to irreducible unitary representations which are square-integrable
modulo Z. The inverse image of ψ(V (R)) in g∗ is {f ∈ g∗ : P (f) 6= 0}, which
is obviously a Zariski-open subset of g∗, and is non-empty by the hypothesis that
Bf is non-degenerate on g/z for at least one f ∈ g∗. Properties (a) and (b) are
obvious. Since V is a non-empty Zariski-open subset of an affine space, defined by
the non-vanishing of the polynomial P which has real coefficients, it is a smooth
affine algebraic variety defined over R, connected in the (complex) Zariski topology
and with V (R) Zariski-dense in V (C). Furthermore, since V is Zariski-connected,
V (C) is connected in the usual Hausdorff topology (for a proof, see [Mum, Corollary
4.16] or [Shaf, Ch. VII, §2]). (Here it is essential to take complex points; V (R) may
not be connected in the usual Hausdorff topology.) By [MoorWo, Theorem 6], the

Plancherel measure on Ĝ corresponds under ψ to a constant multiple of the smooth
measure |P (ḟ)| dḟ on V (R). (The constant only depends on the dimensions of g

and z.)
(ii) Now let ϕ ∈ C∞c (G). We compute the distribution character of πψ(ḟ) on ϕ

using the inversion theorem for the abelian Fourier transform as in [MoorWo, pp.
458–459], and find that

(1.2) ϕ̂(ψ(ḟ )) = Trπψ(ḟ)(ϕ) =
c

|P (f)| ϕ̃(ḟ),

where ϕ̃ is the (abelian) Fourier transform of (ϕ ◦ exp)|z, and c is a constant de-

pending only on our normalizations of Lebesgue measures on g and z. Clearly ϕ̃(ḟ)

belongs to the Paley-Wiener class PW(z∗), and so |P (f)|ϕ̂ ◦ ψ(ḟ) extends to be
entire holomorphic on z∗C. Furthermore, the extra factor |P (f)| may be rewritten

as
(
P (f)2

) 1
2 , which makes sense as a holomorphic function on the double cover of

V (C), so (c) is satisfied. Finally, if ϕ̂ ◦ψ vanishes on a set of positive smooth mea-
sure in V (R), we deduce that its analytic continuation on the double cover of V (C)
vanishes on a set of positive smooth measure, and thus must vanish everywhere
since the double cover of V (C) is connected.

(iii) Now suppose ϕ̂op(π) = π(ϕ) vanishes for π in a set E of positive Plancherel

measure in Ĝ. Let λ be the left regular representation of G. Then for any g ∈ G,
π(λ(g)ϕ) = π(g)π(ϕ) also vanishes for π ∈ E, and in particular its trace is zero.

So λ̂(g)ϕ vanishes on E, and by (ii) above, λ̂(g)ϕ ◦ ψ ≡ 0. Now by the Plancherel
Theorem, we have

ϕ(g−1) =
(
λ(g)ϕ

)
(1) = const

∫
V (R)

λ̂(g)ϕ ◦ ψ(ḟ) |P (ḟ)| dḟ = 0

for all g, i.e., ϕ ≡ 0. �
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1.3. Corollary. If G has square-integrable representations modulo Z, then Moss’s
Conjecture (0.8) holds for arbitrary distributions ϕ of compact support on G.

Proof. It is sufficient to observe that Moss’s Conjecture for functions in C∞c (G)
implies the same conjecture for arbitrary distributions ϕ of compact support on G.
Suppose ϕ is such a distribution and ϕ̂op vanishes on a set E of positive Plancherel

measure. Then for any function θ ∈ C∞c (G), ϕ̂ ∗ θop = ϕ̂op · θ̂op also vanishes on
E. Since the convolution ϕ ∗ θ is in C∞c (G), we deduce from Theorem 1.1 that
ϕ ∗ θ = 0. This being true for all θ, ϕ = 0 as a distribution. �
Failure of the weak scalar-valued Paley-Wiener Theorem, but a proof
of Moss’s conjecture, for groups whose generic orbits are flat. We pro-
ceed now to examine what happens to the proof of Theorem 1.1 when G is a
connected, simply connected nilpotent Lie group whose generic orbits are flat, i.e.,
whose generic irreducible unitary representations are square-integrable modulo their
projective kernels, but for which the projective kernel varies depending on the rep-
resentation. As we shall see, the class of groups with this property includes all
two-step nilpotent Lie groups, and some higher-step groups as well.

1.4. Theorem. Let G be a connected and simply connected nilpotent Lie group
with Lie algebra g, and let 2d be the maximal dimension of G-orbits in g∗. Assume
that there is a non-empty G-invariant Zariski-open subset Ω of g∗ consisting of
flat orbits of dimension 2d. Then (after perhaps modifying Ω, keeping the same
conditions), there is a smooth quasi-projective variety W (R) parametrizing a set
of abelian ideals n / g of codimension 2d, such that Ω/G can be identified with a
Zariski-open subset V (R) of

E(R) = {(n, f) : n ∈W (R), f ∈ n∗, f ⊥ [g, n]}.

Here V (R) = Ω/G and E(R) are each the set of real points of a quasi-projective
algebraic variety defined over R, and Φ : E(R) → W (R) sending (n, f) to n is

an algebraic vector bundle. The Plancherel measure class on Ĝ corresponds to the
smooth measure class on V (R). For ϕ ∈ C∞c (G), the restriction of ϕ̂ to any fiber of
Φ extends to be holomorphic on a double cover of the complexification of that fiber.
If ϕ̂op vanishes on a set of positive Plancherel measure in Ĝ, then ϕ = 0. However,
it is possible for ϕ̂ to be non-zero on a set of positive Plancherel measure and yet
to vanish identically on another set of positive Plancherel measure.

Proof. Let U(R) be the Grassmann manifold of 2d-dimensional linear subspaces of
g∗, which by duality we can identify with the Grassmann manifold of 2d-codimen-
sional linear subspaces of g. As is well known, this can be identified with the
real points of a smooth projective variety U . The “Gauss map” Φ : Ω → U(R)
sending f ∈ Ω to the tangent space at f to the variety G · f is a morphism of
smooth varieties (since all the orbits in Ω have the same dimension 2d), and Φ is
constant on G-orbits by the assumption that the orbits in Ω are flat. The image of
Φ is contained in the set Y of annihilators of abelian ideals1 n in g of codimension
2d, and this is a closed algebraic subset of U(R) since being an abelian ideal is
equivalent to a finite number of (real) polynomial conditions. Cutting Ω down if

1They are ideals since the orbits are flat [CorGr, Theorem 3.2.3], and are abelian by the
condition that the orbits have maximal dimension [Dix2, Proposition 1.11.7].
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necessary to a Zariski-open subset (see for example [Shaf, Ch. I, §5, Theorem 6]),
we may suppose the image of Φ is a smooth variety W (R), which will consist of
annihilators of abelian ideals n in g of codimension 2d which are also of the form gf

for some f ∈ g∗. For any such n, one has square-integrable representations modulo
n corresponding to all f ∈ n∗ ∩ [g, n]⊥ for which the Pfaffian Pn(f) of the induced
form on g/n is non-zero. For any such pair (n, f), let ϕ ∈ C∞c (G) and O = f + n⊥.
We compute the distribution character of πO on ϕ using the inversion theorem for
the abelian Fourier transform as in [MoorWo, pp. 458–459], and find that

(1.5) ϕ̂(O) = Tr πO(ϕ) =
c

|Pn(f)| ϕ̃(f),

where ϕ̃ is the (abelian) Fourier transform of (ϕ ◦ exp)|n, and c is a constant
depending only on the normalizations of Lebesgue measures on g and n. (Note here
that for fixed O = f + n⊥, f is only defined up to an element of n⊥, but gives a
well-defined class in g∗/n⊥ = n∗, so that ϕ̃(f) is well-defined. Similarly, Pn(f) only
depends on the image of f in n∗.) Since the polynomial Pn is not identically zero,
there is a non-empty Zariski-open subset of (n/[g, n])∗ on which Pn(f) 6= 0, and the
character formula (1.5) is valid for all such f . Clearly ϕ̃(f) belongs to the Paley-
Wiener class PW(n∗), and so |Pn(f)|ϕ̂(G · f) extends to be entire holomorphic on

n∗C. By general Kirillov theory, Plancherel measure on Ĝ must correspond to a
smooth measure on V (R). From the character formula (1.5), if ϕ ◦ exp vanishes
identically on a set of n’s of positive measure in W (R), then ϕ̂ will vanish on a set
of positive Plancherel measure. This can happen without ϕ vanishing identically.
(A specific counterexample will be given in Example 1.8 below.)

Now let us verify Moss’s conjecture for G. By the proof of Corollary 1.3, it is
enough to verify the conjecture for ϕ ∈ C∞c (G). Assume that for such a ϕ, ϕ̂op

vanishes on a set E of positive Plancherel measure. By Fubini’s Theorem, there
is a set E1 of positive smooth measure in W (R) such that for each n ∈ E1, ϕ̂op

vanishes on a set of πO’s with O = f +n⊥ and with f ranging over a set of positive

Lebesgue measure in (n/[g, n])
∗
. Then for any g ∈ G and n ∈ E1, λ̂(g)ϕ vanishes

at f + n⊥ for f ranging over a set of positive Lebesgue measure in (n/[g, n])∗.
Since ϕ̃(f) is holomorphic on n∗C, (1.5) implies that the abelian Fourier transform
of (λ(g)ϕ) ◦ exp |n vanishes identically on (n/[g, n])∗ for all g ∈ G and all n ∈ E1,
and thus for such n and any g, the integral of (λ(g)ϕ) ◦ exp over any coset in n of
[g, n] vanishes by Fourier inversion. Since∫

[g, n]

(λ(exp−Y )ϕ) ◦ exp(X)dX =

∫
[g, n]

ϕ ◦ exp(Y +X)dX,

(the Jacobian of the change of variables that comes in is 1 since g is nilpotent),
the integral of ϕ ◦ exp over any coset in g of [g, n] vanishes. Let r = dim[g, n] =
dimW (R), and consider the r-dimensional Radon transform

ϕ̂ ◦ expRadon(σ, X) =

∫
σ

ϕ ◦ exp(Y +X) dY,

where σ ranges over r-dimensional subspaces of g. We have shown that

ϕ̂ ◦ expRadon(σ, X)
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vanishes identically for σ = [g, n], n ∈ E1. For f ∈ g∗, k ∈ N, define the polynomial

Pk(f) =

∫
g

ϕ ◦ exp(X)f(X)k dX.

If this vanishes for all k, then ϕ ≡ 0 (using Stone-Weierstrass, for example). By
the Paley-Wiener Theorem for the r-dimensional Radon transform [Hel, Ch. I,
Corollary 6.4], what we know is that the restriction of Pk to [g, n]⊥ vanishes for
each n ∈ E1. This is enough to imply that each Pk vanishes and thus that ϕ
vanishes. �

1.6. Proposition. The hypotheses of Theorem 1.4 are satisfied if G is a two-step
connected and simply connected nilpotent Lie group. In fact, for such a group, any
coadjoint orbit is flat.

Proof. Let g be a two-step nilpotent Lie algebra with center z, and let the corre-
sponding simply connected nilpotent Lie groups be G and Z. The two-step as-
sumption means [g, g] ⊆ z. If f ∈ g∗ and X ∈ g, then

(exp(tX) · f) (Y ) = f
(
e−t adXY

)
= f

(
Y − t[X, Y ] + t2

2 [X, [X, Y ]] + · · ·
)

= f (Y − t[X, Y ]) = (f − tf ◦ adX) (Y ),

so G · f = f + g⊥f and the G-orbit through f is flat, with Gf as the projective
kernel of the corresponding irreducible unitary representation. So the Zariski-open
subset consisting of orbits of maximal dimension (see [Dix2, Proposition 1.11.5])
will satisfy the hypotheses of Theorem 1.4. �

1.7. Remark. However, as observed in [MoorWo, p. 453], there is no upper bound
on the nilpotent length of a nilpotent Lie group with generic representations square-
integrable modulo the center, hence a fortiori modulo their projective kernels. So
Theorem 1.4 also applies to some higher-step groups.

1.8. Example. Here is a specific example of the situation in Theorem 1.4. Let g

be the free two-step nilpotent Lie algebra on 3 generators, with basis X1, . . . , X6,
where [X6, X5] = X3, [X6, X4] = X1, [X5, X4] = X2, and X1, X2, X3 are central.
(In [Ped3], this example is labelled N6N15.) Let G be the corresponding group.
The center z of g is spanned by X1, X2, X3. If f ∈ g∗ is “regular,” then gf is an
ideal containing z with codimension 1, and any such ideal arises in this way. Thus
we see that g∗reg/G can be identified with a Zariski-open subset of the total space
of a rank-two vector bundle over the set of possibilities for n = gf , which in turn
can be identified with the projective plane of one-dimensional subspaces of g/z. For
any such n, [g, n] is a two-dimensional subspace of z, and n and [g, n] determine
one another. In this case Pn is a linear functional on (n/[g, n])∗. From (1.5),
ϕ̂(f + n⊥)|Pn(f)| is (up to a constant) the abelian Fourier transform of ϕ ◦ exp |n.
Clearly one can choose ϕ 6= 0 ∈ C∞c (G) so that the support of ϕ ◦ exp does meet
some possible n but misses a set of n’s of positive measure in the projective plane of
one-dimensional subspaces of g/z. So vanishing of ϕ̂ on a set of positive Plancherel
measure does not imply vanishing of ϕ̂ everywhere.
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In fact, ∫
(n/[g, n])∗

ϕ̂(f + n
⊥)|Pn(f)| dḟ = c

∫
[g, n]

ϕ ◦ exp .

So we can compute in this way the integral of ϕ ◦ exp over any two-dimensional
subspace of z, in other words the Radon transform of ϕ ◦ exp |z, restricted only
to those two-planes in z which pass through the origin. Now we can relate the
Plancherel formula for G to the classical Radon inversion formula [Hel, Ch. I],
which says that

ϕ(1) =
−1

2π

∫
ω∈z

|ω|=1

d2

dp2

{∫
z∈z
z·ω=p

ϕ ◦ exp

}
p=0

dω.

Rewriting this in terms of ϕ̂ gives precisely the Plancherel formula for G. And a
correct formulation of a weak Paley-Wiener Theorem for the scalar-valued Fourier
transform on G resembles the Paley-Wiener Theorem for the Radon transform in
[Hel, Ch. I].

1.9. Remark. It should be clear from Theorem 1.4 and Example 1.8 that the weak
Paley-Wiener Theorem for the scalar-valued Fourier transform can fail whenever
the supports of the distribution characters of “generic” representations of G “ro-
tate around.” In the examples we’ve examined here, the support of the distribution
character has always been an ideal in g. While this is the case for low-dimensional
nilpotent Lie groups, Pukanszky [Puk, p. 413] has given an interesting 7-dimensional
example where the supports of the distribution characters of “generic” representa-
tions are quadric cones in g. The weak Paley-Wiener Theorem for the scalar-valued
Fourier transform definitely fails in such cases as well.

2. A Paley-Wiener Theorem for the

operator-valued Fourier transform

Pedersen’s models for the irreducible unitary representations. In an im-
portant series of papers ([Ped1], [Ped2], which built on ideas of Pukanszky), Ped-

ersen has given a detailed description of the fine structure of Ĝ, for a nilpotent Lie
group G, and he has elucidated very sharply the nature of the analytic objects that
appear in that structure. In this section we utilize these objects to prove a weak
version of the operator-valued Paley-Wiener Theorem.

The structure depends on a choice of a Jordan-Hölder basis for g which we
now fix: namely, a basis X1, X2, . . . , Xm for g with the property that gj =
span(X1, . . . , Xj) is an ideal in g for each 1 ≤ j ≤ m. Each f ∈ g∗ defines
a bilinear form Bf by Bf (X, Y ) = f([X, Y ]). The restriction of Bf to each gj

determines a set of jump indices

(2.1) Jjf =
{

1 ≤ k ≤ j : Xk 6∈ gk−1 + rad
(
Bf |gj

)}
,

and g∗ is the finite union of the sets Ωε where the m-tuple of sets of jump indices
(J1
f , . . . , J

m
f ) takes a fixed value ε. This is Pedersen’s (“fine”) stratification of g∗.

Each Ωε is G-invariant. The non-empty sets Ωε, of which there are only a finite
number, may be numbered as Ω1, . . . , Ωk so that Ω1 is Zariski-open in g∗ and

each successive Ωj is a Zariski-open set in g∗ \
(⋃

i<j Ωi
)

, hence is a real affine
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variety. Note that the last set in the stratification, Ωk, corresponds to the case
where ε = ∅, and thus to the one-dimensional unitary representations of G. For
any particular value of ε, all the orbits in Ωε have a fixed dimension 2d, which is
also the cardinality of Jmf , say Jmf = {j1 < · · · < j2d}. Then X1, X2, . . . , Xm can

be viewed as linear coordinates ξ1, ξ2, . . . , ξm on g∗, and by [Ped2, Lemma 1.6.1],
each G-orbit in Ωε contains a unique point where ξj1 , . . . , ξj2d each take the value
0. Thus the intersection Λε of Ωε with the hyperplane

{ξj1 = 0, . . . , ξj2d = 0}

is an affine variety parametrizing the G-orbits in Ωε. The first basic result that we
need is one of the main results of [Ped2]:

2.2. Theorem ([Ped2, Thm. 2.7.2]—see also [Ped2, Thm. 3.2.1]). Let O be an
orbit in g∗ of dimension 2d. Then there exists a unique irreducible unitary repre-
sentation π of G on L2(Rd) such that H∞π = S(Rd) and such that for every X ∈ g,
there exist d+ 1 polynomial functions aX,r (0 ≤ r ≤ d), with real coefficients, in d
variables “associated to O,” which satisfy

(2.3) dπ(X)f(t) = iaX,0(t)f(t) +
d∑
r=1

aX,r(t)
∂f

∂tr
(t) +

1

2

d∑
r=1

∂aX,r
∂tr

(t)f(t),

for all f ∈ S(Rd). The representation π is in the equivalence class of irreducible
unitary representations associated with the orbit O.

What is derived in [Ped2], but not stated explicitly there, is the dependence of
the polynomial functions aX,r on the affine parameters that determine O (or π).
That computation constitutes the heart of [Ped2, §5]. We summarize the results of
Pedersen’s computation in a second theorem.

2.4. Theorem. Let Ωε be any stratum in Pedersen’s stratification, and let 2d be the
dimension of orbits in this stratum. Parameterize the orbits in this stratum by the
cross-section Λε. Fix X ∈ g. Then the functions aλX,r of Theorem 2.1 (0 ≤ r ≤ d),
viewed as also depending on λ ∈ Λε, are polynomials in t with coefficients that are
rational functions of λ. The denominators of these rational functions do not vanish
on the complexification (Λε)C of Λε.

Proof. See [Ped2, §5] and [Ped4, Remark 1.4.5]. It is shown in fact that the denom-
inators of these rational functions may be expressed as products of certain explicit
Pfaffians, nonvanishing on (Λε)C. �
Two representative examples. Now we give two examples taken from [Ped3],
which will show how Theorems 2.2 and 2.4 can be applied to prove holomorphicity
of the matrix coefficients in the affine variables that parameterize the orbits in
a single stratum. While these examples are fairly straightforward, they illustrate
virtually all of the features that show up in the general case.

2.5. Example. Let g be the four-dimensional Lie algebra with Jordan-Hölder ba-
sis X1, X2, X3, X4, where [X4, X3] = X2 and [X4, X2] = X1, denoted by N4N1 in
[Ped3]. Then X1, X2, X3, X4 can be considered as linear coordinates ξ1, ξ2, ξ3, ξ4
on g∗, and the open stratum Ω1 is given by ξ1 6= 0. The corresponding jump indices
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are j1 = 2, j2 = 4. A cross-section for the orbits is given by Λ1, the intersection of
Ω1 with the hyperplane {ξ2 = ξ4 = 0}. Thus coordinates on Λ1 can be taken to be
ξ1 6= 0 and ξ3. In this case d = 1, and (2.3) becomes

dπ(Xj) =


iξ1, j = 1,

it1, j = 2,
1

2ξ1
(2iξ1ξ3 − iξ2

2 + it21), j = 3,

ξ1
∂
∂t1
, j = 4,

all acting on S(R). (Here t1 is the coordinate on R.)
Integrating, we see that

π(exp xjXj) =


eix1ξ1 , j = 1,

eix2t1 , j = 2,

exp
(
ix3

2ξ1
(2ξ1ξ3 − ξ2

2 + t21)
)
, j = 3,

translation by x4ξ1, j = 4,

all acting on L2(R).
Now let f1, f2 ∈ S(R). We can compute the matrix coefficient 〈π(g)f1, f2〉 for

fixed g ∈ G as a function of ξ1 and ξ3, after setting ξ2 = ξ4 = 0:

〈π(exp x1X1)π(expx2X2)π(exp x3X3)π(exp x4X4)f1, f2〉

=

∫
R

exp

(
i

(
x1ξ1 + x2t+ x3ξ3 +

x3t
2

2ξ1

))
f1(t+ x4ξ1)f2(t) dt

= eiξ1x1+iξ3x3

∫
R
ei(x2t+

x3
2ξ1

t2)f1(t+ x4ξ1)f2(t) dt.

The exponential factors and the factor involving f1 are clearly everywhere holo-
morphic in ξ1 and ξ3 away from {ξ1 = 0}, provided that f1 has (ordinary) Fourier

transform f̂1 ∈ C∞c (R) and thus f1 lies in the Paley-Wiener class PW(R) (so that
f1(t+ x4ξ1) is entire in ξ1). If f2 ∈ C∞c (R), there is no problem with convergence
of the integral, so the matrix coefficient is holomorphic in (Λ1)C.

Caution. Because of the factor f1(t + x4ξ1) in the integrand and the growth of

the factor exp
(
ix3t

2

2ξ1

)
in t for imaginary ξ1, the matrix coefficient will not be

holomorphic in ξ1 for arbitrary f1, f2 ∈ S(R). Indeed, if x1 = x2 = x3 = 0, the
matrix coefficient reduces to

〈π(exp x4X4)f1, f2〉 = g(x4ξ1),

where g = f1 ∗ f∗2 , f∗2 (t) = f2(−t). This is a Schwartz function but it may or may
not be real analytic, let alone entire.

2.6. Example. Let g be the five-dimensional Lie algebra with Jordan-Hölder basis
X1, X2, X3, X4, X5, where [X5, X4] = X3, [X5, X3] = X2, [X5, X2] = X1 and
[X4, X3] = X1, denoted by N5N6 in [Ped3]. Then, as in the preceding example,
X1, X2, X3, X4, X5 can be considered as linear coordinates ξ1, ξ2, ξ3, ξ4, ξ5 on g∗,
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and the open stratum Ω1 is given by ξ1 6= 0. The corresponding jump indices are
j1 = 2, j2 = 3, j3 = 4 and j4 = 5. A cross-section for the orbits is given by Λ1, the
intersection of Ω1 with the hyperplane {ξ2 = ξ3 = ξ4 = ξ5 = 0}. In this case d = 2,
and (2.3) becomes

dπ(Xj) =



iξ1, j = 1,

it1, j = 2,

it2, j = 3,

ξ1
∂
∂t2
, j = 4

1
2ξ1

(2ξ2
1
∂
∂t1

+ 2ξ1t1
∂
∂t2
− it22), j = 5,

all acting on S(R2).
Integrating, we see that

π(expxjXj)f(t1, t2) =



eix1ξ1f(t1, t2), j = 1,

eix2t1f(t1, t2), j = 2,

eix3t2f(t1, t2), j = 3,

f(t1, t2 + x4ξ1), j = 4,

ei(∗)f(t1 + x5ξ1, t2 + x5t1 + 1
2x

2
5ξ1), j = 5,

all acting on L2(R2). Here the factor in the exponential in the formula for

π(expx5X5)f(t1, t2)

is quite complicated:

(∗) = − x5

2ξ1
t22 −

x2
5

2ξ1
t1t2 −

x3
5

6

(
t2 +

t21
ξ1

)
− x4

5

8
t1 −

x5
5

40
.

Now let f1, f2 ∈ S(R2). The matrix coefficient 〈π(g)f1, f2〉, for fixed g ∈ G, as
a function of ξ1 (when ξ2 = ξ3 = ξ4 = ξ5 = 0), is:

〈π(expx1X1)π(exp x2X2)π(exp x3X3)π(expx4X4)π(expx5X5)f1, f2〉

=

∫
R

exp (i (x1ξ1 + x2t1 + x3t2 + (∗)))

· f1(t1 + x5ξ1, t2 + x4ξ1 + x5t1 + 1
2x

2
5ξ1)f2(t1, t2) dt1dt2

The exponential factor multiplied by the factor involving f1 is clearly everywhere
holomorphic in ξ1 away from {ξ1 = 0}, provided that f1 has (ordinary) Fourier

transform f̂1 ∈ C∞c (R2) and thus f1 lies in the Paley-Wiener class PW(R2). Again,
integration against the f2 factor presents no difficulty provided f2 ∈ C∞c (R2). So
for f1 ∈ PW(R2), f2 ∈ C∞c (R2), the matrix coefficient is holomorphic in {ξ1 6= 0}.
Holomorphicity of matrix coefficients in the orbital parameters. We shall
now deduce, as a consequence of Theorems 2.2 and 2.4, and a lemma which codifies
the behavior exhibited by the two examples in the last subsection, the holomorphic-
ity of the matrix coefficients of the irreducible unitary representations as a function
of the orbital parameters. First, we show that in fact the matrix coefficients coming
from the elements of the enveloping algebra are holomorphic. For the proof of the
main result we only need that assertion for the elements of the Lie algebra, but we
think the more general fact is interesting enough to warrant explicit mention.
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2.7. Proposition. For any element E ∈ U(g) (the universal enveloping algebra
of g) and for every pair f1, f2 ∈ S(Rd), the function

〈dπλ(E)f1, f2〉

extends to a (rational) holomorphic function of λ defined in the complexification
(Λε)C of Λε.

Proof. We apply Theorem 2.4 to the basis vectors {Xj}. Then it is clear that on
the complexification (Λε)C of the variety Λε, any infinitesimal matrix coefficient

〈dπλ(Xj)f1, f2〉

will be holomorphic (and rational) in λ. Since the matrix coefficient for any X ∈ g

will be a finite linear combination of these, the same is true of those matrix coeffi-
cients. Finally, from the form of the operators in (2.3), we see that the operators
dπλ(E), E ∈ U(g), involve only further products and derivatives of the polynomial
functions aX,r; and hence the matrix coefficients 〈dπλ(E)f1, f2〉 are also rational
with no poles in (Λε)C. �

In order to “integrate” the last result to obtain the main result, we need to com-
pute the one-parameter unitary group of operators corresponding to the operator
(2.3). This requires a further examination of Pedersen’s coefficient functions aλX,r,
but this time we focus more carefully on their dependence on the parameter t.

2.8. Lemma. Fix a stratum Ωε and the corresponding affine cross-section Λε.
Let 2d be the dimension of orbits in this stratum. Then there is an ordering of
the variables t1, . . . , td so that the coefficient functions aλXj ,r, 1 ≤ r ≤ d, viewed as

polynomials in t = (t1, . . . , td) ∈ Rd, have the following property: For any j, 1 ≤
j ≤ m, the operator dπ(Xj) is of the form

(2.9) dπ(Xj)f(t) = iaλXj ,0(t)f(t) +
d∑
r=1

aλXj ,r(t)
∂f

∂tr
(t),

where aλXj ,r(t) depends only on ti, i < r, 1 ≤ r ≤ d. (In particular, the terms
∂aλXj,r

∂tr
(t)f(t) in (2.3) vanish.)

Proof. Pedersen obtains the formula (2.3) by showing that one can write

ψXj = aλXj ,0(q) +
d∑
r=1

aλXj ,r(q)pr,

where ψXj is the restriction to the orbitO corresponding to λ of the linear functional
Xj on g∗, and where the p’s and q’s are canonical symplectic coordinates on O
which he constructs. Now recall that since the Xj ’s are a Jordan-Hölder basis for
the nilpotent Lie algebra g, we have [Xj , Xs] ∈ gs−1 for any j and s. In terms of
symplectic geometry, this means that{

ψXj , ψXs
}
∈ span

(
ψX1 , . . . , ψXs−1

)
,
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where { , } is the Poisson bracket on O. Now we need to carefully examine the
arguments in [Ped2, §5]. Pedersen divides the jump indices of (2.1) into two disjoint
ordered subsets, each containing d elements: the “low” jump indices l̄1 < · · · < l̄d
and the “high” jump indices k1 < · · · < kd. For simplicity of notation we drop the
bars on the l̄j’s and also drop the implicit λ’s everywhere. Then Pedersen shows
that ψXj is a scalar for j < l1, while ψXl1 = q1. Thus, using the facts that the q’s
Poisson-commute and that {pr, q1} = δr1, we have for any j:

{
ψXj , ψXl1

}
=

{
aXj ,0(q) +

d∑
r=1

aXj ,r(q)pr, q1

}
= aXj ,1(q) ∈ span

(
ψX1 , . . . , ψXl1−1

)
= scalar,

which is the case of the lemma for r = 1. To get the other cases, observe from
Pedersen’s inductive construction of the qr’s that

ψXlr = qr + polynomial(q1, . . . , qr−1),

and also that this marks the first occurrence of qr. So one obtains similarly

{
ψXj , ψXlr

}
=

{
aXj ,0(q) +

d∑
s=1

aXj ,s(q)ps, qr + polynomial(q1, . . . , qr−1)

}
= aXj ,r(q) + polynomial(q1, . . . , qr−1)

= polynomial(q1, . . . , qr−1),

which gives the general case of the lemma. �
2.10. Remark. It is evident, for example from [Ped4], that Lemma 2.8 could not be
true for a completely solvable group. It is the nilpotence that causes the latter terms
in (2.3) to disappear. Now the simpler form (2.9) of the infinitesimal operators of
the representation allows us to integrate them.

2.11. Proposition. Consider a differential operator D on S(Rd) ⊆ L2(Rd) of the
form

Df(t) = ip(t)f(t) +
d∑
r=1

qr(t)
∂f

∂tr
(t),

where p and the qr, 1 ≤ r ≤ d, are real polynomial functions, and qr(t) depends
only on tj , j < r. Then for any s ∈ R,

esDf(t) = eih(s, t)f(t+ k(s, t)),

where h and k are polynomials whose coefficients are explicit polynomials in the
coefficients of p and the qr, 1 ≤ r ≤ d. The polynomial kr(s, t) satisfies kr(0, t) = 0,
and only involves those tj’s with j < r.

Proof. Let f ∈ S(Rd) and set g(s, t) = esDf(t). Then g satisfies the Cauchy
problem

(2.12)

{
g(0, t) = f(t),
∂g
∂s = Dg(s, t).
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Since the solution of this problem is unique, it is sufficient to verify that there is a
solution of (2.12) of the form

g(s, t) = eih(s, t)f(t+ k(s, t)),

with kr(0, t) = 0 for all r, and kr(s, t) only involving those tj ’s with j < r.
Substituting the expression for g in (2.12), we see that if there is such a solution, we

need to take h(0, t) = 0. Furthermore, equating coefficients of eihf and of eih ∂f∂tr
in (2.12) gives the partial differential equations{

∂h
∂s = p(t) +

∑
r qr(t)

∂h
∂tr
,

∂kr
∂s = qr(t) +

∑
j<r qj(t)

∂kr
∂tj

.

These equations can be solved by a recursion technique. Write{
h(s, t) = sp(t) + s2h2(t) + s3h3(t) + · · · ,
kr(s, t) = sqr(t) + s2kr2(t) + s3kr3(t) + · · · .

Substituting these expansions into the partial differential equations, one can solve
uniquely for the hj’s and the krj ’s. Furthermore, each power series in s termi-
nates after finitely many terms, so that one gets polynomials of the desired form.
(This was the method for computing (∗) in Example 2.6.) It is also clear that the
coefficients of h and of kr are (real) polynomials in the coefficients of p and the
qr, 1 ≤ r ≤ d.

For example, when d = 1, the formula becomes

exp

(
s

(
ip(t) + q

d

dt

))
f(t)

= exp

(
i

(
sp(t) +

qs2

2
p′(t) +

q2s3

3!
p′′(t) +

q3s4

4!
p′′′(t) + · · ·

))
f(t+ qs),

which appeared in Example 2.5. �
Now we are ready for the main result.

2.13. Theorem. Let Ωε be any stratum in Pedersen’s stratification of g∗, and let
2d be the dimension of the orbits in that stratum. The affine variety Λε param-
eterizes the representations corresponding to the G-orbits in Ωε, all of which are
realized in L2(Rd). Then for any fixed x ∈ G, and for any pair f1 ∈ PW(Rd),
f2 ∈ C∞c (Rd), the matrix coefficient

〈πλ(x)f1, f2〉

extends to a holomorphic function of λ ∈ (Λε)C.

Proof. First we show that for f1 ∈ PW(Rd), the function πλ(x)f1(t) extends to be
holomorphic in t ∈ Cd, x ∈ GC, and λ ∈ (Λε)C. To prove this, write

πλ(x)f1(t) = πλ(expx1X1)πλ(expx2X2) · · ·πλ(expxmXm)f1(t),
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where x = (x1, . . . , xm) ∈ Rm gives real analytic (in fact, polynomial) coordinates
on G. We prove by descending induction on j that

πλ(expxjXj) · · ·πλ(expxmXm)f1(t)

extends to be holomorphic in t ∈ Cd, xj , . . . , xm ∈ C, and λ ∈ (Λε)C. To start the
induction, f1 is entire in t since it is in the Paley-Wiener class. The inductive step
follows immediately from Proposition 2.11. To get the conclusion of the theorem,
observe that integration against f2 ∈ C∞c (Rd) will (since f2 has compact support)
yield a smooth function of x ∈ G and λ ∈ (Λε)C, holomorphic in λ. �
2.14. Remark. The proof of Theorem 2.13 reveals that the matrix coefficients of
the operators arising from group elements are holomorphic, but unlike those arising
from the enveloping algebra, they are not rational. As we saw in Example 2.5, it
is also necessary to place further restrictions on f1, f2 ∈ S(Rd) in order for the
corresponding matrix coefficient to be holomorphic.

2.15. Corollary. Let ϕ be a distribution on G with compact support. Then for
any stratum Ωε, the operator-valued function

πλ(ϕ) =

∫
G

πλ(x) dϕ(x)

is weakly holomorphic on (Λε)C, in the sense that 〈πλ(ϕ)f1, f2〉 is holomorphic for
any pair f1 ∈ PW(Rd), f2 ∈ C∞c (Rd).

Proof. This is almost immediate from Theorem 2.13. For any pair f1 ∈ PW(Rd),
f2 ∈ C∞c (Rd), the function

〈πλ(ϕ)f1, f2〉 =

∫
G

〈πλ(x)f1, f2〉 dϕ(x)

is the pairing of 〈πλ(x)f1, f2〉, which is a smooth function of x and λ, holomorphic
in λ for fixed x, against a distribution of compact support in x. Hence the result is
still a holomorphic function of λ. �
Proof of Moss’s conjecture. We conclude the section now with the proof of
Moss’s conjecture in the generality of an arbitrary simply connected nilpotent Lie
group.

2.16. Theorem. Let G be a simply connected nilpotent Lie group. Suppose that
ϕ is a distribution of compact support on G with the property that ϕ̂op vanishes on

a set of positive Plancherel measure in Ĝ. Then ϕ = 0.

Proof. We apply Corollary 2.15 to the top stratum Ω1. The result is that ϕ̂op

is weakly holomorphic on (Λ1)C. Now Ω1 has full Lebesgue measure in g∗, so

Λ1 corresponds to a set of full Plancherel measure in Ĝ, and thus ϕ̂op is, by the
hypothesis of the theorem, zero on a set of positive measure in Λ1. That can only
happen if ϕ = 0. Indeed, any matrix coefficient of ϕ̂op with respect to a function in
PW(Rd) and a function in C∞c (Rd) will be a holomorphic function on (Λ1)C and
zero on a set of positive measure in Λ1. But the variety (Λ1)C is connected (by the
same argument as in the proof of Theorem 1.1), and therefore the matrix coefficient
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must vanish on Λ1. Since the spaces C∞c (Rd) and PW(Rd) are dense in L2(Rd), the
operator ϕ̂op itself is zero on Λ1. Now by an application of the Plancherel Theorem
on G we have that for any test function ψ ∈ D(G),

〈ϕ, ψ〉 =

∫
Λ1

Tr
[
ϕ̂op(π)ψ̂op(π)∗

]
dµ(π)

= 0 ∀ψ.

That is, ϕ = 0. �

3. Vanishing of the Dixmier-Douady class for

continuous-trace subquotients of the

group C∗-algebra of a nilpotent Lie group

Statement of the problem and the conjecture. In the introduction to this
paper, we already indicated that the operator-valued Fourier transform of a function
ϕ ∈ C∞c may be viewed as an element of the group C∗-algebra C∗(G). In general
this is a very complicated object; for a nilpotent Lie group, about the most one
knows about C∗(G) is that it is a (generalized continuous-trace) liminary C∗-algebra
with a finite composition series into continuous-trace subquotients [Dix1]. Recall
here that continuous-trace C∗-algebras have Hausdorff spectrum and are the basic
building blocks for all type I C∗-algebras [Fell]. By the basic theory of Dixmier-
Douady, a stable continuous-trace C∗-algebra A, or in fact any ℵ0-homogeneous
continuous-trace C∗-algebra A with finite-dimensional spectrum, is the algebra of
sections of a locally trivial bundle of algebras over the locally compact Hausdorff
space Â, with fibers isomorphic to the compact operators on an infinite-dimensional
separable Hilbert space. Such a bundle is trivial if and only if its Dixmier-Douady
invariant , which lies in H3(Â, Z), vanishes. So to understand the operator-valued
Fourier transform on a nilpotent Lie group, we necessarily encounter:

3.1. Question. Can C∗(G) have a continuous-trace subquotient with non-zero
Dixmier-Douady invariant?

If the answer is yes, then the non-trivial bundle structure of this subquotient
is an essential feature in understanding the behavior of operator-valued Fourier
transforms. If the answer is no, then it makes sense to understand the operator-
valued Fourier transform (or at least its image in any continuous-trace subquotient)

as an operator-valued function on Ĝ. In [RaRo, §4] and in [Ros, §3], we raised this
question and conjectured the following:

3.2. Conjecture. If G is a connected nilpotent Lie group, every continuous-trace
subquotient of C∗(G) has vanishing Dixmier-Douady invariant.

We showed in [RaRo, §4] and in [Ros, §3] this is not the case for connected type
I solvable Lie groups, nor is it the case for disconnected Lie groups in which the
connected component of the identity is abelian and has finite index in G, but we
gave some evidence for the truth of the corresponding conjecture for linear semi-
simple Lie and p-adic groups.

Proof of the conjecture for two-step nilpotent Lie groups. Using an analysis
related to our study in §1 of the Fourier transform for nilpotent Lie groups with

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1048 RONALD L. LIPSMAN AND JONATHAN ROSENBERG

“generically flat” orbits, we will now prove Conjecture 3.2 for two-step nilpotent
Lie groups. The argument is interesting in that semi-simple Lie groups play an
essential role in the proof.

3.3. Lemma. Let G be any two-step nilpotent Lie group with Lie algebra g. If
A is a subquotient of C∗(G) with Hausdorff spectrum, then there is no convergent

sequence πn → π in Â such that each πn corresponds to an orbit On in g∗ of
dimension 2r but such that π corresponds to an orbit O in g∗ of dimension different
from 2r.

Proof. Recall that Ĝ is canonically homeomorphic to the “integral” part of g∗/G.
(“Integrality” is a vacuous condition if G is simply connected.) Now the orbits On
cannot converge to an orbit of bigger dimension (since the subset of g∗ consisting
of orbits of dimension ≤ 2r is Zariski-closed (cf. [Dix2, Proposition 1.11.5]) and
thus closed in the Hausdorff topology), so we have to rule out the possibility that
O could have strictly smaller dimension than 2r. However, if this is the case and
πn → π in Ĝ, then in fact the sequence {πn} must have a whole affine space of

limit points in Ĝ. (This is clear since all the G-orbits are flat; cf. Proposition 1.6.)

Since Â is Hausdorff and is a locally closed subset of Ĝ, we get a contradiction. �

3.4. Theorem. Let G be any connected two-step nilpotent Lie group with Lie al-
gebra g. If A is a subquotient of C∗(G) with continuous trace, then A has vanishing
Dixmier-Douady invariant (in other words, is Morita-equivalent to a commutative
C∗-algebra).

Proof. By Lemma 3.2, each connected component of Â consists only of representa-
tions corresponding to coadjoint orbits of some fixed dimension. So we may as well
assume Â consists only of representations corresponding to coadjoint orbits of some
fixed dimension 2r. (In fact in the two-step case, the orbits of fixed dimension 2r do
indeed give a continuous-trace subquotient of C∗(G), as pointed out in Corollary
6.3.4 of [Echt].)

Since the C∗-algebra of any two-step nilpotent Lie group is a quotient of the
C∗-algebra of the universal two-step nilpotent Lie group Gn on some number n of
generators (with Lie algebra gn having a basis x1, . . . , xn, zij = [xi, xj ], 1 ≤ i < j ≤
n, where the zij ’s span the center zn), it is enough to consider this case. Note that
for any f ∈ g∗n, the alternating bilinear form Bf only depends on the restriction of
f to zn, and descends to an alternating form ωf on gn/zn ∼= Rn. Also, knowledge
of ωf is equivalent to knowledge of f |zn , since the matrix entries of ωf are

(ωf )ij = Bf (xi, xj) = f([xi, xj ]) =


f(zij), i < j,

0, i = j,

−f(zji), i > j,

and the zij are a basis for zn. The orbit Gn · f is f + (radBf )⊥, whereas the
set of functionals giving rise to the form ωf is f + z⊥n . Thus ωf only depends on
the G-orbit of f , and the map G · f 7→ ωf identifies the subspace Λn, r of g∗n/Gn
consisting of orbits of dimension 2r with the total space of a vector bundle of rank
n − 2r over the space Xn, r of skew-symmetric bilinear forms on Rn of rank 2r,
1 ≤ r ≤

[
n
2

]
. Since any such form is conjugate under the action of GL(n, R) to the
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standard form given by  0 Ir 0
−Ir 0 0

0 0 0

 ,

one finds that

Xn, r
∼= GL(n, R)/

{(
A B
0 D

)
: A ∈ Sp(2r, R), D ∈ GL(n− 2r, R), B arbitrary

}
,

which (if ' denotes “is homotopy-equivalent to”) gives

Λn, r ' Xn, r ' O(n)/U(r) ×O(n− 2r) ' SO(n)/U(r) × SO(n− 2r).

This is a quotient of a connected compact Lie group by a connected subgroup of
maximal rank, and thus is diffeomorphic to the quotient of a complex semisimple
group by a parabolic subgroup, in other words, a generalized flag variety. It thus (by
Bruhat decomposition) has a cell decomposition with only even-dimensional cells,
and in particular its odd-dimensional cohomology vanishes. So H3(Xn, r, Z) = 0
and the Dixmier-Douady invariant vanishes. �

The analysis in §1 of nilpotent Lie groups G having generic representations
square-integrable modulo their projective kernels suggests that one can do a sim-
ilar analysis to prove vanishing of the Dixmier-Douady invariant for the “large”
continuous-trace ideal in C∗(G).
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