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The Main Theorem and Examples

Connections

One of the most basic notions in differential geometry is that of a
connection. There are many equivalent points of view, but for our
purposes we’ll define connections this way. Let M be a C∞

manifold and p : E → M a smooth vector bundle. Recall that a
section of E is a (smooth) map s : M → E with p ◦ s = idM . If E
is a trivial bundle, then a section s is just a C∞ (vector-valued)
function on M and we can take directional derivatives of s. A
connection is a way of doing this on a nontrivial bundle.

In other
words, if Γ(E ) is the space of sections of E and X (M) is the space
of vector fields on M, a connection is a bilinear map

∇ : X (M)× Γ(E )→ Γ(E ), (X , s) 7→ ∇X (s),

which is C∞(M)-linear in the variable X , i.e., ∇fX (s) = f∇X (s),
and satisfies the Leibniz rule for derivatives.
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Connections (cont’d)

This says that

∇X (f · s) = (X · f ) · s + f∇X (s). (1)

Now suppose that a metric is given on E , i.e., a smoothly varying
family of inner products on the fibers p−1(x) of E so that we have
a pairing

〈 , 〉 : Γ(E )× Γ(E )→ C∞(M), (s, s ′) 7→ 〈s, s ′〉.

We say ∇ is compatible with the metric if

X · 〈s, s ′〉 = 〈∇X s, s ′〉+ 〈s, ∇X s ′〉. (2)

This means that the inner product of parallel sections
(∇X s = 0 ∀X ) is constant.
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Levi-Civita’s Theorem

Now suppose E = TM is the tangent bundle of M. That means
Γ(E ) = X (M), so we can define the torsion of a connection ∇,

T (X ,Y ) = ∇XY −∇Y X − [X ,Y ]. (3)

This is a bilinear map X (M)×X (M)→ X (M).

Theorem (Levi-Civita, 1917)

On a Riemannian manifold M, there is one and only one
torsion-free connection on TM compatible with the metric.

The connection in this theorem is called the Levi-Civita connection.
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Riemannian Curvature

Levi-Civita’s Theorem gives an easy way to define curvature. On a
Riemannian manifold, we let ∇ be the Levi-Civita connection, and
then the Riemann curvature tensor is

R(X ,Y ) = ∇Y∇X −∇X∇Y −∇[Y ,X ]. (4)

Thus R ≡ 0, i.e., the metric is flat ⇔ ∇ is a Lie algebra
homomorphism. It’s a nontrivial fact that R is a tensor, i.e.,
(X ,Y ,Z ) 7→ R(X ,Y )Z is a section of Hom(TM⊗3, TM).

Jonathan Rosenberg Connections for noncommutative tori



Review of Differential Geometry
Vector Fields and Connections in NCG

The Main Theorem and Examples

Noncommutative Geometry

What we want to do now is to generalize the above to a
noncommutative setting. We immediately run into two problems:

1 What is a non-commutative manifold?

2 Assuming we know what a non-commutative manifold is,
what is a vector field on such an object?

To answer 1 , we’ll define a (compact) noncommutative manifold
to be given by a “nice” Fréchet subalgebra A∞ of a unital
C ∗-algebra A. (The prototypes are noncommutative tori, to be
discussed shortly.) The sections of a (smooth) vector bundle are
replaced by a finitely generated projective A∞-module. This is
motivated by the fact that in the commutative case, Γ(E ) is such a
module over C∞(M).
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Notions of Vector Fields

When it comes to vector fields, it is even less clear how to proceed.
In the commutative case, we have three equivalent definitions:

1 first-order linear differential operators annihilating the
constants,

2 (local) derivations of C∞(M), and

3 sections of the tangent bundle.

In the noncommutative case we could consider derivations of A∞,
the analogue of 2 , but there is no reason why this should agree
with 3 . In any event, the space of derivations is a Lie algebra, but
not necessarily a projective A∞-module. So here we propose a
novel solution: use both definitions at once!
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Connes’ Definition of Connections

In his famous 1980 Comptes Rendus paper, Connes proposed using
(1) as a definition of connection in the noncommutative case. Here
we replace s by an element of a projective A∞-module (we’re using
left modules; Connes used right modules) and take for X an
element of g, the Lie algebra of a group G acting on A∞. Such
X ’s are of course derivations, and can be viewed as very special
vector fields. But we have to toss aside the analogue of
C∞(M)-linearity in the variable X , since the space of X ’s isn’t an
A∞-module. Connes also showed that (4) still works as a definition
of curvature, and still has tensorial properties.
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Noncommutative Tori

For any reasonable definition of noncommutative manifold, basic
examples should be the noncommutative tori. Fix an n × n
skew-symmetric matrix Θ and let AΘ be the universal C ∗-algebra
on unitaries Uj , j = 1, · · · , n, with UjUk = exp(2πΘjk)UkUj . This
algebra carries a gauge action of Tn given by t · Uj = tjUj , and the
smooth vectors A∞Θ for this action look like S(Zn) with
convolution twisted by a 2-cocycle. The algebra A∞Θ is our NC
substitute for C∞(Tn). The infinitesimal generators of the gauge
action are ∂j with ∂j(Uk) = δjk 2π i Uk . From now on we’ll fix Θ
and drop the ∞ notation from A∞Θ , since we only care about
“smooth functions.”
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Vector Fields on NC Tori

We are now working on AΘ with the basic ∗-derivations ∂j . Since
tori are parallelizable, we would expect the “tangent bundle” on
AΘ to be trivial, so define

X = the free rank-n AΘ-module on ∂1, · · · , ∂n.

We also define

D = the ∗-derivations of AΘ.

These correspond to definitions 2 and 3 of a vector field on an
ordinary manifold.
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The Basic Problem

We’re now ready to define a Riemannian metric on AΘ. We define
this to be an AΘ-valued inner product on X making it into a
(pre)Hilbert C ∗-module. (The idea of doing this is due to Rieffel.)
But we also want the inner product to be “real” on “real” vector
fields, so we add the requirement

〈∂j , ∂k〉 = 〈∂j , ∂k〉∗ = 〈∂k , ∂j〉. (5)

The big problem is that the axiom (1) for a connection only makes
sense when X is a derivation, i.e., when X ∈ D, though we need s
to lie in an AΘ-module, i.e., s ∈ X .
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Inner Derivations

What if X = ad a is an inner derivation? The axiom for a
connection would require

∇ad a(bs) = [a, b]s + b∇ad a(s),

so
∇ad a ◦ b − b∇ad a = [a, b].

This forces ∇ad a to be multiplication by a, up to something
central.
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The Theorem of Bratteli-Elliott-Jørgensen

Theorem (Bratteli-Elliott-Jørgensen)

Let Θ be “generic” (in a specific number-theoretic sense). Then
D/{inner derivations} is just the linear span of ∂1, · · · , ∂n. (Also,
the center of AΘ is just the scalars.)

Note: In this case, there is a canonical splitting Inn AΘ → AΘ given
by ad a 7→ a− τ(a), where τ is the (unique) normalized trace.
Therefore in the situation of the Theorem we will define ∇ad a to
be multiplication by a− τ(a), and then ∇ is determined once

∇1 = ∇∂1 , · · · ,∇n = ∇∂n

are given.
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Statement of the Theorem

Theorem (NC Levi-Civita)

Let Θ be generic in the sense of the B-E-J Theorem. Fix any
Riemannian metric satisfying (5) on XΘ = X (AΘ). Then there is a
unique connection

∇ : DΘ ×XΘ → XΘ

compatible with the metric, normalized as we’ve explained on inner
derivations, and satisfying the symmetry condition

∇j∂k = ∇k∂j .

(This is the “torsion-free” condition applied to ∂1, · · · , ∂n. Torsion
doesn’t make sense for inner derivations.)
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Sketch of Proof

Define

〈∇j∂k , ∂`〉 =
1

2
[∂j〈∂k , ∂`〉+ ∂k〈∂`, ∂j〉 − ∂`〈∂j , ∂k〉] . (6)

Then the axioms are all satisfied. In the other directions, the
axioms force (6).
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The Curvature Tensor

Now that we have an analogue of Levi-Civita’s Theorem, we can
define the curvature for a Riemannian metric just as in the classical
case, using the standard definition.

Proposition

R(X ,Y ) ≡ 0 if either X or Y is an inner derivation.

Proof.

Direct calculation.

Thus the curvature is completely determined by the

Ri ,j ,k,` = 〈R(∂i , ∂j)∂k , ∂`〉.
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Bianchi Identities, etc.

Theorem

The curvature satisfies the identities:

1 Rj ,k,`,m + Rk,`,j ,m + R`,j ,k,m = 0 (Bianchi identity)

2 Rj ,k,`,m = −Rk,j ,`,m.

3 Rj ,k,`,m = −Rj ,k,m,`.

4 Rj ,k,`,m = R`,m,j ,k .

Proof.

Exactly as in the classical case.
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Metrics on Aθ Conformal to a Flat Metric

The simplest nontrivial example is the case of a noncommutative
2-torus, or an irrational rotation algebra Aθ. This is simple for θ
irrational and satisfies the B-E-J condition for generic θ. Let’s
consider metrics “conformal” to the simplest flat metric
〈∂j , ∂k〉 = δj ,k . In other words, we assume

〈∂j , ∂k〉 = ehδj ,k , h = h∗ ∈ Aθ.

Then direct calculation gives

∇1∂1 = −∇2∂2 =
1

2
(k1∂1 − k2∂2),

∇2∂1 = ∇1∂2 =
1

2
(k2∂1 + k1∂2),

kj = ∂j(eh)e−h,

R1,2,1,2 = −1

2

(
∆(eh)− ∂1(eh)e−h∂1(eh)− ∂2(eh)e−h∂2(eh)

)
.
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A Version of Gauss-Bonnet for Aθ

These formulas are the same as what one has in the classical case
θ = 0 for a metric on T 2 conformal to the flat metric on R2/Z2.
But in the commutative case, kj further simplifies to ∂j(h) and
R1,2,1,2 reduces to −1

2 eh∆h. This is not quite the Gaussian
curvature since ∂1 and ∂2 are orthogonal but not normalized.
Hence the Gaussian curvature in the commutative case is
e−2hR1,2,1,2 = −1

2 e−h∆h. Since the Riemannian volume form
involves a factor of eh, we see that the NC analogue of
Gauss-Bonnet is this:

Theorem (Gauss-Bonnet)

In the case of Aθ with metric 〈∂j , ∂k〉 = ehδj ,k , τ(R1,2,1,2e−h) = 0,
regardless of the value of h.
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involves a factor of eh, we see that the NC analogue of
Gauss-Bonnet is this:

Theorem (Gauss-Bonnet)

In the case of Aθ with metric 〈∂j , ∂k〉 = ehδj ,k , τ(R1,2,1,2e−h) = 0,
regardless of the value of h.
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More General Metrics on Aθ

A more complicated case is the one where the metric is given by
〈∂j , ∂k〉 = ehj δj ,k , i.e., the metric is given by(

eh1 0
0 eh2

)
.

Now the formulas are not as nice. One finds now that

∇1∂1 =
1

2
(k1∂1 − k ′2∂2)

∇2∂2 =
1

2
(−k ′1∂1 + k2∂2)

∇1∂2 = ∇2∂1 =
1

2
(k ′′1 ∂1 + k ′′2 ∂2)

kj = ∂j(ehj )e−hj , j = 1, 2,

k ′1 = ∂1(eh2)e−h1 , k ′2 = ∂2(eh1)e−h2 ,

k ′′1 = ∂2(eh1)e−h1 , k ′′2 = ∂1(eh2)e−h2 .
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The Curvature

One finds in this situation that

R1,2,1,2 =
1

2
[−∂2(k ′2)− ∂1(k ′′2 )]eh2

+
1

4
[k1∂1(eh2)− k ′2∂2(eh2) + k ′′1 ∂2(eh1)− k ′′2 ∂1(eh2)].

“Gauss-Bonnet” in this case would be the statement that
τ(e−h1/2R1,2,1,2e−h2/2) = 0. I haven’t been able to verify this in
general but it’s true in many special cases.

Another thing one could do is compute the “Laplacian” for this
metric and apply spectral analysis to it as in Connes-Moscovici and
Fathizadeh-Khalkhali.
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