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0. _Introduction and acknovledgements

In this lecture I Eope to turn the title of this Seminer around and

discuss "operator-algebraic methods in geometry' rather than "geometric
nmethods in operator elgebras." The intention is to rrovide an introduetion
to some cof the literature on topalogleal obstructions to positive scalsr
curvature (including [25], [32], [121, (137, and [14]), with emphasis on
the Index-theoretic method of [30]. The first section of this maper

will thus be EXI)O:ElitO:‘I."y, and biased toward topice likely to be of

. ioterest to those interested in applications of C*.algebras in differential

geometry. While I was prepé.ring this survey, T decided to athenpt a
deeper anslysis of a conjecture of Gromov and Iswson that if true would,

‘provide e nice framework for the whole stibject; this accounts for

‘Bections 2 and 3 of this article. I suspect that much of the conbent
of 8ection o mey be knowa to the experts, bubt I have nct seen any of
this material written down, and the treatment here is my own. In any

event, the reswits of this part are needed for Section 3, whiech I

elieve to be new. In fact, by way of aévertisement for "non-commptative
dlfferentml geometry," I might add that I can think of no technigue

hat would ¥ield the example of Theorem 3 1 writhout methods similar to
‘those of [30].
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I would like to thenk Professors Edward Effros snd Huzibiro Araki for
the opportunity teo speslk ab this Seminar, and.for their excellent orgeni-

zational work., Tn addition, T would like to thank Professors Blaine Lawson.

and Mikhesl Gramov for teaching me about this subject, and ‘the members of
the University of Pénnsylva.nia geometry seminar for suggesting the problem
treated in Section 3, (In a discussion at Pern in November, 1982, I
naively suggested that if a menifold were 1o have a metric of positive
scalar curvature, one ought to be able to "average" this metric under a
freely. acting finite group of diffeomorphisms, and 20 get a similar metric
on any menifeld (regulaerly)} finitely covered by this original one. When
Chris Crcke, Herman Gluck, Jerry Kazdan and Wolfgang Ziller countered in
unieen that this certainly wasn't obvious, I slowly began to suspect that
some topologicel cbstruction might be involved.) I also thank

G. G. Kasparov for sending me preprints of his recent work, which plays
a vital role in the methods of [30] and thus in some of the resulis dis-
cussed here. Finally, I would like to thank Drs. Tain Raeburn and Colin
Sutherland for their hospitality st the University of Wew South Wales in
July-August, 1983, during which time some of this work was rcompleted,

Added In proof:  After this paper was completed, it was pointed out to
me that T. Miyazski [On the exlstence of positive scalar survature metrics
on pon-simply-connected menifolds, J, Fae. Sei. Undv. Tokyo, Sect. TA 30
{1984), 5l5-561], had done some work alopg the lines of Secticn 2 below
{duplicating, for insbance, our Theorems 2,2, 2.14, and 2.15), and thet
L. Bérard Bergery had found an exemple similar to that of Section 3 (with
covering group %), based on the Z,-valued obstruction of Hitchin
[351.

Meerwhile, I have been able to Iimprove the results of [13) on the
simply-comected spin case, and to rework the method of {30] using real
KK-theory so ag to prove one direction of Conjectura 2,1 below for a
large class of fundamental groups. These results will appeer in a sepa-
rate publication.

F2

Finally, the dimension restriction in Proposition 2.3 and in Theorem 2.5

may be simplified to "o > 5, using the following urgument suggested by

Shmuel. Welnbergeyr, If n > 4 and n is any finitely presented Broup,
one may canstruct & spin manifold MD with ﬂl(M) = n by startlog with

2 comnected sum of coples of Sl = _Sn' and by doing surgeries (preserving

the spin striacture) $o build the corvect relatiops into the fundamental
group, Since Slx gL

has positive scalar curvature and all the

surgeries needed are in codimensions n snd n -1, M has positive

scalar curvature by [13] or [32]. This M may be substituted for the
o g™E 4 ps,
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1. Positive scalsr curvaturs and the ipdex theory of the Dirac
operator

Throughout this article, w= shall be interested in the Following geometrie
Given = manifold M7 » vwhich we shall elways take to be

orientable, smooth, compact, comnnected, and without boundary, when can ohe

problem,
choose a Riemannian metric g on M  such that the mssociabed scalsr
curvature function &
funetions & ¢an arise from metrics on Mf

When the dimension n of M is 2, informatlon sbout this question ie
immedistely provided by the Gauss-Bonnet Theorem
coincides with the Geussian curvature.

on M 18 everywhere positive? More generally, wiet

ainge In this ease »/?
® dvol= bgx,
¥ > 0 I1s imposaible unless M

Since vwhere X
is the Fuler characteristic, we see thet
is a sphere, end that x < 0 1s impossible unless M has genus > 1,
Also note that every orientable closed surface except for the sphere is
asphericel, i.e,, hes contractible universal covering., A quick summary of
what CGauss-Bonnet says about positive scalar curveture is thus: no closed
aspherical 2-manifold admite & metric with
In dimension n > 3, Avbin ([L], §3) pointed out that the situation is
fundementally different: any closed manifold with n > 3 sadmits a metric

with = < 0.

k> 0.

In fact, Kezdan and Warner ( [21], Theorem 1.1} showed that
given M with n > 3 and any smooth real-valued function on M <that is
negaetive somewhere, one can realize this function as the seelar curvature

k for some Riemannian metric on M. In particular, there can be no result

like the Gauss-Bomnet Theorem releting the integral of &
of M, HNevertheless, we know that
which for n =3

te the topology
k > 0 is not always possible (& fact
Indeed,

there seem {o be topological obstructions to positlve secalar curvature of

seems to be relevant to relativistic cosmology).

twe very different sorts: some that apply even in the simply connected
case, and others that depend on the size of the Tundamentsl group., We
shall discuss severel of these obstructions and try to relate them to the
common framework of the index of the Dirac operator.

The oldest, and in a senss the most basie, result saying thet certain
wanifolds of dimension > 2 do not edwit & mebrie with
Lichnerowiez [257,

3k

x>0 is due to

He showed that if M® ({as always closed,

connected, and orientable) satisfies wo(M) = 0 (where
wQ(M) € HE(M, 232) denotes the second Stiefel-Whitney elass) and

n =0 (mod %), and if M admits a metric of positive sealar curvature,

then one must have A(M) = 0. Here

Ay = Aon, M,

N b
A(M):luﬁ_a%ng(pe-%pi)-...

ia the "total :Lcle.ss”, e certain polynomizl in the rational Pontrjegin
classes By € th(M,Q) of the stable tangent bundle of M, ang

] e Hn(r«[, Z) 1is the fundamentsl homology class defined by the cholce
of an orientation. This may sound compliceted but amounts to & definite
restrietion, For Instance, a "E3 surface" K]" (e smooth algebraie byper-
surface in £F7 dafined by an equation of degree U} cannot admit posi-
tive scalar curveture since w,(X) =0 and RFK) = 2. Tt is also workh
poinking out that the inverisnts Wy and i which come into the theorem
depend only on the homebmorphism type of M, no%t on the differentiable
structure. This is because the Stiefel-Whitney classes depend only on the
homotopy type of ¥ (by the Wu formulae - see [331, ». 100) and (by =
deep theorem of Novikov [29}) the pj‘s are topological invariants, (In
the case of a Mbmenifolds, Py {and so 3) is a homotopy invariant, but
this Fails to be true for manifolds of dimemsion > 6.) Also one may
replace the conditlon « > 0 in the theorem by & >0, » 40, since as
pointed out in [21], . Proposition 3.8, a metric with « >8 end x30
can be modified to achieve k > 0 d&verywhera.

llehmerowiecz's theorem was later extended by Hitchin in perhaps a

surprising way. Hitehin {[15], §L.2) found additional cbstructicns to
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positive secalar cwrvature for closed manifolds M7 with Wy = 37, this
time for n =1 or 2 (mod 8). Unlike the obstruction of Lichnerowiecz,
these do not just depend on the hemeomorphism clags of M, =since they are
non-zero for some exotle spheres of dimension § but zerc for others.
However, one cen formulate the Hitchin and Lichnerowiecz theorems in a uni-
Tied way as follows: suppose ¥ is an oriented closed manifold with
wg(M) = 0. Then M admits s spin structure (see [26]), i.e., a Lifting of
the oriented frame bundle, which is a principal bundle for the structure
group GL(n,JR)+, to & privcipal bundle for the double cover of oL'.
Choose such a spin structure, which is unigue if.'M is eimply connected
(or if Hl(}d,zz?) = 0). By def'inition, M together with its spin strue-
ture & determines a ¢lass in the spin bordism group nipin, and than 2
eless M,s] in the real K-homology group Kon(,pt)‘ This K-hemology class
is either the image of the spin bordism clags of (M,3) under the naturel

transformation EI: ﬂ:pm

— K0, of [27], §3, or else is to be thought of in
terms of the geometric generator/relation presentation of KO-homology
discussed in [5), p. 168, wheve we take for the resl vector bu.n::lle E

over M Just the trivial one-dimensional bundle, The class [M,s] may be
viewsd as a "genera.lized index" of the Diramc operator on M, as defined
using the spin structure . In fact, Kon(pt) T ‘for n =0 (med lt-);
3232 for n=1 or 2 {mod 8), and = 0 for n= 3,56, or 7 (#od 8)
When n =0 {mod 4), M,s) (if n=0 (mod 8)) or 2{M,s] {if n= 4
(mod 8)) wmay be ddertified with ﬁ(M), which was computed in [3} %o be
the index of the Dirac operstor on M ‘taking "positive’ to "negative”
"half-spinors”, When n=1 or 2 (med 8), [M,8] may egain he viewed as
a2 mod 2 index of the {resl) Dirame operator. Then the Hitohin and

Lichnerowicz theorems mey be formuleted =zs

3ké

fheorem 1.1: Let M" be 8 closed, connected, oriented manifold with
WE(M} =0 sond with a Riemannian metric for which « > 0. Then for any
cholee of 2 spin structure & on M, [M,s] -6 in Kﬂn(pt).

The proofs in all cases involve Lichnerowicz's oﬁsarvaticn that 1f D
is the Dirac operator on M defined by & end the Riemannian metric (&n
elliptic first-order self-sdjolint differential operator), ¥ . vty . -E R
where V'Y ig posifive snd self-adjolnt, Thus if & = 0, D° fs sbrictiy
positive, end so a1l Jndex inveriants associabed to D will venish.

Whent M is simply commected, s 13 unique and we may write simply
Ml e K()n. Tn this cese, Gromov and Lawson conjecture in [13) that the
copdition [M] = ¢ is also sufficient for M to edmit positive scalar
curvature. The status of this conjecture will be discussed in §2 below.

How consider 'the case of non-simply connected manifolds. It seems that
the bigger the fundsmental group of M, the harder it is to achieve a
metric of positive scaler curvature on the manifold. In faect, Gromov and
Tawson have suggested the fellowing, which meshes well with the corollary
of Gauss-Bonnet in dimension 2:

Conjecture 1.2: No closed asphericsl manifold {of any dimension) admits

= metric of positive scalar curvature,

Our evidence for this is spotty and hae sccumulsted piecemesl. This
conjecture was proved first by Schoen and Yau for the J.torus [31], then
by the same suthors for the n-torus snd certain other manifolds with
ne [32], then by Gremov apd Lawson for a lsrge class of agpherieal
closed manifolds, including compact menifclds of non-positive sectional
curvature (such as lccaily symmstric spaces of nen-compect type) and ccnl:-
pact solvmanifolds {which of course inelude tori of all dimensions) - {12}

and [14]. A feature of the Gromov-Tawson approach s that it gives
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homotopy-type obstructions: a manifold homotopy-equivelent to a solymani-
fold cen't admit poslitive scalar curvature, whetber or not it's diffeo-
morphic {or even homecmorphic) to 8 golvmanifold.

Tt is at this point that one notlces a relationship with the so-called
“Hovikov Conjecture” in differentisl topology. This conjecture, or rather
alass of conjectures, exlsts in verlous Torms {gee in particulsr [11] and
[177), all of which may roughly that the bigger the fundemental group of
a closed ma.‘nifold., the more the howmolopy type determines the structure
of the menifold. In the case of closed aspherical manifolds, it is pos-
sible that the fundesmental group actually determines the manifold up to
homsomorphism or BL least stable hemeomorphism (see, e.g., [307 and {111).
Here we say My and M, are stably homecmorphic if Ml ® Bk ) and
M, X I(k sre homeomorphic Tor & suitable {usually small} value of k.
Stable homecmorphism is scmetimes easier to work with than hemeomorphism.
For instence, although for n > 5 not sll contractible n-mepifolds are

‘homeamorphic to =" they are all etably bomeomorphic to ™
z ¥ -y

To formulate things more precisely, we need one additional ingredient.
Tet M be a ¢losed, connected, oriented n-manifold with fundemental group
7. Then thé universal cover M of M is a principel m-bundle over M,
hence 48 determined by e clessifylng mep f:M - Br which Is an lsomor-
phigm on fundsmentel groups. Here By 1s an Eilenberg-Maclane space with
-zrl(E‘rr) g and ’lTj(B'iF'} =0 for j>0, and By end f are well-defined
up to homotopy. (Of course, the hamotopy class of f depends on the
c.tloj_ce of a gpecific isomorphism Trl(M) -7 ) ‘The usual for;nule,‘hion of the

Novikov Conjecture is the statement that the “higher signatures"

L (M) = (L(M) U £ (e}, BD),

948

5 -
where a ¢ H (Br,Q} = H (7,8) (group cohomology) and

B
1 1 2
L{M) =1+ -= - car
() ror g (Tey - pp) 4
is the "total Hirzebruch L-class", are oriented bomotopy inverisnts {of
manifolds with fundemental group 7).

Gromov and Lawson define enalogously the "higher ﬁ-genera"
N " M
A(M) = (DY U £(s), MY, a e 5(Bn,aq),

and conjecture thei for closed orlented manifolds M with WE(M) =0, M
cannot adnit a metrie of positive scalar curvature unless all of these
vanish. They also suggest that the condition on wE(M) can be wegkenad
to wa(ﬁ) = 0, which of eourse is aubomatic 1f M is aspherical. This
would then imply Conjecture 1.2 shout closed aspherical manifolds, singe
for oriented such M‘u, cne can always find Aa. ¢ Hn(Brr,Q) with ﬁa(}d) =1.
Many cases of this conjecture are broved in {12] and [14],

However, I would like to briefly describe a method introduced in [32]

for obtaining similar results using the C*-slgebra.ic index theory [28] of

‘Miscenko and Fomenko. Assme M haz been given a spin structure =,

Then in place of the Dirac opretor D of (M,s), which was used in the
Lichnerowlcz argument, we may use DE, the Dirac operstor with coefficients
in a bundle E. The identity 7 - A +-E mist generally be adjusted by
the curvature R of T, but'will conbinve to Rold without modificetion
if ¥ has a flat connection. As is well knowm, this is possible pre;:isely
when E is the pull.-back of a flat bundle on Br, via themsp f. So a
slight wodification of [25] yislds the fact that if M admits a metric of
positive sealar cmatwe, then ﬁa(l\{) =0 for every a ¢ H'(By,&) which
is a characteriztic clmss of a flat vector bundle over Br. This by itself

is 1ittle help, since the rationsl characteristic alasses of ordinary flat
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vector bundles wub be trivial by Chern-Weil theory (whieh relates these

characterdstic classes to the curvature). However, examination of the proof

shows that the argument still works when E is a flat A-vector bundle in
the mense of [28], where A is a C'-algebra with unit, provided that we
use an appropriste Index theory for DE The index of DE {when M is
even-dimenaional) wili!. take its velues in KO(A) rather then in

KO(C) S®. In applications, vwe always teke A = c*(w) or C:(-;r) and

E = the "univereal” flat A-bundle over M, M XA This Abundle s of
course pulled back from the flat A-bundle ¥ = Eyr 7)(7 A over DBr (where Ey
is the universal cover of By, & contractible space om which T acts
freely), The sdvantage of this is precisely that Chern-Weil theory breaks
down for A-vector bundles, so that the flat bundle E mey have non-zero
raticnal cheracteristic claszes. (This is due, roughly speaking, to the
fact that the structurs growp for an A-vector bundle is infinite-dimen-
sional and non-compact, )

In fact, Kesparov has used the A-bundle V¥ to define a homomorphism
B 1 RE (Bm) » K {8).

Bere RK, denotes complex K-homology as ewbended to infinite CW-complexes,
If Br can be chosen compact, this map is easy to define, The bundle . ¥
hes a claes [¥] in

K'(Brs £) S K, (C(Br) @ A} = KK(¢, OB @ ),

and 8 is the Kasparov product [¥] @
C(Bm)
{f], [91). When Br 4s en infinite complex, one defines B first this

as defined in [18] (see also

way on finite skeletons of By, then passes to the limit.
With A = C*(w) ar Cj('n') and E = f*('u), the index of Dy (for M

even.dimensional) in Ky(4) 1is Just g( [M,a,f]c), where E}-{,s,f]c de-

350

notes the image of the bordism class of (M,s) & By in the complex (hence
the "¢") K-homelogy group RKO(Bpr), as defined in [5]. The case of odd-
dimensional M is reduced to the even-dimensional case by teking a pro-
duct with Sl; the net effect is to have [M’s’ﬂc € R.Kl(BW) and %o have an
index of Ty defined in Kl(ﬁ) Yhe conclusion of this analysis is the
following result (a combination of Theorem 2.11 end Theorem 3.%) of [30]:
Theorem 1.3: Let (M",5) be a closed, comected spln menifold sdmitbing
a metric of positive scalar curvature, and let f :M—By be the clessifying
map for its universal covering. If the Kasparov msp 8 :RK*(BH')—)K*(C*(TF))
is ipjective, then [M,s,f]C:O in RKﬂ(B’n’). If § isinjective medulo
torsicn, then the higber‘ ﬁ-genera Ea.(M) vanishfor all a e H.*(B'rr,Q).
Kasparov has shevm [10] that injectivity of § modulo torsion implies
the Hovikov Ccnl:jecture, end holds if 17 can be embedded discretely in a
connected Lie group, In fact, Mi;;enko had claimed this earlier if 7T 1=
the fundamental group of a complete Riemannian manifeold of non-positive
sectional curvatures. The proof ‘seemed to contain a gap when this manifold
was non-vompact (see [16]), but evidently this gap cen be filled by using
Kasparov's machinery {see sketehes of the argument in [9} and [20]), so

that one also has:

Theorem 1.4: If 7 is the fundamental group of a complete Riemannian
' *
manifold of non-positive sectional curvatures, then 8: BK*(EW)waK*(Cr(Tr)}

is injective.

Some additional cases mey be handled by [30], Theorem 2.6:

Theorem 1.5: If 7 is & couniable solvable group having s composition
series in which the composition factors are torsion-free abelian {but not
necessarily finitely generated), then B RK,(Br) —>K*(C*(1r)) is an isomor-

phism.
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It is clear from the exemple of Finite groups that B cannot be injec-
tive for arbitrary groups (with torsion},. However, if & group 7 contains
a subgroup T of finite index for which B 1is injective, then g for 1
is at least an injection modulo torsion {[30], Proposition 2,7}, which suf-
fices for vanishing of the higher R-genera. It is concelvable (although
perhaps overly optimistic) that B is injective whenever 7 is finitely
presented end torsion-free, and always injective modulo torsion when ¢
is finitely presented. Whether or not this is true, it is rether sirikirg
that the classes of groups for which good results about the Novikov Conjec-
ture or the positive scaler curvature problem have been obtained lergely
coineide with the classes of groups for which one can prove injectivity of

B moduls torsion {which we called in [30] the "Strong Rovikov Conjecture™).

2. Towards & conjecture of Gromov aad Lawson

Mikhgel Gromov and Blaine Towecon have proposed o nest way of organlzing
all the results on ftopological obstrucktions to positive scalar curvature
on closed manifolds, at least if we restrict attention to spin menifolds.

Here ls thelr conjecture:

Conjecture 2.1, Let M be a closed, connected manifold with
WQ(M) =0, and let f:M - Br be the clessifying map For the universal
covering of M. Then {(if T is guitable and st least for n sufficiently
large) ¥ admits a metric of positive scalar curvature I1f and only if the
following topological conditlon holds: for any spin structure s on M,
one has [M,s,f} = 0 in Rmn(B'rr), where [M,s,f] iz the imege in real

K-homology of the spln bordism class of (M,s) ES B,

When M is simply coonected, By is a single point and & 44 wigue,
The conjecture thus reduces in this case to the conjecture of [13) that, g
simply connected spin manitold admits positive secalar curvature exactly
when the "Hitchin obstruction” [M] ¢ KOnfp‘b) vanishes. 1In this case, i
substantial results were obiained in [13], Corollary B, under the restric.
tion n > 5. Of cowwse, the conjecture is also clearly txue for simply
connected closged l-manifolds (because there aren't any) and 2-manifelds.
It would be true for simply comnected 3-manifplds 1f one knew the Poinecard
Conjecture. As for dimension 4, any simply conmnected spin L-menifeld with
vanishing Lichnerowicz obatruction must have signetare 0 and so by the
Freedman classification theorem ([34], Theorem 1.5) be bomeomorphic to Sh
or to & connected sum of 52 x Sg's. If the 'bomeumcrpbism were a diffeg-
morphlsm, the manifold would admit positive scalar curvature by {13],
Theorem A, so the conjecture would again be correct. However, to the best
of my knowledge, it ls mot yet nown if the differentizble gtructure on

2 b Sg's) is unique.

SLl (or a eonnected sum of &
The non-simply connected case is of course much harder. As in the

slmply connected case,r the available methods of proof for attacking the
conjecture again impose mild restrictions on n, which might turn out to
be unnecessary. However, we willl see that the conjecbure cannot possibly
beld for all groups 7w, so that any "suitable” 7 should at least be
torasion-free. An extra anoyance of the non.simply connected case is that
¥ usually admits more than orme spin s'tructure,‘ and {M,e,f] may depend on .
s. For instance, if M = By = £, rcol(sl) g Kﬁl(sl)@mlfpt) Yo 7,

In this caee, ¥ bhas two spin structures, each with the samo image in

£ 1
KOl(S }s but with distioet images in KOl(pt) Tz However, if

o
[M,5,£] wvenishes for one choice of the 8pln structure s, +$hen it
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vanishes for all s. To see this, reeall from [26]_tbat EL(m, ZZE)’ which
may b; identified with the group of real line bundles over M (the group
operation being the tenscr product of line bundles}, operates transitively
on the set of spin structures on M. But Hl[M, 222) = Hl(B'rr,ZZE) sits
inside the group of invertible elsments in the ring RKOO(BFT), which acts
naturally on RKO,(Br). One easily sees thet If s end &' are two
different spin structures on M, then [M,s,f] and [M,s",f] must lie

in the seme orbit for this group of invertible RKOO-elements; hence one
venishes if and only if the other does as well.

Before going on te a more detsiled dlscussion of Confechbure 2,1, it is
perhaps worthwhile to say e word sbout manifolds with WE(M) #£ 0. In [13],
Corollery C, it wes shown that such & manifold "t always edmits a metric
of positive scalar curvature if M 1is simply connected and n > 5. (Here
n< 3 1s impossible snyway, sinee every homotopy 3-sphere i certainly
purallelizeble, and the case n = 4 comee down to the acilve problem of
classifying wp to diffeomorphism the smeoth, simply commected h-manifolds
BRving odd intersection form. By work of Freedwsu {[34], Theorem 1.5) and
Doneldson [8], sll such manifolds are homecmorphic to connected sums of
C}IPE' s apd - CIPE' 5. If the homeomorphism ecould always be made a diffeo-
morphism, there would always be positive-scalar-curvature metrics by [13],
Theorem A.) Note thet by [1h], p. 186, it is not true that M elweys ad-
mits’ & metric of positive scslar curvature if we(ﬁ) £ 0, where M ig
the uhiversel cover of M. For the case WE(F!) = 0, some partial results
were obtained in [30], §3B.

Let us return mow to Conjecture 2.1. As far as the slimply connected
cage is concerned, one direction is ‘given by [15], so to prove the conjec-

ture for n x5, it would suffiee wy [13], Theorem B, %o show that If e
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is simply comnected and spin, and if [M] = ¢ in Kon(pt), then M de
spin cobordant to a known spin manifold of Positive scelar curvature.

Actually we can improve on [13], Corollary B, in low dimensions. As

pointed cut already in [13], n;p:m =0 for n=%6o0r 7, so the conjac-
spin

ture is certainly valid In these dimensions. Next, 08 ig free gbellen

of remk 2, with generators :I{IP2 (which has signsture 1 end A-genue 0)

end the Milnor-Kervaire almost-parsllelizable manifold Mg

1 [#6), Thus if [MB] = 0 din I{Os(pt), ¥ L5 spin cobordant to &8 or to

N
with A-genus

8 connected sum of II]PEYS or -113?2'5, and so sdmits positive scalar
curvature by [13], Theorem A. The last case which is easy to treat is

dimension 9, since n;pi.n = ZZE oz with generators HIPZ X p end

J.

2’
Mg %o, Where o 15 & with the unusuel spin structure (see [33],

a ~
P. 339). Note that [M(J % ] generates Kog_(pt.) w HZy, oxd
[H]E'2 xa)] = 0. Thus if [MQ] =0 In Kog(pt), M is spin cobordant
to & orto HP xo, vaich as amenifold is EP° x 5 and obvicus-
1y edmits positive scaler curveture. Hence M adnlts positlve scalar
curvature by [131, Theorem B,

- pin :

Agide from case-by-case checking of generators of S‘ﬁ s which geems
impractical in large dimensions, we can think of cne other strategy for
trying to prove the conjecture in the simply comnnected case. The idea
would be that although generators for the kernel of the map
spin

Q

iy - K0, {pt) are quite complicsted, there seems to be e better desorip-

tion of KO, as & quotient of bordisi classes of pelrs (M,E), where M
is & spin manifold and E e real vector bundle over M, by en operation
of "wvector bundle modification” (s-ee I51, p. 168). Thus one might try to
prove the conjecturs by firet verifying thet "vector pundie modification”

indeed generates the kernel of the mep from cobordlsm elasses of pairs
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Z(Mn,E) to KOn(pt), and then trying to generalize the whole problem %o
such peirs. The ides would be to determine when one could choose a
Riemennlen metric on M, together with su orthogonal structure on E,

such that % + W’E >0 (in the notation of [1Lk]). This condition would
sgain imply vaniching of the index of :DE,

that [M,E] =0 in xon(pt) would be & necessary and sufficient condi-

so thet one might try to show
tion. For this it would suffice %o show bordism invarisnce and invarisnes
under vector bundle modification (although this might not be easy). Then
‘the positive sealar curva.turel problem would reduce to the speclel case of
E the one-dimensional trivial bundle.

We return now to the non-simply comnected spin case. Before glving scme
results on specific groups 7w, It 1s necessary %o mimic [13] =nd show
that, at least under mild restrictions, the guestion of whether or not M
afmits positive scalar curvature only dépenﬂs on the gpln bordism class of
(M,5,f:M -» Br). For this pa.rt-of the enalysis it is not necessary to

assume enythbing about the growp T.

Theorem 2.2. Let Xi, Xg be closed, oriented, comnected n-manifolds
with 7y (%) = (%) @, with n>5, and with Wo(Hy) = 0 (i =1,2).
et 5y be & spin etructure on Xi_, and let fi H Xi - BT be the elesaify-
ing map for the universel covering of Xi. Fipally, assume Xa has 8
metrie of positive scalsr curvature snd theb (xi-,si) Fomr(i-2,2 e
in the seme hordism cless din OflPin(Bﬁ-). Then Xl also admits a metric

of positlve scalar curvature.

Proof. Ve proceed as in [13], proof of Theorem B, except that the

results of Smale used there (prelimineries to the proof of the h-cobordism

Theorem) must be repleced by the corresponding steps in the procf of the

s-cobordism Theorem of Barden, Mezur, and Stallings.
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3= XE, where Xl

5 BTG 88 In the theorem, snd where there is a mep W o By restrict-

Let Wn+l be a compact spin menifold with 2aW = X

and X

ing on the two boundary compomnsnts to the maps fi :Xi ~» B, Ther we have
s commubative diagrem
i* i
'rrl( Xl) ‘FTl(W) -rrl( XE)

and thus = split exact seguence

l—)I[éTrl(W) — o — 1

for some group Ii. The group I is generated by embedded coples of Sl
in W which don't meet the boundery, end we may remove these by surgeries
vreserving the spin strueture. Hence, without loss of generality, we mey

assume (W,Xl) end (W, XE) are l-connected. Then we have an exact homo-

topy sequence

1
*
To{y) — (W) — 1 (W, X)) —= 0.

Bince &m W>» 6 (in fact > 5 would su;ffice here), a set of elements
of 1}'2(“.\!) which generste rg(w,xl) = Tra(W)/:L*wz(Xl) can be represented
by smoethly embedded Eispheres which do not meet the boundary. Since W
is e spin manifold, these 2-spheres have ebably trivial, hence trivial,
normal bundlies, and can be removed by surgeries preserving the spin strue-
ture and fundamental group. Thus, sgain without loss of generelity, we
mey assuwme (VW,XJ) is 2-connected. Choose 2 handle decomposition of the

cobordiem W, and proceed to eliminate the 0-, 1-, and 2-handles by [23],
Lemma 1. {This doean't require that W be an h-cobordism, only thet
'rrl(xl) = -rrl(W) = -rrl()(e) and that TrE(W,Xl) = 0. This step in the proof

requires dim W » 6.) Turning the handle decomposition upside dowm, we
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observe that XIL is obtained from X? by attaching hendles of index
< n -2, i.e., by performing surgeries on embedded spheres of codimension
> 3. Then by [13], Theorem A, or by (32], Corollary k to Theorem L %

admits a metric of positive scalar curvature.

Froposition 2.9: Let (Xn,s) be & closed, connected spin manifold with
n>5, and let f:X - Br be the classifylng map for ils universal cover-
ing, where T = 'n'l(X). o (X,8) . represents the trivial element of
Q;Pin(BTr), and if there éxists a closed, comnected spin manifold v witn
k< n -2 (this 1s sutomatic if n > 6), then X admits a metric of
positive sceler curvature.

Proof: As is well known, for any finitely presented group T there Is s

Y oen m(vM 2o ([223,

cloeed stably parallelizsble manifeld V
p. 105), 80 the existence of the requisite ¥V is awbomatic if n > 4.
Anyway, given any Vk, there 13 always a metriec of posltive scalar curva-
ture on VJi x Bn'k, provided n - k > 2, nemely, the Riemannien produck
of enmy metric on V with the constent-curvature metric on a Euclidean
sphere of very small radjus. Furthermore, if V is a spin manifold, then

n-k-+l

Vk x K g clearly the boundery of the spin menifold v w D with

the same fundamental group. Hence we may apply Theorem 2.2 with Xl =X

X, = v x 52E,

Remgrk 2.4%: Although X may edmit more than one spin structwre =, the

condition that {¥,8) f, By represent the trivial element of (Br)

spin
L
is independent of =s. Indeed, suppose (W,E) is 8 spin manifold with
3(W,3) = (X,8), .and suppose g :W — By extends f. If s' is any other

spin structure on X &ssoclated to the seame Brientation of X as deter-

mined by s, then s' is obtalned by modifying s by an element
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a € Hl()(, Zy) = Hom{ T, 232) [26], But then if b =32 e g, ¢ Hl(w,zzg),

the action of b on § defines a spin structure ' on w restricting
to &' en X, Hence (X,s') £B1r also represents the trivial element of
spin

e

L (Br). Bimilarly, teo reverse the orlentation on %, we may reverse

the orientatlon on W.

Theorem 2.5: Let v beany finitely presented group such that there
exists n closed, vomnected spin k.menifold vE wltn ‘rrl(V) S, and let
n»mex (5 k+2). (Becall that 2> 6 will a;lws do.) 'Then there
exists a subgroup Pn(w) of Qipin(l’nr) with the following property: for
any closed, comnected n-manifold W with wl(M) = WQ(M) = 0, and
nl(M) < g, then M adwmlts a metric of positive scalar curvature
if and only if the spin bordism clé.ss of ‘{M,s) E) Br lies in Pn(n).
{Bere £ : M->Bn is the classiﬁ'i‘ng map for the umlversal cover
of M and s d4s any spin structure on M. )

Proof: Let Pn(-rr). be the set of ¢lasses in O;Piu(Eﬂ') of triples
(M,s,£), where (M,s) is a closed, connected =pin n-menifcld sdmitting a
metric of positive sealar curvature, and where f‘ tM By is a classifying
mep for the universal covering., If we 'can show tha'-b Pn(ar) iz g group,

+then the conclusion will follow from Thearem 2.2.

To hegin with, P, (y) conbains the O-slement of Piu(BTf) oy
Proposition 2.3, Furthermore, it is clear that Pn(-rr) is closed under
loversion (reversal of apin siructure), So we must show that Pn(‘ﬁ’) is
closed under addition. Thie is non-triviel becuase of our restriction to
connected manifolde M; the addition operation in O;Pin comes from the
disjoint sum of menifolds, not the connected sum.

Thus &uppese (Mi,si) i'a-B:rr represent classes in Pn(r), where Mi
1s & comnnected spin n-manifold with fundsmental group W and positive
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scalar ewrvature (i = 1,2). Choose genzrators @pp e eyl for 7, =and

1
»C

Since Mi is ordented, C;T.‘ has triviel cormal bundle, and hence a tubular

represent these by disjoint embedded oriented eireles Ci,..

in Mi.
neighborheood N:‘ diffeomorphic to §' x Dn_l. We form a new manifeld M
from (M\ U m;) TRUAY L_JNS?) vy gluing aN} to ama? so as to mateh
slfaﬂj Wit’i]‘.l sg}aNi. (%his may require, for some velues of 3, changing
a preliminary choice for the surgery by a generator of

m (50{n - 1)) z Zy;  see [24], §6.) Then M vill be s spin menifold, and
by repeated applicztion of Van Kampen's Theorem, Trl(M) will be iscmorphic
to the smelgamated free produch of two copies of 7 In which corresponding

coples of . are identified, which is just 7 egain. The class of M

j -
(together with its spin etructure and classifying map) in P

L {Br) will

be the sum of the classes of the {Mi,si,fi), and since M is obtained
Trom Ml and M2 by surgery slong embedded s}l)heres of codlmengion
a-1>k M ainite positive seosler curvature by [13], Theorem A, or

[32], Theorem L. This shows that P (7) is a group.

Remark 2.6: We needed Proposition 2.3 in the zbove proof only to show that
Pn('n') is non-empty. Actually, under the hypotheses of 2.5, there are
"lots" of spin n-manifolds with fundemental group , 1n the sense thet
any element of nflpi“(mr) can be realized by & triple {M,s,f) for which
o :Trl(M) - 'nrl(Bzr) = 7 is sn lscmorphism. Then whether or ‘not M edmits
positive scalar curvature is determined by the image of the given bcrd.:‘.sm
spin

class in [

N (B:,—)/Pn(q-r). The proof of this fact 1s a similer surgery

argment. Given (N,s') ) 7 representing a spin bordism class, glue

a copy of v X gtk

{notation of 2.3) onto N =88 in the above proof to
obtain (§7,s") B br in the came spln bordism class, bub with

h* H wl(N') - Wl(Brr) = w surjective, Then kill the kernel of h, by
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sdditional surgeries io obtain (M,a)}.

Now we are ready for some results regarding Conjecture 2.1 for specific

groups. We begin with the following observation:

Proposition 2.7: Under the hypotheses and with the notation of Theorem

2.5, Pn('rr) is contained in the kernel of the composlticn
ff]pin(Bn-) - Qipin(p‘b) E K()n(pt). Turthermors, 1f the Kasparov map
iR, {Br) AK*(C:('H’)) is injective, then Pn(fr) is also contained Iin the

kernel of the compositicn

ni?i“ (27) G mro_(Br) 5 R (20),

where ¢ is the "complexificetion mep" from reml to complex K-homoliogy,

Corollery 2.8: If B :RK(B) oK (Ch{m)) is injective {i.e., SWC3
holds for 7, in the notation of [30]) and if RKQO.(Byr) hes no 2-primery
torsion, then one direction of Conjecture 2.1 bolds for spin menifolds with .
-rrl(M) = viz., Pn('rr) < ker (& B Q:pin(ﬂ'rr) - RKDu(BTr)) for a1l n > 6
{end also for n = § if there existe a apin S-manifold with positive

seelar curvature and fundsmental group 7).

Proof of Proposition 2.7: The first statement follows from Hitehin's

regult, Theorem 1.1 sbove. The second statement followa from Theoram 1.3

gbove,

Proof of Corolisry 2.8: This follows fram 2.7 end the fact thet

c: K0 - K 1s an injection modulo 2-toralon,

Theorem 2.9: Comjeciure 2.1 bolds for spin manifolds W with
, (1) S ®%, provided §<n<9. '

1

Proof: We uay teke BZ = 5, so RKO (BE) ¥ xo (pt) @ R0 ,(pt).

one direction follows from 1.5 and 2,8, since Kon-l(Pt) is torsion-free
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for 5« n < 9. For the other diresction, we must show that if (Mn,s) is
closed connected spin manifold with (M) 2@ and with [M,5,f] =0 in
KOn(Sl) (n=5,6,7,8, or 9), then some representstive for the bordism
clese of M in ﬂipin(sl) admits positive scalar curvature. Since
ngpin(sl) =0 and ﬂipm(sl) = 0, the cases n =6 and 7 are trivial,
Since ogl’i“(sl) = % with generator K* % g), which has image of infin-
ite order in Ks(SJ'), the cese n = 5 is elso triviedl. Next,
n;pin(sl) o (%pin(pt), and =z genevator for Lhe kernel of the map to
Wgipt) iz WP, The manitold WE4 (5% x 87) 1 then a meniold in
the same spin bordism class, admitting positive scalar curvature and having
. infinite cyclie fundamental group. Finally, ﬂ;Pin(SljZn;Pin(pt)eBﬂgpin(pt)
and generators for the kernel of the map a: n;l’i"tsl)—;xoésl); E B are
IEIJ['-’2 %o (reeall o is Sl with the unususl spin structure) and
]HIE‘EX Sl. These are identical as manifolds (they di;.‘fer only in spin
structure) and admit positive scaler curvature, as regquired.
Theorem 2.10: Conjecture 2.1 holds for spin manifcids M with
wl(M) = Fy {the free group on k generstors), provided 5 <n<9.
Proof. ‘The argument for this is almost exactly the seme as the proof
of 2.9, once we replace g% witnh stv . ovgl and ST % 8 with a
connected sum of copies of S:L x 87, The requisite C*-algebraic result
Tollows fram [30], Propoeition 2,10 or slse from Kasparov's Thecrem, 1.1
above. .
Theorem 2.1).: Conjecture 2.1 holds for spin-manifolﬁs M with
m () = Trl(sg}, 8 &0 orlented surface of genws g 1, provided

i3
5€£n<g.
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Proof: This is agein a situa.t;‘ion where Kasparov's Theorem applias,
since Eg hes nompositiive curvature. - Since E*(sg) is ccnceﬁtratea in
degrees 1 and 2, the Afiyah-Hirzebruch spectral sequences (see [1], §73
for calculation of ﬂipin(sg), KD*(Sg), and, K*(Sg) collapse, ond one can
see that ﬁf)n(sg) is torsion-free for 5 <n €9, so the argment of 2.8
applies in one direction. As for the other direction, the kernel of
G n:Pj'“(sE) S Kou(sg) for 5<n<9 comes from the kernel of
ﬂzpin(pt)_ = Kon(pt) except when ,rl_i 9, 8o in g1l other cases we can
spin

argue s before, The kernel of (Sg) _z—l'.{-ag(ég) is free abelisn of

rank Zg, and 1s genersted by fi H ]’[IIPE x S:L - Sg, 11«2, uhare
fi 1s projection of I{JP2 3 Si onto Sl, followed by the i-th generstor
of Hl(Sg). Ea_nh such generator obvicusly corresponds to a menifold of
positive scalar curvature obtained by taking the "connected sum along &

cirele” of HBE b Sl and 87 * Sg using £,. This completes the proof.

Similar caleulations can be done for many other Fundamental groups for
which BNC 3 applles, However, the situstion 1s somewhat &ifferent when
T bes torsion. In faqt we have the following result.

Theorsm 2.12: In general, Conjecture 2.1 fails if « is a cyclic
group. For instance, every 5-dimensionsl closed spin manifeld 1-15 with
}n—l(M)| =3 &dwlts s metric of positive scalar curvature, evan though
~rABPin

7, o BZ, of 5} -
3(05 (B 3)) < RO 3) as order 9
For n>5 and v a cyelle group ZZq of odd order g, so that

Theorem 2.5 applies, we have the estimate

spin spin ' . ’
K (B?zq)/'ﬁn {BZ )N Pn(ZZq)[S 40 regla ),
which can be improved to < q 4f Conjecture 2.1 holds for simply comneec-

2ed manifolds. (For comparison, ]G(Q:Pm(qu))] = q2, g for n=5 or
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o

7, &and m(ﬂ;pm(]a?z,q)) [ = o?. As indicated earlier, Comjecture 2.1 does
hold. for simply connected manifolds of dimension « 9, except possibly

in dimension= 3 and k4, which ls enough to guarantee thas
P o, Z <
05" B} Pz ) | 2
~gpin ~spin . <
|09 (BZEq} /09 (BZ )1 Pg(zzq)| <)

Proof: The nztural transformations of homology theories & in}.n ~>RKQ,,

spin

and {1 — (" forget the spin structure”) induce maps of Atiyah-

Hirzebruch spectral sequences ([1], §7)

H*(BZQ, K0,.) -—;-RKO*(BZQ}
B, (B7, QP o BP R (em )

HABZ,0,)  =0,(5%)

When q is odd, since KO, ﬂspln’

L snt ), have only 2-torsion [33] and

H*(EQ,EEJ =0, the only non-zero B _terms in these spectral sequencies

are the terms § >0 {and also t >0 for {, and Dipm).

"
Bogta, b
2 i
Hence all the spectral sequences collaspse and E = E°. Thus we can eagily

write down generators for ﬁipm(E’Zq), namely the manifolds LESH. bt Mut

{8 >0, t >0}, where M rums over {torsion-free) generators of ﬂ?iin,

which we mey take to be simply connected, and where I-Es+l is a eirele
for 8 =0 and a lens space SES'H'/Eq for s > 1. {The map L x MaE%q
is the obvious one factoring through I and genersting
Hes+1(BZq,Z); Eq‘) Note that these manifolds have obvious metrics of
poaitive scalar curvature when 3 > 1 (e Riemennian produet of o mebric
of lerge constant curvature on L with any metric on M} or when 8 =0
and M has positive scalar curvature {conjecturslly, whemever [M} =0 in
~ SPiL g c .
mht(Pt) % ). Also note that since 0O Zq -0, ® qu iz an iso
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morphism, the maps

ﬁ*(zzq, P ﬁ*(azq, a,)
’:i.re isomorphisms, Bnd by repested applications of the 5-lemma, the map
rﬁpin(mq) - Q*(BZZq) is an iscmorphism. This is useful since the de-
tailed structure of ﬂ*(EZZq) is cumput‘ed in [6], Ch. VII, VITT, and 1.
Now conslder some special cuses. The mEp ﬂipin - Kok 1s an isumorvhism
and ngpm ~ KOy is split surjective, sc additional spplications of tne

S-lemma ehow that
i~ pj_n ~—
7.
L ) o RO(B2Z ),
LN —~
o (B El) -aRKO?(BZ.q), and

: Espin B ~
b ( q) -aaKog(Bzzq)

2
have images of order 47, g, and u_3, respectively. In the first twe

casns, we can even remove the tildes since gpin = ﬂ;pin = 0. Howaver,

nin =Epin .
the only generators for ng (B?Zq) and Q;P (BPZq) which den't obviously

have positive scalar curvature mre

Sl X KLL - qu
and

Sl e Mg - B?Zc£ .
This gives the indicated estimates. If g = 3, We can do even bether
since by [6], Pheorem 36.1, 05(52'23) (-aud thus Fél"m[mza)) is eyelie
of order 9, wilth generastor 1° - BZ’Z3 that admits positive scalsr curva-

ture. Hence, by Theorem 2.5, every spin S-manifeld Ms with wl(M) = 2233
admits a metric of positive scalar éurvature, This campletes tie proof for

these specisl cases. TIn general, we have seen that

~spin ~spin
o (BZq)/ﬂu (Ezq)nyn(?zq)
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is non-zerc only for n = 1 {mod ), and is generated by manifolds
8t x M'u_l, where M°™% runs over gemerators for (ﬂz?jl'n/Fn_l(l)) ® Zq.

This gives the estimates in the remaining cases.

To conciude owr discussion, we briefly say e few words sbout positive
sealar curvatvrs on non-gpin, non-simply commected manifolds. Following
the argument of [13], Theorem C, one obtaing the following anslogue of

Theorem 2,2 in the ron-spin case:

Theoren 2.13: Let X?_, Xg be closed, oriented, comnected n-menifolds
with m{%)) = 7y(X) = w, with n> 5, and with wy(X)) # 0. Let
fi H Xi - Br be the classifying mep for the universel covering of Xi.
Agsume XB has a metric of positive scalar curvature end thah

£
X —1>' #r lie in the same bordism class in OH(B-n’). Then X, admits a

metric of positive scalar curvature.

Proof: Ore repeats the argument in the proof of Theorem 2.2, but

substituting the idea of the proof of [13], Theorem ¢: since

i
*
Tply) s (W)
¥a Yo
2

commutes and we(Xl) £ 0, one may reduce to the case where 11'2(W,Xl) is
generated by elements of TE(W) in the kernel of Wy, bence to the case

where 7,(W,X;) = 0. The argument is concluded as before.
ALERST g

Cne can prove a similer result for non-orientsble manifolds, but this
case is more complicated. It iz not endugh to leok at non-oriented hord-
ism; instead one must lock at ZQ -equivariant bordiem of the criented
double cover, and one must distingulsh the casea where this does and does

not have & spln siructure. We hope te discuss this case In s fubure publi-
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cation. Mesnwhile, we conclule with two simple epplications of Theorem

2,13, Of course, certain other cases could be treated similarly.

Theorem 2.1% TLet M™ be any conmected closed manifold with dimension
n > 5, with wy(¥) #£90, end with fundamental group my (M) = Zq eyolie
of odd order gq. Ther M admits a metric of positive scalar cucvature,

Proof: Since Hl(M,Eze) =0, M is automstically orientable. So by
FTheorem 2.13, it Is enovgh to check thet each generator of ﬂn(EZq) ia
represented by & manifold with positive scelar cmature with fundamental
group ZZq. As in Theorem 2,12, the bordism spectral sequence shows it is

enough to look at the bordism classes of Sl e Nl‘vG - BZq and of

28+1
x Nlm — BZQ, where L 15 & lens space and N i# one of the tor-

L
alon-free generators of nkt‘ By [13], Corollary €, we may teke N to
heve positive sealar curvafure {{his doesn't cover the ecases t =0 or

t = 1, but of course when + = 0, we're left just with L, and when + = 1,
wa may take N = £ ]PE) . This finishes the proof except for the case of

Sl X N, where It is necessary first to meke & surgery to reduce the funda-
mental group to ﬂ-q. By [13], Theorem &, this doean't desbroy Lhe posi-

tlve-gealar-curvature property.

Theorem 2.15: Let M be eny connected closed orientable menifold with
dimension n > 5, with- wz(ﬁ) #0, ard vith nfinite cyclie fundamental

group. Then M admits a metric of positive scalar curvature.

Proof: ﬂn(BEZ) is generated by the bordism classes of N =nd of
st x Nn—l, where N runs over gemerators of (. Since §¥ has sufTi-
ciently high dimeneion, we may ta.ke' ¥ to be simply connected, elther
=0 P® or one of the ‘menifolds covered by [13], Corcllary £, In the

ease of S:L x Nn_l, we glready have a manifold with infinite cyelic funda-
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mental group and with positive scalar curvature, 7Tn the other case, adjust

the fimdamental group by taking & conneched sum with Sl X Snﬂl. Ag before,

we are done by Theorem 2.13,

3. Behavior under finite coverlnge and the tranafer map in spin
bordism

In this final section, we apply the resuits of §2 to study the following
problem: given closed wanifolds ME and Mg and a finife covering
D .-Ml _.Mg, wkat dosg existence or non-existence of a wmetric .of positive
.acﬂu curvature on one menifold say shout the other? One fact is obvious:
any Riemannien metrie on ME can be lifted %o Ml’ 8o 1T ME hea a metric
of pesiiive scelar curvature, then so does Ml However, the situstion
golng the other way 1z not at all clear. The vague guess that a metriec of

positive scaler curvature on M, ecan ba "mversged” in scme way end then

1
puashed down to M2 iy essentlally correct in many cages, but not in all.

In fact, we shall produce an example in which MJ. has a metric of positive

scalar curvature and ¥, dees not.

2
To anelyze the situation in greater detail, we shall restrict abtention

to the case where ME is a connected spin manifold, sy with spin struec-

ture s Pulling back S, bBY p then defines a spin structure 8, on

ar

M Cf course, Ml mey not be connected, but the only interesting casz i

-
when it is. Tet fi :Mi - E‘n‘i be the classifying map for the universal

covering of Mi; we may choose these so that the diagram

2
My ——= B,

computes and P = f;q, where q: B‘n':l - E':'r2 is alse g finite covering.
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As we have seen in §2, the question of when Mi admits a metric of

positive scalar curvature seems to involve only the spin bordism ang
E

KO-homology classes of (Mi,si) 3 Bwi, at least if n > 5. Now the

generalized hamology theories Xo,, ¥, U:P:m, ete., come equipped with
transfer maps (see [2], Ch, ) end [6], §20). In our particular case, these

may be simply defined geometrically so that

9’ My ) = By, 9551 L
Just as one defines q! in ordinary homolegy by 1ifting = singular simpley
A% o B, to the pull-beck o (A% = A (finite set) s Bry. If Conjec-
ture 2.1 were to hold in owr situation, our question would reduce to the
descrip{;ioﬁ of the kernel of the transfer map q_: :RKOE(EWQ) -)RKUn(Bnl).
To smmarize, if this kernel were zero, then M2 would have s metrie of

positive scalar curvature whenever Ml did. If the kernel were not zero,

it would classify examples where Ml admits posifive scalar eurveture and

M, does not. Even if Comjecture 2.1 dldn't hold, we could (in situations

where Theorem 2.5 applied to both m and Tre) examine instead the kermel

of the compoeite

\
in * in in .
v :ﬂip (Br,) Ay ﬂ;p () —= {}:P (B )P (7 )5
the snalogous obstruction group is then kerw‘Pn(';re). (Pn(-,rg) C kepry

because we cen 1ift positive-scalar-carvaturs metrics, )

Thecrem 3,1: There exists an example of & regular 3-fold covering
k] Ml _>M2, where M1 and M2 are closed 5-manifolds, Ml adimits a
metric of positive scelar curvebure, and M2 does nat.

Proof': Let T be the semidirect product 232 x &, where the genera-

tor of % acts on % by the matrix

2
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-t -1
A:(l 0) e SL{2,Z}.
Note that the eigenvelues of A are cube roots of 1, so that FERE
end det(A - I) = 3. One ¢an compute the homology of %, from ‘hhe.
Hochsehild-Berre spectral sequence with Ea»term H, (%, H»(ZE, 7)), where
H*(ZZE,Z) 18 just /\eEE and % acts by exterior powers of A. Thus .

% if k=0,273,
B (r,2) =z @ @y AF kw1,

6 if k>3 .
It is clear thset Ty is & discrete cocompact subgroup of a Lie group of
the form Bgm B, hence we may choose for Br, a closed solvmenifold
V3, which of course is parsllelizsble (and hence admits & spin structure).
Note that Theorem 1.5 {or 1.4) applies to C*('n—g}. Ve may compute KD, (V)
from the Atiyeh-Hirzebrueh spectral sequence with Ee-tems
EI*(V,KO*(pt)), and in particuler, one sees that @E(V) must contein a
summand = ZB , coming from H:L(V’Kol;(Pt))' Also note that a generator
for this summend may be realized by the spin bordism cless of a spin mani-
fold Mg mapping o V; by Remark 2,6, we may assume without loss of
generallty that Mg - ¥ induces an isomorphism on fundamental groups.

2

Yow let m - 27, Bwl:m3. Sinee A =TI, % w3% is & normal

1
subgroup of Ty isomorphic to Lot and wa evidently heve a triple cover-
ing map q: 2 v induced by the homomorpbism 1w, 4112/11'1 z 223 . Let
Ml be the corresponding tripie acover of ME' Since ME - ¥ defines an
odd torsion class in KOSCV) and hence also in K5(V)’ M, cannot edmit
a metric of positive scelsr curveture, by Theorem 1.3. On the other hanli_,.

we claim M, does have o metric of positive scalar curvature, In fact,

1
THp - ¥3 also defines an odd torsion class in répi“(v), 50 the class

3710

of M, - 2 ia ﬂ;P.m(TS), being the imege of this class under gq° , is
also an odd torsion class. However, from the Atiyah-Hirzebruch spectral
gequence with Eg-terms H*(TB,QiPiu), Q;Pin(‘l‘a) cen contain no odd forw
sion. So the spiln bordism class of Ml - T3 is trivial and Ml admits a
metric of positive scalar curvature by Theorem 2.5.

Note thet the sbove proof depended on our being able to find a (torsion-
free) group T, Tor which RK*(BrrE) = K*(C*('rr?)) is injective, yet for
which o has cdd torsion in its integral hc;mc:lcgy. If we hed started

with w, finite and wy  triviel, the situation would be quite different.

For instance, we may rewrite part of Theorem 2.12 as follows:

Theorem 3.2: Let Mg be a cloged spin menifold with fundemental group
zaq ayelic cf odd order q, and let Ml be its universal covering, If
6<n and n# 0,1 (mod &), or if n =8, or if n =5 and g =3, then
ME admits & metric of positive scalar curvebure if and only if Ml does.

Proof; By Theorem 2,12, under the given hypotheses, Pn(zq)n ﬁipin

; (32,))
= ?]Zpin(BZq) . Hence the only obstruection to positive scalar curvature

on M2 comes fyom bhe spin bordism class of M2 in ﬂ:pin@t). Now as
elements of Qipin(pt), fM]_] = Q[,ME]’ because M2 is spin bordant to a ]
simply connected manifold, which under the itransfer map will go to q dis-
joink -copies of itself. 8o if Qipm/Pn(l) has no q-toersioen, which is
certainly the case if n =8 or n# 0 {mod ), [Ml] e Pn(l) if end only
if [,) € Pn(l). The conditlon n # 0 {mod 4) could be raﬁcvea if we

knew Conjecture 2.1 for simply connected manifolds.
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.

H SUZUKI .
Modular cohomology class from
the viewpoint of characteristic class

1. TNTRODUCTION
In the geometrical study of foliations topologists are familisr with
secondary characteristic elmsses sueh as todbillon-Vey classes {see, e.g.,
[1]) and lear invardants (cf. [6]). They are closely related, and I will
refer to the latiter iu the present note. In operator theory, remsrksble
progress has been made using primary cherseteristic clasges through ¥-
theory. ﬁu’c I s not aware of any works on secondary clasges related o
operator theory so far. This note is en attempt to link secondsry charmc-
teristic clasaés to operator theory.

It M be a Hausdorff Cm-manifold with e countable upen base and F
e €°-foliation of codfmension q on M. Sometimes we dencte F by (M),
Iet p be the dimension of leaf of F so that n = D+ 4 1is the dimension
of M, We denote by E(hl,h,j,...,hr) for T =2{{g+ L)}/2] - 1 the graded
exterior algebra senerated by hl’hj""’hr where deg hi =2l -1, Let

L be a leaf of ¥, Then = graded algebra map

*
R E(hl,hs,...,hr} - Hp(L)

depending ouly on ¥ apd L in M, is determined by virtue of Bott
vernishing [1]. hi(S,L) = %,L;M(hi) is the 1-th leaf inveriant of . ¥

with respect to 1, hi(E,L) 1e nabural with respeet to transverse maps

of foliated manifolds and bence it is regarded as a secondary characteristic
class. B. Reivhart [6] and R. Goldmen {3] constructed these invariambs

for the folistions with trivial and nontrivial transverse vector bundles.
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