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Elliptic PDEs in Geometry

Many of the classical elliptic PDEs arise from variational problems
in Riemannian geometry.
Examples:

Harmonic map equation. Comes from looking for critical
points of energy of a map f : Mm → Nn,

E (f ) =

∫
M
‖∇f ‖2 dvol , (1)

M and N Riemannian manifolds.
Special cases:

M = R. Geodesics.
N = R. Laplace(-Beltrami) equation.
m = 2, N = R3. Minimal surfaces.
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Elliptic PDEs in Geometry (cont’d)

More Examples:

Hilbert-Einstein equation. When n = 4 comes from looking
for critical points of “total scalar curvature.”

Yamabe equation. The nonlinear elliptic equation that comes
from trying to deform a given metric within a given conformal
class to achieve constant scalar curvature. Variational
formulation using

(∫
M R̃ d ṽol

)
/ṽol(M)2/p.

Yang-Mills equation. Comes from looking for critical points of
the energy of a connection ∇ on a vector bundle E → M,∫

M
‖Θ‖2 dvol ,

Θ the curvature 2-form.
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Gelfand-Naimark Duality

Basic ideas of noncommutative geometry:
Recall: X  C0(X ) is a contravariant equivalence of categories.
This sets up a dictionary:

Classical Noncommutative
locally compact space C ∗-algebra

compact space unital C ∗-algebra
vector bundle f. g. projective module

smooth manifold C ∗-algebra with

“smooth subalgebra”
partial derivative unbounded derivation

But it’s pointless to go to the noncommutative world just “because
it’s there”—there should be a concrete motivation.
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Motivation from Physics

More concrete motivation comes from quantum physics.

Many of the classical elliptic PDEs are also the field equations
of physical theories.

But the uncertainty principle forces quantum observables to
be noncommutative.

There is also increasing evidence [Connes,
Connes-Douglas-Schwarz, Seiberg-Witten, Mathai-Rosenberg]
that quantum field theories should allow for the possibility of
noncommutative space-times.

Noncommutative sigma-models will require the
noncommutative harmonic map equation.

Jonathan Rosenberg Noncommutative Elliptic PDE



Motivation
Some New Results

Conclusion

Review of Some Classical Examples
Transition to the Noncommutative World
Previous Work

Connes’ Noncommutative Differential Geometry

Set-up:

A unital C ∗-algebra, G a Lie group with action α on A, g the
Lie algebra of G , δ the differentiated action,
A∞ = {a ∈ A : t 7→ αt(a) C∞}, Ξ∞ f. g. projective (right)
A∞-module, Ξ = Ξ∞ ⊗A∞ A, 〈 , 〉 a Hilbert C ∗-inner product
on Ξ.

∇ a [unitary] connection on Ξ∞:

∇X (ξ · a) = ∇X (ξ) · a + ξ · δX (a),

δX (〈ξ, η〉) = 〈∇X ξ, η〉+ 〈ξ,∇Xη〉.

Curvature:

Θ(X ,Y ) = ∇X∇Y −∇Y∇X −∇[X ,Y ]
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The Connes-Rieffel Theory of Noncommutative Yang-Mills

Suppose A has a G -invariant tracial state τ , extended to EndA(Ξ)
as usual, and suppose g has an invariant inner product (e.g., if G
abelian or compact). Define

E = −τ(〈Θ,Θ〉).

This is the Yang-Mills action. Critical points satisfy the
noncommmutative Yang-Mills equation.

Example

Aθ generated by two unitaries U, V satisfying UV = e2πiθVU.
Aθ is simple with unique trace τ if θ ∈ R r Q. G = T2 acts by

(z1, z2) · U = z1U, (z1, z2) · V = z2V , |z1| = |z2| = 1.

A∞θ = {
∑
m,n

cm,nU
mV n | cm,n rapidly decreasing}.
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The Connes-Rieffel Theory (cont’d)

Theorem (Pimsner-Voiculescu)

Assume θ ∈ R r Q. Then τ sets up an order isomorphism of
K0(Aθ) with Z + θZ ⊂ R.

Theorem (Rieffel)

Finitely generated projective Aθ modules are classified by K0(Aθ)+.

Theorem (Connes-Rieffel)

Let A = Aθ as above. Given a projective module Ξ∞, the minima
of E are precisely the connections of constant curvature, and if Ξ is
not a multiple of another projective module, then the moduli space
of Yang-Mills connections on Ξd may be identified with (T 2)d/Σd .
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The Work of Da̧browski, Krajewski, and Landi

We move now to the noncommutative harmonic map equation. A
map f : Mm → Nn, say with M and N compact, dualizes to a
unital ∗-homomorphism ϕ : A → B, A = C (N) and B = C (M).
Case of Da̧browski, Krajewski, and Landi: N = S0. A unital
∗-homomorphism C (S0) = C⊕ C → B is the same as a nonunital
∗-homomorphism C → B, i.e., a choice of

e = e∗ = e2 ∈ B.

When A = Aθ, G = T2 as above, the natural “energy” analogous
to (1) is

E (e) = τ
(
(δ1(e))∗δ1(e) + (δ2(e))∗δ2(e)

)
. (2)
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Result of Da̧browski, Krajewski, and Landi

The “Euler-Lagrange equation” for critical points of (2) is
nonlinear second order. But absolute minima occur when e
satisfies the nonlinear first order equation for being self-dual or
anti-self-dual. Da̧browski, Krajewski, and Landi write down explicit
solutions.
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The Noncommutative Laplace Equation

A (periodic) harmonic function on a compact Riemannian manifold
Mn is a harmonic map f : Mn → S1. This is dual to a unital map
C (S1) → C (M). Noncommutative analogue: ϕ : C (S1) → A, or
equivalently, a unitary u ∈ A. Harmonicity amounts to looking for
critical points of τ

(
(∇(u))∗∇(u)

)
.

Example

A = M2(C (S3)), u ∈ C (S3,U(2)), want to minimize energy in
homotopy class of the generator of K 1(S3). Solution is

u(z1, z2) =

(
z1 z2

−z2 z1

)
, |z1|2 + |z2|2 = 1.
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The Noncommutative Laplace Equation on Aθ

Let A = Aθ with action of G = T2 as before. K1(Aθ) is free
abelian on the classes of U and V .

Theorem

The scalar multiples of UmV n are critical points of the energy

E (u) = τ
(
(δ1(u))∗δ1(u) + (δ2(u))∗δ2(u)

)
,

and are local minima. Any critical point u depending on U alone is
a power of U.
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The Noncommutative Laplace Equation (cont’d)

Sketch of Proof.

Since δ1 and δ2 generate one-parameter groups of automorphisms,
τ ◦ δj ≡ 0. We start by deriving the “Euler-Lagrange equations”
from the formula for E . If u is unitary, then any nearby unitary is
of the form ue ith, h = h∗, and

d

dt

∣∣∣∣
t=0

E (ue ith) = τ
(
−iδ1(h)u∗δ1(u) + iδ1(u)∗uδ1(h)

+ similar expression with δ2

)
.

So u is a critical point iff ∀h = h∗,

τ
(
δ1(h) Im

(
δ1(u)∗u

)
+ δ2(h) Im

(
δ2(u)∗u

))
= 0 . (3)
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The Noncommutative Laplace Equation (cont’d)

Sketch of Proof (cont’d).

In (3), the Im’s can be omitted since u unitary ⇒ δj(u)∗u
skew-adjoint. If u = e iλUmV n, then δ1(u)∗u = −2πim and
δ2(u)∗u = −2πin, so (3) becomes

τ
(
mδ1(h) + nδ2(h)

)
= 0,

which is satisfied since τ ◦ δj ≡ 0.
Furthermore, if u depends on U alone, then δ2(u) = 0. So if u is a

critical point, then τ
(
δ1(h) · δ1(u)∗u

)
= 0 ∀h = h∗. Since the

range of δ1 contains Um unless m = 0 and τ induces a nonsingular
pairing, δ1(u)∗u is a scalar, and so u = e iλUm for some m.
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The Noncommutative Laplace Equation (cont’d)

Sketch of Proof (cont’d).

Finally let’s show that u = e iλUmV n is a local minimum for E .
For simplicity take m = 1, n = 0. (The general case is similar.)
Expanding shows that

E (Ue iht) = 4π2 + t2τ
(
δ1(h)2 + δ2(h)2

)
+ O(t3).

The term in t2 vanishes exactly when δ1(h) = δ2(h) = 0, i.e., h is
a constant, and in that case E (Ue iht) = 4π2 (exactly). Otherwise,
the coefficient of t2 is strictly positive and E (Ue iht) has a strict
local minimum at t = 0.
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Maps Between Noncommutative Tori

This section is joint work with Mathai Varghese, Adelaide.

Theorem

Fix Θ and θ in (0, 1), both irrational, and n ∈ N, n ≥ 1. There is
a unital ∗-homomorphism ϕ : AΘ → Mn(Aθ) if and only if
nΘ = cθ + d for some c , d ∈ Z, c 6= 0. Such a ∗-homomorphism
ϕ can be chosen to be an isomorphism onto its image if and only if
n = 1 and c = ±1.

For simplicity let’s take n = 1. Denote the canonical generators of
AΘ and Aθ by U and V , u and v , respectively. The natural
analogue of E (f ) in our situation is

E (ϕ) = τ
(
δ1(ϕ(U))∗δ1(ϕ(U)) + δ2(ϕ(U))∗δ2(ϕ(U))

+ δ1(ϕ(V ))∗δ1(ϕ(V )) + δ2(ϕ(V ))∗δ2(ϕ(V ))
)
.

(4)
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Harmonic Maps Between Noncommutative Tori

For the automorphism ϕA : u 7→ upvq, v 7→ urv s , with

A =

(
p q
r s

)
∈ SL(2, Z), we obtain

E (ϕA) = Tr
(
δ1(u

pvq)∗δ1(u
pvq) + δ2(u

pvq)∗δ2(u
pvq)

+ δ1(u
rv s)∗δ1(u

rv s) + δ2(u
rv s)∗δ2(u

rv s)
)

= 4π2
(
p2 + q2 + r2 + s2

)
.

(5)

Conjecture

The value (5) of E (ϕA) is minimal among all E (ϕ), ϕ : A∞θ 	 a
∗-endomorphism inducing the matrix A ∈ SL(2, Z) on
K1(Aθ) ∼= Z2.
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Results on the Minimum Energy Conjecture

Theorem

The Conjecture is true if ϕ : A∞θ 	 maps u to a scalar multiple
of itself. (In this case, p = s = 1 and q = 0.) The minimum is
achieved precisely when ϕ(v) = λurv, λ ∈ T.

Theorem

Each ϕA is a critical point for E , and the Conjecture is “locally
true” at the critical point ϕA. In other words, there is no
continuous family of deformations of ϕA : A∞θ 	 which decreases
the energy functional E , and E remains constant in a continuous
family of deformations of ϕA only in the case of gauge
transformations (multiplication by the images of u and v each by a
scalar of modulus 1).
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Results on the Minimum Energy Conjecture (cont’d)

Theorem

The Conjecture is true for automorphisms, at least assuming θ
satisfies a Diophantine condition (known to hold for almost all θ).
In other words, for generic θ, if ϕ is an automorphism of A∞θ
inducing the map given by A ∈ SL(2, Z) on K1(Aθ), then

E (ϕ) ≥ E (ϕA),

with equality if and only if ϕ(U) = λϕA(U), ϕ(V ) = µϕA(V ), for
some λ, µ ∈ T.
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Summary

The important geometric elliptic PDE’s, like the harmonic
map equation, have noncommutative analogues.

The noncommutative Euler-Lagrange equations are usually
very messy. Usually easier to work directly with variational
problems.

Even irrational rotation algebras provide lots of interesting
examples.

Unsolved problems for Aθ:

Show the only minimizers for E (u) are e iλUmV n.
Complete study of energy of ∗-automorphisms.
What about ∗-endomorphisms, especially when θ a quadratic
irrational?
What about variation of the metric?
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