Motivation Some New Results Conclusion

First steps towards a noncommutative theory of nonlinear elliptic equations

Jonathan Rosenberg

Special Session on E-Theory, Extensions, and Elliptic Operators San Diego, January 9, 2008 Motivation Some New Results Conclusion

Outline

1 Motivation

- Review of Some Classical Examples
- Transition to the Noncommutative World
- Previous Work

2 Some New Results

- The Noncommutative Laplace Equation
- Harmonic Maps Between Noncommutative Tori

3 Conclusion

Elliptic PDEs in Geometry

Many of the classical elliptic PDEs arise from variational problems in Riemannian geometry.

Examples:

• Harmonic map equation. Comes from looking for critical points of energy of a map $f: M^m \to N^n$,

$$\bullet E(f) = \int_{M} \|\nabla f\|^2 \, d\text{vol} \,, \tag{1}$$

M and N Riemannian manifolds. Special cases:

- $M = \mathbb{R}$. Geodesics.
- $N = \mathbb{R}$. Laplace(-Beltrami) equation.
- m = 2, $N = \mathbb{R}^3$. Minimal surfaces.

Elliptic PDEs in Geometry (cont'd)

More Examples:

- Hilbert-Einstein equation. When *n* = 4 comes from looking for critical points of "total scalar curvature."
- Yamabe equation. The nonlinear elliptic equation that comes from trying to deform a given metric within a given conformal class to achieve constant scalar curvature. Variational formulation using $\left(\int_M \widetilde{R} \, d\widetilde{\text{vol}}\right) / \widetilde{\text{vol}}(M)^{2/p}$.
- Yang-Mills equation. Comes from looking for critical points of the energy of a connection ∇ on a vector bundle $E \rightarrow M$,

$$\int_M \|\Theta\|^2 \, d\mathrm{vol} \, ,$$

 Θ the curvature 2-form.

Review of Some Classical Examples Transition to the Noncommutative World Previous Work

Gelfand-Naimark Duality

Basic ideas of noncommutative geometry:

Recall: $X \rightsquigarrow C_0(X)$ is a contravariant equivalence of categories. This sets up a dictionary:

Classical	Noncommutative
locally compact space	C^* -algebra
compact space	unital C^* -algebra
vector bundle	f. g. projective module
smooth manifold	C^* -algebra with
Shiooth manifold	"smooth subalgebra"
partial derivative	unbounded derivation

But it's pointless to go to the noncommutative world just "because it's there"—there should be a concrete motivation.

Motivation from Physics

- More concrete motivation comes from quantum physics.
- Many of the classical elliptic PDEs are also the field equations of physical theories.
- But the *uncertainty principle* forces quantum observables to be noncommutative.
- There is also increasing evidence [Connes, Connes-Douglas-Schwarz, Seiberg-Witten, Mathai-Rosenberg] that quantum field theories should allow for the possibility of noncommutative space-times.
- *Noncommutative sigma-models* will require the noncommutative harmonic map equation.

 Motivation
 Review of Some Classical Examples

 Some New Results
 Transition to the Noncommutative World

 Conclusion
 Previous Work

Connes' Noncommutative Differential Geometry

Set-up:

- A unital C*-algebra, G a Lie group with action α on A, g the Lie algebra of G, δ the differentiated action,
 A[∞] = {a ∈ A : t → α_t(a) C[∞]}, Ξ[∞] f. g. projective (right)
 A[∞]-module, Ξ = Ξ[∞] ⊗_{A[∞]} A, ζ, ζ a Hilbert C*-inner product on Ξ.
- ∇ a [unitary] connection on Ξ^{∞} :

$$\nabla_{X}(\xi \cdot a) = \nabla_{X}(\xi) \cdot a + \xi \cdot \delta_{X}(a),$$
$$\delta_{X}(\langle \xi, \eta \rangle) = \langle \nabla_{X}\xi, \eta \rangle + \langle \xi, \nabla_{X}\eta \rangle.$$

• Curvature:

$$\Theta(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$$

 Motivation
 Review of Some Classical Examples

 Some New Results
 Transition to the Noncommutative Work

 Conclusion
 Previous Work

The Connes-Rieffel Theory of Noncommutative Yang-Mills

Suppose A has a G-invariant tracial state τ , extended to $\text{End}_A(\Xi)$ as usual, and suppose g has an invariant inner product (e.g., if G abelian or compact). Define

$$E = -\tau(\langle \Theta, \Theta \rangle).$$

This is the Yang-Mills action. Critical points satisfy the noncommutative Yang-Mills equation.

Example

• A_{θ} generated by two unitaries U, V satisfying $UV = e^{2\pi i\theta} VU$. A_{θ} is simple with unique trace τ if $\theta \in \mathbb{R} \setminus \mathbb{Q}$. $G = \mathbb{T}^2$ acts by $(z_1, z_2) \cdot U = z_1 U$, $(z_1, z_2) \cdot V = z_2 V$, $|z_1| = |z_2| = 1$.

$$A^{\infty}_{ heta} = \{\sum_{m,n} c_{m,n} U^m V^n \mid c_{m,n} \text{ rapidly decreasing}\}.$$

Motivation Some New Results Conclusion Review of Some Classical Examples Transition to the Noncommutative World **Previous Work**

The Connes-Rieffel Theory (cont'd)

Theorem (Pimsner-Voiculescu)

Assume $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Then τ sets up an order isomorphism of $K_0(A_{\theta})$ with $\mathbb{Z} + \theta \mathbb{Z} \subset \mathbb{R}$.

Theorem (Rieffel)

Finitely generated projective A_{θ} modules are classified by $K_0(A_{\theta})_+$.

Theorem (Connes-Rieffel)

Let $A = A_{\theta}$ as above. Given a projective module Ξ^{∞} , the minima of E are precisely the connections of constant curvature, and if Ξ is not a multiple of another projective module, then the moduli space of Yang-Mills connections on Ξ^d may be identified with $(T^2)^d / \Sigma_d$.
 Motivation
 Review of Some Classical Examples

 Some New Results
 Transition to the Noncommutative World

 Conclusion
 Previous Work

The Work of Dabrowski, Krajewski, and Landi

We move now to the noncommutative harmonic map equation. A map $f: M^m \to N^n$, say with M and N compact, dualizes to a unital *-homomorphism $\varphi: A \to B, A = C(N)$ and B = C(M). Case of Dąbrowski, Krajewski, and Landi: $N = S^0$. A unital *-homomorphism $C(S^0) = \mathbb{C} \oplus \mathbb{C} \to B$ is the same as a nonunital *-homomorphism $\mathbb{C} \to B$, i.e., a choice of

$$e=e^*=e^2\in B.$$

When $A = A_{\theta}$, $G = \mathbb{T}^2$ as above, the natural "energy" analogous to (1) is

$$E(e) = \tau \big((\delta_1(e))^* \delta_1(e) + (\delta_2(e))^* \delta_2(e) \big).$$
(2)

 Motivation
 Review of Some Classical Examples

 Some New Results
 Transition to the Noncommutative World

 Conclusion
 Previous Work

Result of Dabrowski, Krajewski, and Landi

The "Euler-Lagrange equation" for critical points of (2) is nonlinear second order. But absolute minima occur when *e* satisfies the nonlinear first order equation for being *self-dual* or *anti-self-dual*. Dąbrowski, Krajewski, and Landi write down explicit solutions.

The Noncommutative Laplace Equation

A (periodic) harmonic function on a compact Riemannian manifold M^n is a harmonic map $f: M^n \to S^1$. This is dual to a unital map $C(S^1) \to C(M)$. Noncommutative analogue: $\varphi: C(S^1) \to A$, or equivalently, a unitary $u \in A$. Harmonicity amounts to looking for critical points of $\tau((\nabla(u))^*\nabla(u))$.

Example

 $A = M_2(C(S^3))$, $u \in C(S^3, U(2))$, want to minimize energy in homotopy class of the generator of $K^1(S^3)$. Solution is

$$u(z_1, z_2) = \begin{pmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{pmatrix}, \quad |z_1|^2 + |z_2|^2 = 1.$$

The Noncommutative Laplace Equation on A_{θ}

Let $\frown A = A_{\theta}$ with action of $G = \mathbb{T}^2$ as before. $K_1(A_{\theta})$ is free abelian on the classes of U and V.

Theorem

The scalar multiples of $U^m V^n$ are critical points of the energy

$$E(u) = \tau \left((\delta_1(u))^* \delta_1(u) + (\delta_2(u))^* \delta_2(u) \right),$$

and are local minima. Any critical point u depending on U alone is a power of U.

The Noncommutative Laplace Equation (cont'd)

Sketch of Proof.

Since δ_1 and δ_2 generate one-parameter groups of automorphisms, $\tau \circ \delta_j \equiv 0$. We start by deriving the "Euler-Lagrange equations" from the formula for *E*. If *u* is unitary, then any nearby unitary is of the form ue^{ith} , $h = h^*$, and

$$\frac{d}{dt}\Big|_{t=0} E(ue^{ith}) = \tau \Big(-i\delta_1(h)u^*\delta_1(u) + i\delta_1(u)^*u\delta_1(h) + \text{similar expression with } \delta_2\Big).$$

So *u* is a critical point iff $\forall h = h^*$,

$$\tau\Big(\delta_1(h)\operatorname{Im}\big(\delta_1(u)^*u\big)+\delta_2(h)\operatorname{Im}\big(\delta_2(u)^*u\big)\Big)=0. \tag{3}$$

The Noncommutative Laplace Equation (cont'd)

Sketch of Proof (cont'd).

In (3), the Im's can be omitted since u unitary $\Rightarrow \delta_j(u)^* u$ skew-adjoint. If $u = e^{i\lambda} U^m V^n$, then $\delta_1(u)^* u = -2\pi i m$ and $\delta_2(u)^* u = -2\pi i n$, so (3) becomes

$$\tau\big(m\delta_1(h)+n\delta_2(h)\big)=0,$$

which is satisfied since $\tau \circ \delta_j \equiv 0$. Furthermore, if u depends on U alone, then $\delta_2(u) = 0$. So if u is a critical point, then $\tau(\delta_1(h) \cdot \delta_1(u)^* u) = 0 \ \forall h = h^*$. Since the range of δ_1 contains U^m unless m = 0 and τ induces a nonsingular pairing, $\delta_1(u)^* u$ is a scalar, and so $u = e^{i\lambda} U^m$ for some m.

The Noncommutative Laplace Equation Harmonic Maps Between Noncommutative Tori

The Noncommutative Laplace Equation (cont'd)

Sketch of Proof (cont'd).

Finally let's show that $u = e^{i\lambda}U^mV^n$ is a local *minimum* for *E*. For simplicity take m = 1, n = 0. (The general case is similar.) Expanding shows that

$$E(Ue^{iht}) = 4\pi^2 + t^2 \tau \Big(\delta_1(h)^2 + \delta_2(h)^2 \Big) + O(t^3).$$

The term in t^2 vanishes exactly when $\delta_1(h) = \delta_2(h) = 0$, i.e., h is a constant, and in that case $E(Ue^{iht}) = 4\pi^2$ (exactly). Otherwise, the coefficient of t^2 is strictly positive and $E(Ue^{iht})$ has a strict local minimum at t = 0.

Maps Between Noncommutative Tori

This section is joint work with Mathai Varghese, Adelaide.

Theorem

Fix Θ and θ in (0, 1), both irrational, and $n \in \mathbb{N}$, $n \ge 1$. There is a unital *-homomorphism $\varphi \colon A_{\Theta} \to M_n(A_{\theta})$ if and only if $n\Theta = c\theta + d$ for some $c, d \in \mathbb{Z}, c \ne 0$. Such a *-homomorphism φ can be chosen to be an isomorphism onto its image if and only if n = 1 and $c = \pm 1$.

For simplicity let's take n = 1. Denote the canonical generators of A_{Θ} and A_{θ} by U and V, u and v, respectively. The natural analogue of E(f) in our situation is

$$E(\varphi) = \tau \Big(\delta_1(\varphi(U))^* \delta_1(\varphi(U)) + \delta_2(\varphi(U))^* \delta_2(\varphi(U)) \\ + \delta_1(\varphi(V))^* \delta_1(\varphi(V)) + \delta_2(\varphi(V))^* \delta_2(\varphi(V)) \Big).$$
(4)

Harmonic Maps Between Noncommutative Tori

For the automorphism
$$\varphi_A$$
: $u \mapsto u^p v^q$, $v \mapsto u^r v^s$, with

$$A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL(2, \mathbb{Z}), \text{ we obtain}$$

$$E(\varphi_A) = \operatorname{Tr}\left(\delta_1(u^p v^q)^* \delta_1(u^p v^q) + \delta_2(u^p v^q)^* \delta_2(u^p v^q) + \delta_1(u^r v^s)^* \delta_1(u^r v^s) + \delta_2(u^r v^s)^* \delta_2(u^r v^s)\right)$$
(5)

$$= 4\pi^2 \left(p^2 + q^2 + r^2 + s^2\right).$$

Conjecture

The value (5) of $E(\varphi_A)$ is minimal among all $E(\varphi)$, $\varphi \colon A_{\theta}^{\infty} \circlearrowleft a$ *-endomorphism inducing the matrix $A \in SL(2, \mathbb{Z})$ on $K_1(A_{\theta}) \cong \mathbb{Z}^2$.

Results on the Minimum Energy Conjecture

Theorem

The Conjecture \bullet is true if φ : $A_{\theta}^{\infty} \bigcirc$ maps u to a scalar multiple of itself. (In this case, p = s = 1 and q = 0.) The minimum is achieved precisely when $\varphi(v) = \lambda u^r v$, $\lambda \in \mathbb{T}$.

Theorem

Each φ_A is a critical point for E, and the Conjecture is "locally true" at the critical point φ_A . In other words, there is no continuous family of deformations of φ_A : $A_{\theta}^{\infty} \bigcirc$ which decreases the energy functional E, and E remains constant in a continuous family of deformations of φ_A only in the case of gauge transformations (multiplication by the images of u and v each by a scalar of modulus 1). Motivation Some New Results Conclusion

The Noncommutative Laplace Equation Harmonic Maps Between Noncommutative Tori

Results on the Minimum Energy Conjecture (cont'd)

Theorem

The Conjecture is true for automorphisms, at least assuming θ satisfies a Diophantine condition (known to hold for almost all θ). In other words, for generic θ , if φ is an automorphism of A_{θ}^{∞} inducing the map given by $A \in SL(2, \mathbb{Z})$ on $K_1(A_{\theta})$, then

 $E(\varphi) \geq E(\varphi_A),$

with equality if and only if $\varphi(U) = \lambda \varphi_A(U)$, $\varphi(V) = \mu \varphi_A(V)$, for some $\lambda, \mu \in \mathbb{T}$.

Summary

- The important geometric elliptic PDE's, like the harmonic map equation, have noncommutative analogues.
- The noncommutative Euler-Lagrange equations are usually very messy. Usually easier to work directly with variational problems.
- Even irrational rotation algebras provide lots of interesting examples.
- Unsolved problems for A_{θ} :
 - Show the only minimizers for E(u) are $e^{i\lambda}U^mV^n$.
 - Complete study of energy of *-automorphisms.
 - What about *-endomorphisms, especially when θ a quadratic irrational?
 - What about variation of the metric?