Atiyah-Singer Revisited

Paul Baum Penn State

Fields Institute Toronto, Canada

June 19, 2013

Minicourse of five lectures:

- 1. Dirac operator√
- 2. Atiyah-Singer revisited
- 3. What is K-homology?
- 4. Beyond ellipticity
- 5. The Riemann-Roch theorem

The minicourse is based on joint work with Erik van Erp.

ATIYAH-SINGER REVISITED

Dedicated to the memory of Friedrich Hirzebruch.

This is an expository talk about the Atiyah-Singer index theorem.

- **1** Dirac operator of \mathbb{R}^n will be defined. \checkmark
- 2 Some low dimensional examples of the theorem will be considered.√
- 3 A special case of the theorem will be proved, with the proof based on Bott periodicity.√
- 4 The proof will be outlined that the special case implies the full theorem.

Atiyah-Singer Index theorem

M compact C^{∞} manifold without boundary

D an elliptic differential (or pseudo-differential) operator on M

 $E^0, E^1, \quad C^{\infty} \quad \mathbb{C}$ vector bundles on M

 $C^{\infty}(M,E^j)$ denotes the $\mathbb C$ vector space of all C^{∞} sections of $E^j.$

 $D \colon C^{\infty}(M, E^0) \longrightarrow C^{\infty}(M, E^1)$

D is a linear transformation of $\mathbb C$ vector spaces.

Atiyah-Singer Index theorem

M compact C^{∞} manifold without boundary

D an elliptic differential (or pseudo-differential) operator on M

 $\mathsf{Index}(D) := \dim_{\mathbb{C}} (\mathsf{Kernel}\ D) - \dim_{\mathbb{C}} (\mathsf{Cokernel}\ D)$

Theorem (M.Atiyah and I.Singer)

Index(D) = (a topological formula)

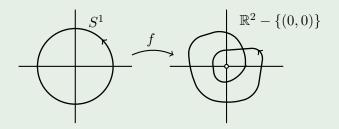
$$M = S^1 = \{ (t_1, t_2) \in \mathbb{R}^2 \mid t_1^2 + t_2^2 = 1 \}$$

 $D_f \colon L^2(S^1) \longrightarrow L^2(S^1)$ is

where
$$L^2(S^1) = L^2_+(S^1) \oplus L^2_-(S^1)$$
.

 $L^2_+(S^1)$ has as orthonormal basis $e^{in\theta}$ with $n=0,1,2,\ldots$ $L^2_-(S^1)$ has as orthonormal basis $e^{in\theta}$ with $n=-1,-2,-3,\ldots$

 $f \colon S^1 \longrightarrow \mathbb{R}^2 - \{0\}$ is a C^∞ map.



$$T_f \colon L^2_+(S^1) \longrightarrow L^2_+(S^1)$$
 is the composition

$$L^2_+(S^1) \xrightarrow{\mathcal{M}_f} L^2(S^1) \longrightarrow L^2_+(S^1)$$

 $T_f \colon L^2_+(S^1) \longrightarrow L^2_+(S^1)$ is the Toeplitz operator associated to f

Thus T_f is composition

$$T_f \colon L^2_+(S^1) \xrightarrow{\mathcal{M}_f} L^2(S^1) \xrightarrow{P} L^2_+(S^1)$$

where $L^2_+(S^1) \xrightarrow{\mathcal{M}_f} L^2(S^1)$ is $v \mapsto fv$

$$fv(t_1, t_2) := f(t_1, t_2)v(t_1, t_2) \qquad \forall (t_1, t_2) \in S^1$$

and $L^2(S^1) \stackrel{P}{\longrightarrow} L^2_+(S^1)$ is the Hilbert space projection.

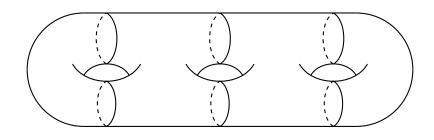
 $\mathbb{R}^2 = \mathbb{C}$

$$D_f(v+w) := T_f(v) + w$$
 $v \in L^2_+(S^1), \quad w \in L^2_-(S^1)$

 $Index(D_f) = -winding number (f).$

RIEMANN - ROCH

${\cal M}$ compact connected Riemann surface



genus of
$$M=\#$$
 of holes
$$=\frac{1}{2}\left[\mathrm{rank}H_1(M;\mathbb{Z})\right]$$

D a divisor of M

D consists of a finite set of points of M p_1,p_2,\dots,p_l and an integer assigned to each point n_1,n_2,\dots,n_l

Equivalently

D is a function $D \colon M \to \mathbb{Z}$ with finite support

$$\mathsf{Support}(D) = \{ p \in M \mid D(p) \neq 0 \}$$

 $\mathsf{Support}(D)$ is a finite subset of M

D a divisor on M

$$deg(D) := \sum_{p \in M} D(p)$$

Remark

 D_1, D_2 two divisors

$$D_1 \geqq D_2 \text{ iff } \forall p \in M, D_1(p) \geqq D_2(p)$$

Remark

D a divisor, -D is

$$(-D)(p) = -D(p)$$

Let $f: M \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function.

Define a divisor $\delta(f)$ by:

$$\delta(f)(p) = \begin{cases} 0 \text{ if } p \text{ is neither a zero nor a pole of } f \\ \text{order of the zero if } f(p) = 0 \\ -\text{(order of the pole) if } p \text{ is a pole of } f \end{cases}$$

Let w be a meromorphic 1-form on M. Locally w is f(z)dz where f is a (locally defined) meromorphic function. Define a divisor $\delta(w)$ by:

$$\delta(w)(p) = \begin{cases} 0 \text{ if } p \text{ is neither a zero nor a pole of } w \\ \text{order of the zero if } w(p) = 0 \\ - \text{(order of the pole) if } p \text{ is a pole of } w \end{cases}$$

D a divisor on M

$$\begin{split} H^0(M,D) := \left\{ \begin{array}{l} \text{meromorphic functions} \\ f \colon M \to \mathbb{C} \cup \{\infty\} \end{array} \right| \delta(f) \geqq -D \right\} \\ H^1(M,D) := \left\{ \begin{array}{l} \text{meromorphic 1-forms} \\ w \text{ on } M \end{array} \right| \delta(w) \geqq D \right\} \end{split}$$

Lemma

 $H^0(M,D)$ and $H^1(M,D)$ are finite dimensional $\mathbb C$ vector spaces

$$\dim_{\mathbb{C}} H^0(M, D) < \infty$$
$$\dim_{\mathbb{C}} H^1(M, D) < \infty$$

Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a divisor on M. Then:

$$\dim_{\mathbb{C}} H^0(M, D) - \dim_{\mathbb{C}} H^1(M, D) = d - g + 1$$

$$d = degree(D)$$

 $g = genus(M)$

HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / \mathbb{C} E an algebraic vector bundle on M $\underline{E}=$ sheaf of germs of algebraic sections of E $H^j(M,\underline{E}):=j$ -th cohomology of M using \underline{E} , $j=0,1,2,3,\ldots$

LEMMA

For all $j = 0, 1, 2, \dots \dim_{\mathbb{C}} H^j(M, \underline{E}) < \infty$.

For all $j > \dim_{\mathbb{C}}(M)$, $H^{j}(M, \underline{E}) = 0$.

$$\chi(M, E) := \sum_{j=0}^{n} (-1)^{j} \dim_{\mathbb{C}} H^{j}(M, \underline{E})$$

 $n = \dim_{\mathbb{C}}(M)$

 $\underline{\mathsf{THEOREM}}[\mathsf{HRR}] \ \mathsf{Let} \ M \ \mathsf{be a non-singular projective algebraic} \\ \mathsf{variety} \ / \ \mathbb{C} \ \mathsf{and let} \ E \ \mathsf{be an algebraic vector bundle on} \ M. \ \mathsf{Then}$

$$\chi(M, E) = (ch(E) \cup Td(M))[M]$$

Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety $/ \mathbb{C}$ and let E be an algebraic vector bundle on M. Then

$$\chi(M, E) = (ch(E) \cup Td(M))[M]$$

Various well-known structures on a C^{∞} manifold M make M into a Spin^c manifold

A Spin^c manifold can be thought of as an oriented manifold with a slight extra bit of structure. Most of the oriented manifolds which occur in practice are Spin^c manifolds.

Two Out Of Three Lemma

Lemma

Let

$$0 \longrightarrow E' \longrightarrow E \longrightarrow E'' \longrightarrow 0$$

be a short exact sequence of \mathbb{R} -vector bundles on X. If two out of three are $Spin^c$ vector bundles, then so is the third.

Definition

Let M be a C^{∞} manifold (with or without boundary). M is a Spin^c manifold iff the tangent bundle TM of M is a Spin^c vector bundle on M.

The Two Out Of Three Lemma implies that the boundary ∂M of a Spin manifold M with boundary is again a Spin manifold.

A Spin^c manifold comes equipped with a first-order elliptic differential operator known as its Dirac operator.

If M is a Spin^c manifold, then Td(M) is

$$Td(M) := \exp^{c_1(M)/2} \widehat{A}(M)$$
 $Td(M) \in H^*(M; \mathbb{Q})$

If M is a complex-analyic manifold, then M has Chern classes c_1, c_2, \ldots, c_n and

$$\exp^{c_1(M)/2}\widehat{A}(M) = P_{Todd}(c_1, c_2, \dots, c_n)$$

EXAMPLE. Let M be a compact complex-analytic manifold. Set $\Omega^{p,q}=C^{\infty}(M,\Lambda^{p,q}T^*M)$

 $\Omega^{p,q}$ is the $\mathbb C$ vector space of all C^∞ differential forms of type (p,q) Dolbeault complex

$$0 \longrightarrow \Omega^{0,0} \longrightarrow \Omega^{0,1} \longrightarrow \Omega^{0,2} \longrightarrow \cdots \longrightarrow \Omega^{0,n} \longrightarrow 0$$

The Dirac operator (of the underlying ${\sf Spin}^c$ manifold) is the assembled Dolbeault complex

$$\bar{\partial} + \bar{\partial}^* \colon \bigoplus_{j} \Omega^{0, \, 2j} \longrightarrow \bigoplus_{j} \Omega^{0, \, 2j+1}$$

The index of this operator is the arithmetic genus of M — i.e. is the Euler number of the Dolbeault complex.

TWO POINTS OF VIEW ON SPIN^c MANIFOLDS

- 1. Spin^c is a slight strengthening of oriented. The oriented manifolds that occur in practice are Spin^c .
- 2. $Spin^c$ is much weaker than complex-analytic. BUT the assempled Dolbeault complex survives (as the Dirac operator). AND the Todd class survives.

$$M \operatorname{Spin}^c \Longrightarrow \exists Td(M) \in H^*(M; \mathbb{Q})$$

SPECIAL CASE OF ATIYAH-SINGER

Let M be a compact even-dimensional Spin^c manifold without boundary. Let E be a $\mathbb C$ vector bundle on M.

 D_E denotes the Dirac operator of M tensored with E.

$$D_E \colon C^{\infty}(M, S^+ \otimes E) \longrightarrow C^{\infty}(M, S^- \otimes E)$$

 S^+, S^- are the positive (negative) spinor bundles on M.

$$\underline{\mathsf{THEOREM}}\ \mathsf{Index}(D_E) = (ch(E) \cup Td(M))[M].$$

$K_0(\cdot)$

Definition

Define an abelian group denoted $K_0(\cdot)$ by considering pairs (M,E) such that:

- $\ensuremath{\mathbf{I}} M$ is a compact even-dimensional $\ensuremath{\mathsf{Spin}}^c$ manifold without boundary.
- **2** E is a \mathbb{C} vector bundle on M.

Set $K_0(\cdot) = \{(M, E)\}/\sim$ where the the equivalence relation \sim is generated by the three elementary steps

- Bordism
- Direct sum disjoint union
- Vector bundle modification

Addition in $K_0(\cdot)$ is disjoint union.

$$(M, E) + (M', E') = (M \sqcup M', E \sqcup E')$$

In $K_0(\cdot)$ the additive inverse of (M, E) is (-M, E) where -M denotes M with the Spin^c structure reversed.

$$-(M, E) = (-M, E)$$

Isomorphism (M,E) is isomorphic to (M',E') iff \exists a diffeomorphism

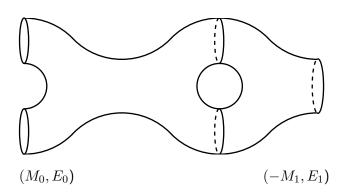
$$\psi \colon M \to M'$$

preserving the $Spin^c$ -structures on M, M' and with

$$\psi^*(E') \cong E$$
.

Bordism (M_0, E_0) is **bordant** to (M_1, E_1) iff $\exists (\Omega, E)$ such that:

- $\ \ \, \mathbf 1$ Ω is a compact odd-dimensional Spin^c manifold with boundary.
- **2** E is a \mathbb{C} vector bundle on Ω .
- $(\partial\Omega, E|_{\partial\Omega}) \cong (M_0, E_0) \sqcup (-M_1, E_1,)$
- $-M_1$ is M_1 with the Spin^c structure reversed.



Direct sum - disjoint union

Let E, E' be two $\mathbb C$ vector bundles on M

$$(M, E) \sqcup (M, E') \sim (M, E \oplus E')$$

Vector bundle modification

Let F be a Spin^c vector bundle on M

Assume that

$$\dim_{\mathbb{R}}(F_p) \equiv 0 \mod 2 \quad p \in M$$

for every fiber F_p of F

$$\mathbf{1}_{\mathbb{R}}=M imes\mathbb{R}$$
 $S(F\oplus\mathbf{1}_{\mathbb{R}}):=$ unit sphere bundle of $F\oplus\mathbf{1}_{\mathbb{R}}$ $(M,E)\sim(S(F\oplus\mathbf{1}_{\mathbb{R}}),eta\otimes\pi^*E)$

$$S(F \oplus \mathbf{1}_{\mathbb{R}}) \downarrow \pi$$

$$M$$

This is a fibration with even-dimensional spheres as fibers.

 $F \oplus \mathbf{1}_{\mathbb{R}}$ is a Spin^c vector bundle on M with odd-dimensional fibers.

The Spin^c structure for F causes there to appear on $S(F\oplus 1_\mathbb{R})$ a \mathbb{C} -vector bundle β whose restriction to each fiber of π is the Bott generator vector bundle of that even-dimensional sphere.

$$(M, E) \sim (S(F \oplus \mathbf{1}_{\mathbb{R}}), \beta \otimes \pi^* E)$$

Addition in $K_0(\cdot)$ is disjoint union.

$$(M, E) + (M', E') = (M \sqcup M', E \sqcup E')$$

In $K_0(\cdot)$ the additive inverse of (M, E) is (-M, E) where -M denotes M with the Spin^c structure reversed.

$$-(M, E) = (-M, E)$$

<u>DEFINITION</u>. (M, E) bounds $\iff \exists (\Omega, \widetilde{E})$ with:

- $\ensuremath{\mathbf{1}}$ Ω is a compact odd-dimensional Spin^c manifold with boundary.
- \widetilde{E} is a \mathbb{C} vector bundle on Ω .
- $(\partial\Omega,\widetilde{E}|_{\partial\Omega})\cong(M,E)$

<u>REMARK.</u> (M, E) = 0 in $K_0(\cdot) \iff (M, E) \sim (M', E')$ where (M', E') bounds.

Consider the homomorphism of abelian groups

$$K_0(\cdot) \longrightarrow \mathbb{Z}$$

 $(M, E) \longmapsto \operatorname{Index}(D_E)$

Notation

 ${\cal D}_E$ is the Dirac operator of ${\cal M}$ tensored with ${\cal E}.$

It is a corollary of Bott periodicity that this homomorphism of abelian groups is an isomorphism.

Equivalently, Index (D_E) is a complete invariant for the equivalence relation generated by the three elementary steps; i.e. $(M,E) \sim (M',E')$ if and only if $\operatorname{Index}(D_E) = \operatorname{Index}(D'_{E'})$.

BOTT PERIODICITY

Why does Bott periodicity imply that

$$K_0(\cdot) \longrightarrow \mathbb{Z}$$

 $(M, E) \longmapsto \operatorname{Index}(D_E)$

is an isomorphism?

To prove surjectivity must find an (M, E) with $Index(D_E) = 1$.

e.g. Let $M=\mathbb{C}P^n$, and let E be the trivial (complex) line bundle on $\mathbb{C}P^n$ $E=1_{\mathbb{C}}=\mathbb{C}P^n\times\mathbb{C}$ Index $(\mathbb{C}P^n,1_{\mathbb{C}})=1$

Thus Bott periodicity is not used in the proof of surjectivity.

Lemma used in the Proof of Injectivity

Given any (M,E) there exists an even-dimensional sphere S^{2n} and a \mathbb{C} -vector bundle F on S^{2n} with $(M,E)\sim (S^{2n},F)$.

Bott periodicity is not used in the proof of this lemma. The lemma is proved by a direct argument using the definition of the equivalence relation on the pairs (M,E).

Let r be a positive integer, and let $\mathrm{Vect}_{\mathbb{C}}(S^{2n},r)$ be the set of isomorphism classes of \mathbb{C} vector bundles on S^{2n} of rank r, i.e. of fiber dimension r.

$$\operatorname{Vect}_{\mathbb{C}}(S^{2n}, r) \longleftrightarrow \pi_{2n-1}GL(r, \mathbb{C})$$

PROOF OF INJECTIVITY

Let (M, E) have Index(M, E) = 0.

By the above lemma, we may assume that $(M,E)=(S^{2n},F).$ Using Bott periodicity plus the bijection

$$\operatorname{Vect}_{\mathbb{C}}(S^{2n},r)\longleftrightarrow \pi_{2n-1}GL(r,\mathbb{C})$$

we may assume that F is of the form

$$F = \theta^p \oplus q\beta$$

 $\theta^p = S^{2n} \times \mathbb{C}^p$ and β is the Bott generator vector bundle on S^{2n} . Convention. If q < 0, then $q\beta = |q|\beta^*$.

 $\operatorname{Index}(S^{2n},\beta)=1 \quad \operatorname{Index}(S^{2n},\theta^p)=0$ Therefore

$$\operatorname{Index}(S^{2n}, F) = 0 \Longrightarrow q = 0$$

Hence $(S^{2n}, F) = (S^{2n}, \theta^p)$. This bounds

$$(S^{2n}, \theta^p) = \partial(B^{2n+1}, B^{2n+1} \times \mathbb{C}^p)$$

and so is zero in $K_0(\cdot)$. QED

Define a homomorphism of abelian groups

$$K_0(\cdot) \longrightarrow \mathbb{Q}$$

 $(M, E) \longmapsto (ch(E) \cup Td(M))[M]$

where ch(E) is the Chern character of E and $\operatorname{Td}(M)$ is the Todd class of M.

$$ch(E) \in H^*(M, \mathbb{Q})$$
 and $\mathrm{Td}(M) \in H^*(M, \mathbb{Q})$.

[M] is the orientation cycle of M. $[M] \in H_*(M, \mathbb{Z})$.

Granted that

$$K_0(\cdot) \longrightarrow \mathbb{Z}$$

 $(M, E) \longmapsto \operatorname{Index}(D_E)$

is an isomorphism, to prove that these two homomorphisms are equal, it suffices to check one nonzero example.

Let X be a compact C^{∞} manifold without boundary.

X is not required to be oriented.

 \boldsymbol{X} is not required to be even dimensional.

On X let

$$\delta: C^{\infty}(X, E_0) \longrightarrow C^{\infty}(X, E_1)$$

be an elliptic differential (or pseudo-differential) operator.

$$(S(TX \oplus 1_{\mathbb{R}}), E_{\sigma}) \in \mathrm{K}_0(\cdot)$$
, and

$$\operatorname{Index}(D_{E_{\sigma}}) = \operatorname{Index}(\delta).$$

$$(S(TX \oplus 1_{\mathbb{R}}), E_{\sigma})$$

$$\downarrow \downarrow$$

$$\mathsf{Index}(\delta) = (ch(E_{\sigma}) \cup \mathsf{Td}((S(TX \oplus 1_{\mathbb{R}})))[(S(TX \oplus 1_{\mathbb{R}}))]$$

and this is the general Atiyah-Singer formula.

 $S(TX \oplus 1_{\mathbb{R}})$ is the unit sphere bundle of $TX \oplus 1_{\mathbb{R}}$.

 $S(TX\oplus 1_{\mathbb{R}})$ is even dimensional and is — in a natural way — a Spin c manifold.

 E_{σ} is the \mathbb{C} vector bundle on $S(TX \oplus 1_{\mathbb{R}})$ obtained by doing a clutching construction using the symbol σ of δ .