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Minicourse of five lectures:

1. Dirac operatorX

2. Atiyah-Singer revisited

3. What is K-homology?

4. Beyond ellipticity

5. The Riemann-Roch theorem

The minicourse is based on joint work with Erik van Erp.



ATIYAH-SINGER REVISITED

Dedicated to the memory of Friedrich Hirzebruch.

This is an expository talk about the Atiyah-Singer index theorem.

1 Dirac operator of Rn will be defined.X

2 Some low dimensional examples of the theorem will be
considered.X

3 A special case of the theorem will be proved, with the proof
based on Bott periodicity.X

4 The proof will be outlined that the special case implies the full
theorem.



Atiyah-Singer Index theorem

M compact C∞ manifold without boundary

D an elliptic differential (or pseudo-differential) operator on M

E0, E1, C∞ C vector bundles on M

C∞(M,Ej) denotes the C vector space of all C∞ sections of Ej .

D : C∞(M,E0) −→ C∞(M,E1)

D is a linear transformation of C vector spaces.



Atiyah-Singer Index theorem

M compact C∞ manifold without boundary

D an elliptic differential (or pseudo-differential) operator on M

Index(D) := dimC (Kernel D)− dimC (Cokernel D)

Theorem (M.Atiyah and I.Singer)

Index (D) = (a topological formula)



Example

M = S1 = {(t1, t2) ∈ R2 | t21 + t22 = 1}

Df : L2(S1) −→ L2(S1) is

0

Tf

I

0

where L2(S1) = L2
+(S1)⊕ L2

−(S1).

L2
+(S1) has as orthonormal basis einθ with n = 0, 1, 2, . . .

L2
−(S1) has as orthonormal basis einθ with n = −1,−2,−3, . . ..



Example

f : S1 −→ R2 − {0} is a C∞ map.

S1 R2 − {(0, 0)}
f

Tf : L2
+(S1) −→ L2

+(S1) is the composition

L2
+(S1)

Mf−→ L2(S1) −→ L2
+(S1)

Tf : L2
+(S1) −→ L2

+(S1) is the Toeplitz operator associated to f



Example

Thus Tf is composition

Tf : L2
+(S1)

Mf−→ L2(S1) P−→ L2
+(S1)

where L2
+(S1)

Mf−→ L2(S1) is v 7→ fv
fv(t1, t2) := f(t1, t2)v(t1, t2) ∀(t1, t2) ∈ S1 R2 = C

and L2(S1) P−→ L2
+(S1) is the Hilbert space projection.

Df (v + w) := Tf (v) + w v ∈ L2
+(S1), w ∈ L2

−(S1)

Index(Df ) = -winding number (f).



RIEMANN - ROCH

M compact connected Riemann surface

genus of M = # of holes

=
1
2

[rankH1(M ; Z)]



D a divisor of M

D consists of a finite set of points of M p1, p2, . . . , pl and an
integer assigned to each point n1, n2, . . . , nl

Equivalently

D is a function D : M → Z with finite support

Support(D) = {p ∈M | D(p) 6= 0}

Support(D) is a finite subset of M



D a divisor on M

deg(D) :=
∑

p∈M D(p)

Remark

D1, D2 two divisors

D1 = D2 iff ∀p ∈M,D1(p) = D2(p)

Remark

D a divisor, −D is
(−D)(p) = −D(p)



Example

Let f : M → C ∪ {∞} be a meromorphic function.

Define a divisor δ(f) by:

δ(f)(p) =


0 if p is neither a zero nor a pole of f

order of the zero if f(p) = 0
−(order of the pole) if p is a pole of f



Example

Let w be a meromorphic 1-form on M . Locally w is f(z)dz where
f is a (locally defined) meromorphic function. Define a divisor
δ(w) by:

δ(w)(p) =


0 if p is neither a zero nor a pole of w

order of the zero if w(p) = 0
−(order of the pole) if p is a pole of w



D a divisor on M

H0(M,D) :=

{
meromorphic functions

f : M → C ∪ {∞}

∣∣∣∣∣ δ(f) = −D

}

H1(M,D) :=

{
meromorphic 1-forms

w on M

∣∣∣∣∣ δ(w) = D

}

Lemma

H0(M,D) and H1(M,D) are finite dimensional C vector spaces

dimCH
0(M,D) <∞

dimCH
1(M,D) <∞



Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a
divisor on M . Then:

dimCH
0(M,D)− dimCH

1(M,D) = d− g + 1

d = degree (D)
g = genus (M)



HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / C
E an algebraic vector bundle on M

E = sheaf of germs of algebraic sections of E

Hj(M,E) := j-th cohomology of M using E,
j = 0, 1, 2, 3, . . .



LEMMA
For all j = 0, 1, 2, . . . dimCH

j(M,E) <∞.

For all j > dimC(M), Hj(M,E) = 0.

χ(M,E) :=
n∑
j=0

(−1)j dimCH
j(M,E)

n = dimC(M)

THEOREM[HRR] Let M be a non-singular projective algebraic
variety / C and let E be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]



Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / C and let E
be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]



Various well-known structures on a C∞ manifold M make M into
a Spinc manifold

(complex-analytic)
⇓

(symplectic) ⇒ (almost complex)
⇓

(contact) ⇒ (stably almost complex)
⇓

Spin ⇒ Spinc

⇓
(oriented)

A Spinc manifold can be thought of as an oriented manifold with a
slight extra bit of structure. Most of the oriented manifolds which
occur in practice are Spinc manifolds.



Two Out Of Three Lemma

Lemma

Let
0 −→ E′ −→ E −→ E′′ −→ 0

be a short exact sequence of R-vector bundles on X. If two out of
three are Spinc vector bundles, then so is the third.



Definition

Let M be a C∞ manifold (with or without boundary). M is a
Spinc manifold iff the tangent bundle TM of M is a Spinc vector
bundle on M .

The Two Out Of Three Lemma implies that the boundary ∂M of
a Spinc manifold M with boundary is again a Spinc manifold.



A Spinc manifold comes equipped with a first-order elliptic
differential operator known as its Dirac operator.

If M is a Spinc manifold, then Td(M) is

Td(M) := expc1(M)/2Â(M) Td(M) ∈ H∗(M ; Q)

If M is a complex-analyic manifold, then M has Chern classes
c1, c2, . . . , cn and

expc1(M)/2Â(M) = PTodd(c1, c2, . . . , cn)



EXAMPLE. Let M be a compact complex-analytic manifold.
Set Ωp,q = C∞(M,Λp,qT ∗M)
Ωp,q is the C vector space of all C∞ differential forms of type (p, q)
Dolbeault complex

0 −→ Ω0,0 −→ Ω0,1 −→ Ω0,2 −→ · · · −→ Ω0,n −→ 0

The Dirac operator (of the underlying Spinc manifold) is the
assembled Dolbeault complex

∂̄ + ∂̄∗ :
⊕
j

Ω0, 2j −→
⊕
j

Ω0, 2j+1

The index of this operator is the arithmetic genus of M — i.e. is
the Euler number of the Dolbeault complex.



TWO POINTS OF VIEW ON SPINc MANIFOLDS

1. Spinc is a slight strengthening of oriented. The oriented
manifolds that occur in practice are Spinc.

2. Spinc is much weaker than complex-analytic. BUT the
assempled Dolbeault complex survives (as the Dirac operator).
AND the Todd class survives.

M Spinc =⇒ ∃ Td(M) ∈ H∗(M ; Q)



SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spinc manifold
without boundary. Let E be a C vector bundle on M .

DE denotes the Dirac operator of M tensored with E.

DE : C∞(M,S+ ⊗ E) −→ C∞(M,S− ⊗ E)

S+, S− are the positive (negative) spinor bundles on M .

THEOREM Index(DE) = (ch(E) ∪ Td(M))[M ].



K0(·)

Definition

Define an abelian group denoted K0(·) by considering pairs (M,E)
such that:

1 M is a compact even-dimensional Spinc manifold without
boundary.

2 E is a C vector bundle on M .



Set K0(·) = {(M,E)}/ ∼ where the the equivalence relation ∼
is generated by the three elementary steps

Bordism

Direct sum - disjoint union

Vector bundle modification

Addition in K0(·) is disjoint union.

(M,E) + (M ′, E′) = (M tM ′, E t E′)

In K0(·) the additive inverse of (M,E) is (−M,E) where −M
denotes M with the Spinc structure reversed.

−(M,E) = (−M,E)



Isomorphism (M,E) is isomorphic to (M ′, E′) iff ∃ a
diffeomorphism

ψ : M →M ′

preserving the Spinc-structures on M,M ′ and with

ψ∗(E′) ∼= E.



Bordism (M0, E0) is bordant to (M1, E1) iff ∃ (Ω, E) such that:

1 Ω is a compact odd-dimensional Spinc manifold with
boundary.

2 E is a C vector bundle on Ω.

3 (∂Ω, E|∂Ω) ∼= (M0, E0) t (−M1, E1, )

−M1 is M1 with the Spinc structure reversed.



(M0, E0) (−M1, E1)



Direct sum - disjoint union

Let E,E′ be two C vector bundles on M

(M,E) t (M,E′) ∼ (M,E ⊕ E′)



Vector bundle modification

(M,E)

Let F be a Spinc vector bundle on M

Assume that
dimR(Fp) ≡ 0 mod 2 p ∈M

for every fiber Fp of F

1R = M × R

S(F ⊕ 1R) := unit sphere bundle of F ⊕ 1R

(M,E) ∼ (S(F ⊕ 1R), β ⊗ π∗E)



S(F ⊕ 1R)

M

π

This is a fibration with even-dimensional spheres as fibers.

F ⊕ 1R is a Spinc vector bundle on M with odd-dimensional fibers.

The Spinc structure for F causes there to appear on S(F ⊕ 1R) a
C-vector bundle β whose restriction to each fiber of π is the Bott
generator vector bundle of that even-dimensional sphere.

(M,E) ∼ (S(F ⊕ 1R), β ⊗ π∗E)



Addition in K0(·) is disjoint union.

(M,E) + (M ′, E′) = (M tM ′, E t E′)

In K0(·) the additive inverse of (M,E) is (−M,E) where −M
denotes M with the Spinc structure reversed.

−(M,E) = (−M,E)



DEFINITION. (M,E) bounds ⇐⇒ ∃ (Ω, Ẽ) with :

1 Ω is a compact odd-dimensional Spinc manifold with
boundary.

2 Ẽ is a C vector bundle on Ω.

3 (∂Ω, Ẽ|∂Ω) ∼= (M,E)

REMARK. (M,E) = 0 in K0(·)⇐⇒ (M,E) ∼ (M ′, E′) where
(M ′, E′) bounds.



Consider the homomorphism of abelian groups

K0(·) −→ Z
(M,E) 7−→ Index(DE)

Notation

DE is the Dirac operator of M tensored with E.



It is a corollary of Bott periodicity that this homomorphism of
abelian groups is an isomorphism.

Equivalently, Index(DE) is a complete invariant for the equivalence
relation generated by the three elementary steps; i.e.
(M,E) ∼ (M ′, E′) if and only if Index(DE) = Index(D′E′).



BOTT PERIODICITY

πjGL(n,C) =


Z j odd

0 j even

j = 0, 1, 2, . . . , 2n− 1



Why does Bott periodicity imply that

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is an isomorphism?



To prove surjectivity must find an (M,E) with Index(DE) = 1.

e.g. Let M = CPn, and let E
be the trivial (complex) line bundle on CPn
E=1C = CPn × C
Index(CPn, 1C) = 1

Thus Bott periodicity is not used in the proof of surjectivity.



Lemma used in the Proof of Injectivity

Given any (M,E) there exists an even-dimensional sphere S2n and
a C-vector bundle F on S2n with (M,E) ∼ (S2n, F ).

Bott periodicity is not used in the proof of this lemma.
The lemma is proved by a direct argument using the definition of
the equivalence relation on the pairs (M,E).



Let r be a positive integer, and let VectC(S2n, r)
be the set of isomorphism classes of C vector bundles on S2n

of rank r, i.e. of fiber dimension r.

VectC(S2n, r)←→ π2n−1GL(r,C)



PROOF OF INJECTIVITY
Let (M,E) have Index(M,E) = 0.
By the above lemma, we may assume that (M,E) = (S2n, F ).
Using Bott periodicity plus the bijection

VectC(S2n, r)←→ π2n−1GL(r,C)

we may assume that F is of the form

F = θp ⊕ qβ

θp = S2n ×Cp and β is the Bott generator vector bundle on S2n.
Convention. If q < 0, then qβ = |q|β∗.



Index(S2n, β) = 1 Index(S2n, θp) = 0
Therefore

Index(S2n, F ) = 0 =⇒ q = 0

Hence (S2n, F ) = (S2n, θp). This bounds

(S2n, θp) = ∂(B2n+1, B2n+1 × Cp)

and so is zero in K0(·).
QED



Define a homomorphism of abelian groups

K0(·) −→ Q
(M,E) 7−→

(
ch(E) ∪ Td(M)

)
[M ]

where ch(E) is the Chern character of E and Td(M) is the Todd
class of M .

ch(E) ∈ H∗(M,Q) and Td(M) ∈ H∗(M,Q).

[M ] is the orientation cycle of M . [M ] ∈ H∗(M,Z).



Granted that

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is an isomorphism, to prove that these two homomorphisms are
equal, it suffices to check one nonzero example.



Let X be a compact C∞ manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

δ : C∞(X,E0) −→ C∞(X,E1)

be an elliptic differential (or pseudo-differential) operator.

(S(TX ⊕ 1R), Eσ) ∈ K0(·), and

Index(DEσ) = Index(δ).



(S(TX ⊕ 1R), Eσ)ww�
Index(δ) = (ch(Eσ) ∪ Td((S(TX ⊕ 1R)))[(S(TX ⊕ 1R)]

and this is the general Atiyah-Singer formula.

S(TX ⊕ 1R) is the unit sphere bundle of TX ⊕ 1R.
S(TX ⊕ 1R) is even dimensional and is — in a natural way — a
Spinc manifold.

Eσ is the C vector bundle on S(TX ⊕ 1R) obtained by doing a
clutching construction using the symbol σ of δ.


