Atiyah-Singer Revisited

Paul Baum
Penn State

Fields Institute
Toronto, Canada

June 19, 2013

Minicourse of five lectures:

1. Dirac operator \checkmark
2. Atiyah-Singer revisited
3. What is K-homology?
4. Beyond ellipticity
5. The Riemann-Roch theorem

The minicourse is based on joint work with Erik van Erp.

ATIYAH-SINGER REVISITED

Dedicated to the memory of Friedrich Hirzebruch.
This is an expository talk about the Atiyah-Singer index theorem.
1 Dirac operator of \mathbb{R}^{n} will be defined. \checkmark
2 Some low dimensional examples of the theorem will be considered. \checkmark
3 A special case of the theorem will be proved, with the proof based on Bott periodicity. \checkmark
4 The proof will be outlined that the special case implies the full theorem.

Atiyah-Singer Index theorem
M compact C^{∞} manifold without boundary
D an elliptic differential (or pseudo-differential) operator on M
$E^{0}, E^{1}, \quad C^{\infty} \quad \mathbb{C}$ vector bundles on M
$C^{\infty}\left(M, E^{j}\right)$ denotes the \mathbb{C} vector space of all C^{∞} sections of E^{j}.
$D: C^{\infty}\left(M, E^{0}\right) \longrightarrow C^{\infty}\left(M, E^{1}\right)$
D is a linear transformation of \mathbb{C} vector spaces.

Atiyah-Singer Index theorem
M compact C^{∞} manifold without boundary
D an elliptic differential (or pseudo-differential) operator on M
$\operatorname{Index}(D):=\operatorname{dim}_{\mathbb{C}}($ Kernel $D)-\operatorname{dim}_{\mathbb{C}}($ Cokernel $D)$

Theorem (M.Atiyah and I.Singer)

Index $(D)=($ a topological formula)

Example

$M=S^{1}=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2} \mid t_{1}^{2}+t_{2}^{2}=1\right\}$
$D_{f}: L^{2}\left(S^{1}\right) \longrightarrow L^{2}\left(S^{1}\right)$ is

T_{f}	0
0	I

where $L^{2}\left(S^{1}\right)=L_{+}^{2}\left(S^{1}\right) \oplus L_{-}^{2}\left(S^{1}\right)$.
$L_{+}^{2}\left(S^{1}\right)$ has as orthonormal basis $e^{i n \theta}$ with $n=0,1,2, \ldots$
$L_{-}^{2}\left(S^{1}\right)$ has as orthonormal basis $e^{i n \theta}$ with $n=-1,-2,-3, \ldots$.

Example

$f: S^{1} \longrightarrow \mathbb{R}^{2}-\{0\}$ is a C^{∞} map.

$T_{f}: L_{+}^{2}\left(S^{1}\right) \longrightarrow L_{+}^{2}\left(S^{1}\right)$ is the composition
$L_{+}^{2}\left(S^{1}\right) \xrightarrow{\mathcal{M}_{f}} L^{2}\left(S^{1}\right) \longrightarrow L_{+}^{2}\left(S^{1}\right)$
$T_{f}: L_{+}^{2}\left(S^{1}\right) \longrightarrow L_{+}^{2}\left(S^{1}\right)$ is the Toeplitz operator associated to f

Example

Thus T_{f} is composition
$T_{f}: L_{+}^{2}\left(S^{1}\right) \xrightarrow{\mathcal{M}_{f}} L^{2}\left(S^{1}\right) \xrightarrow{P} L_{+}^{2}\left(S^{1}\right)$
where $L_{+}^{2}\left(S^{1}\right) \xrightarrow{\mathcal{M}_{f}} L^{2}\left(S^{1}\right)$ is $v \mapsto f v$
$f v\left(t_{1}, t_{2}\right):=f\left(t_{1}, t_{2}\right) v\left(t_{1}, t_{2}\right) \quad \forall\left(t_{1}, t_{2}\right) \in S^{1} \quad \mathbb{R}^{2}=\mathbb{C}$
and $L^{2}\left(S^{1}\right) \xrightarrow{P} L_{+}^{2}\left(S^{1}\right)$ is the Hilbert space projection.
$D_{f}(v+w):=T_{f}(v)+w \quad v \in L_{+}^{2}\left(S^{1}\right), \quad w \in L_{-}^{2}\left(S^{1}\right)$
$\operatorname{Index}\left(D_{f}\right)=-$ winding number (f).

RIEMANN - ROCH

M compact connected Riemann surface

genus of $M=\#$ of holes

$$
=\frac{1}{2}\left[\operatorname{rank} H_{1}(M ; \mathbb{Z})\right]
$$

D a divisor of M
D consists of a finite set of points of $M p_{1}, p_{2}, \ldots, p_{l}$ and an integer assigned to each point $n_{1}, n_{2}, \ldots, n_{l}$

Equivalently
D is a function $D: M \rightarrow \mathbb{Z}$ with finite support
Support $(D)=\{p \in M \mid D(p) \neq 0\}$
Support (D) is a finite subset of M
D a divisor on M

$$
\operatorname{deg}(D):=\sum_{p \in M} D(p)
$$

Remark

D_{1}, D_{2} two divisors

$$
D_{1} \geqq D_{2} \text { iff } \forall p \in M, D_{1}(p) \geqq D_{2}(p)
$$

Remark

D a divisor, $-D$ is

$$
(-D)(p)=-D(p)
$$

Example

Let $f: M \rightarrow \mathbb{C} \cup\{\infty\}$ be a meromorphic function.
Define a divisor $\delta(f)$ by:

$$
\delta(f)(p)=\left\{\begin{array}{l}
0 \text { if } p \text { is neither a zero nor a pole of } f \\
\text { order of the zero if } f(p)=0 \\
-(\text { order of the pole) if } p \text { is a pole of } f
\end{array}\right.
$$

Example

Let w be a meromorphic 1-form on M. Locally w is $f(z) d z$ where f is a (locally defined) meromorphic function. Define a divisor $\delta(w)$ by:

$$
\delta(w)(p)=\left\{\begin{array}{l}
0 \text { if } p \text { is neither a zero nor a pole of } w \\
\text { order of the zero if } w(p)=0 \\
-(\text { order of the pole }) \text { if } p \text { is a pole of } w
\end{array}\right.
$$

D a divisor on M

$$
\left.\left.\left.\left.\begin{array}{rl}
H^{0}(M, D) & :=\left\{\begin{array}{l}
\text { meromorphic functions } \\
f: M \rightarrow \mathbb{C} \cup\{\infty\}
\end{array}\right.
\end{array} \right\rvert\, \delta(f) \geqq-D\right\},\right\} \left.\begin{array}{c}
\text { meromorphic 1-forms } \\
w \text { on } M
\end{array} \right\rvert\, \delta(w) \geqq D\right\}, ~ \$ H^{1}(M, D):=\left\{\begin{array}{l}
\end{array}\right.
$$

Lemma

$H^{0}(M, D)$ and $H^{1}(M, D)$ are finite dimensional \mathbb{C} vector spaces

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}} H^{0}(M, D)<\infty \\
& \operatorname{dim}_{\mathbb{C}} H^{1}(M, D)<\infty
\end{aligned}
$$

Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a divisor on M. Then:

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}} H^{0}(M, D) & -\operatorname{dim}_{\mathbb{C}} H^{1}(M, D)=d-g+1 \\
d & =\operatorname{degree}(D) \\
g & =\text { genus }(M)
\end{aligned}
$$

HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / \mathbb{C}
E an algebraic vector bundle on M
$\underline{E}=$ sheaf of germs of algebraic sections of E
$H^{j}(M, \underline{E}):=j$-th cohomology of M using \underline{E},
$j=0,1,2,3, \ldots$

LEMMA
For all $j=0,1,2, \ldots \operatorname{dim}_{\mathbb{C}} H^{j}(M, \underline{E})<\infty$.
For all $j>\operatorname{dim}_{\mathbb{C}}(M), \quad H^{j}(M, \underline{E})=0$.

$$
\chi(M, E):=\sum_{j=0}^{n}(-1)^{j} \operatorname{dim}_{\mathbb{C}} H^{j}(M, \underline{E})
$$

$n=\operatorname{dim}_{\mathbb{C}}(M)$

THEOREM[HRR] Let M be a non-singular projective algebraic variety $/ \mathbb{C}$ and let E be an algebraic vector bundle on M. Then

$$
\chi(M, E)=(\operatorname{ch}(E) \cup \operatorname{Td}(M))[M]
$$

Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / \mathbb{C} and let E be an algebraic vector bundle on M. Then

$$
\chi(M, E)=(\operatorname{ch}(E) \cup T d(M))[M]
$$

Various well-known structures on a C^{∞} manifold M make M into a Spin ${ }^{c}$ manifold

A Spin ${ }^{c}$ manifold can be thought of as an oriented manifold with a slight extra bit of structure. Most of the oriented manifolds which occur in practice are Spin ${ }^{c}$ manifolds.

Two Out Of Three Lemma

Lemma

Let

$$
0 \longrightarrow E^{\prime} \longrightarrow E \longrightarrow E^{\prime \prime} \longrightarrow 0
$$

be a short exact sequence of \mathbb{R}-vector bundles on X. If two out of three are Spin ${ }^{c}$ vector bundles, then so is the third.

Definition

Let M be a C^{∞} manifold (with or without boundary). M is a Spin ${ }^{c}$ manifold iff the tangent bundle $T M$ of M is a Spin^{c} vector bundle on M.

The Two Out Of Three Lemma implies that the boundary ∂M of a Spin^{c} manifold M with boundary is again a Spin^{c} manifold.

A Spin ${ }^{c}$ manifold comes equipped with a first-order elliptic differential operator known as its Dirac operator.

If M is a Spin^{c} manifold, then $T d(M)$ is

$$
T d(M):=\exp ^{c_{1}(M) / 2} \widehat{A}(M) \quad T d(M) \in H^{*}(M ; \mathbb{Q})
$$

If M is a complex-analyic manifold, then M has Chern classes $c_{1}, c_{2}, \ldots, c_{n}$ and

$$
\exp ^{c_{1}(M) / 2} \widehat{A}(M)=P_{\text {Todd }}\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

EXAMPLE. Let M be a compact complex-analytic manifold. Set $\Omega^{p, q}=C^{\infty}\left(M, \Lambda^{p, q} T^{*} M\right)$
$\Omega^{p, q}$ is the \mathbb{C} vector space of all C^{∞} differential forms of type (p, q) Dolbeault complex

$$
0 \longrightarrow \Omega^{0,0} \longrightarrow \Omega^{0,1} \longrightarrow \Omega^{0,2} \longrightarrow \cdots \longrightarrow \Omega^{0, n} \longrightarrow 0
$$

The Dirac operator (of the underlying Spin^{c} manifold) is the assembled Dolbeault complex

$$
\bar{\partial}+\bar{\partial}^{*}: \bigoplus_{j} \Omega^{0,2 j} \longrightarrow \bigoplus_{j} \Omega^{0,2 j+1}
$$

The index of this operator is the arithmetic genus of M - i.e. is the Euler number of the Dolbeault complex.

TWO POINTS OF VIEW ON SPIN ${ }^{c}$ MANIFOLDS

1. Spin ${ }^{c}$ is a slight strengthening of oriented. The oriented manifolds that occur in practice are Spin^{c}.
2. Spin c is much weaker than complex-analytic. BUT the assempled Dolbeault complex survives (as the Dirac operator). AND the Todd class survives.

$$
M \quad \operatorname{Spin}^{c} \Longrightarrow \quad \exists \quad \operatorname{Td}(M) \in H^{*}(M ; \mathbb{Q})
$$

SPECIAL CASE OF ATIYAH-SINGER

Let M be a compact even-dimensional Spin c manifold without boundary. Let E be a \mathbb{C} vector bundle on M.
D_{E} denotes the Dirac operator of M tensored with E.

$$
D_{E}: C^{\infty}\left(M, S^{+} \otimes E\right) \longrightarrow C^{\infty}\left(M, S^{-} \otimes E\right)
$$

S^{+}, S^{-}are the positive (negative) spinor bundles on M.
THEOREM $\operatorname{Index}\left(D_{E}\right)=(\operatorname{ch}(E) \cup T d(M))[M]$.

$\mathrm{K}_{0}(\cdot)$

Definition

Define an abelian group denoted $\mathrm{K}_{0}(\cdot)$ by considering pairs (M, E) such that:
$1 M$ is a compact even-dimensional Spin c manifold without boundary.
2. E is a \mathbb{C} vector bundle on M.

Set $\mathrm{K}_{0}(\cdot)=\{(M, E)\} / \sim \quad$ where the the equivalence relation \sim is generated by the three elementary steps

- Bordism
- Direct sum - disjoint union
- Vector bundle modification

Addition in $\mathrm{K}_{0}(\cdot)$ is disjoint union.

$$
(M, E)+\left(M^{\prime}, E^{\prime}\right)=\left(M \sqcup M^{\prime}, E \sqcup E^{\prime}\right)
$$

In $\mathrm{K}_{0}(\cdot)$ the additive inverse of (M, E) is $(-M, E)$ where $-M$ denotes M with the Spin^{c} structure reversed.

$$
-(M, E)=(-M, E)
$$

Isomorphism (M, E) is isomorphic to $\left(M^{\prime}, E^{\prime}\right)$ iff \exists a diffeomorphism

$$
\psi: M \rightarrow M^{\prime}
$$

preserving the Spin^{c}-structures on M, M^{\prime} and with

$$
\psi^{*}\left(E^{\prime}\right) \cong E .
$$

Bordism $\left(M_{0}, E_{0}\right)$ is bordant to $\left(M_{1}, E_{1}\right)$ iff $\exists(\Omega, E)$ such that:
1Ω is a compact odd-dimensional Spin ${ }^{c}$ manifold with boundary.
$2 E$ is a \mathbb{C} vector bundle on Ω.
$3\left(\partial \Omega,\left.E\right|_{\partial \Omega}\right) \cong\left(M_{0}, E_{0}\right) \sqcup\left(-M_{1}, E_{1},\right)$
$-M_{1}$ is M_{1} with the Spin^{c} structure reversed.

Direct sum - disjoint union

Let E, E^{\prime} be two \mathbb{C} vector bundles on M

$$
(M, E) \sqcup\left(M, E^{\prime}\right) \sim\left(M, E \oplus E^{\prime}\right)
$$

Vector bundle modification

(M, E)
Let F be a Spin^{c} vector bundle on M
Assume that

$$
\operatorname{dim}_{\mathbb{R}}\left(F_{p}\right) \equiv 0 \quad \bmod 2 \quad p \in M
$$

for every fiber F_{p} of F

$$
\mathbf{1}_{\mathbb{R}}=M \times \mathbb{R}
$$

$S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right):=$ unit sphere bundle of $F \oplus \mathbf{1}_{\mathbb{R}}$

$$
(M, E) \sim\left(S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right), \beta \otimes \pi^{*} E\right)
$$

$$
\begin{gathered}
S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right) \\
\downarrow_{M} \pi \\
M
\end{gathered}
$$

This is a fibration with even-dimensional spheres as fibers.
$F \oplus \mathbf{1}_{\mathbb{R}}$ is a Spin^{c} vector bundle on M with odd-dimensional fibers.
The Spin^{c} structure for F causes there to appear on $S\left(F \oplus 1_{\mathbb{R}}\right)$ a \mathbb{C}-vector bundle β whose restriction to each fiber of π is the Bott generator vector bundle of that even-dimensional sphere.

$$
(M, E) \sim\left(S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right), \beta \otimes \pi^{*} E\right)
$$

Addition in $\mathrm{K}_{0}(\cdot)$ is disjoint union.

$$
(M, E)+\left(M^{\prime}, E^{\prime}\right)=\left(M \sqcup M^{\prime}, E \sqcup E^{\prime}\right)
$$

In $\mathrm{K}_{0}(\cdot)$ the additive inverse of (M, E) is $(-M, E)$ where $-M$ denotes M with the Spin^{c} structure reversed.

$$
-(M, E)=(-M, E)
$$

DEFINITION. (M, E) bounds $\Longleftrightarrow \exists(\Omega, \widetilde{E})$ with:
1Ω is a compact odd-dimensional Spin ${ }^{c}$ manifold with boundary.
$2 \widetilde{E}$ is a \mathbb{C} vector bundle on Ω.
$3\left(\partial \Omega,\left.\widetilde{E}\right|_{\partial \Omega}\right) \cong(M, E)$
REMARK. $(M, E)=0$ in $K_{0}(\cdot) \Longleftrightarrow(M, E) \sim\left(M^{\prime}, E^{\prime}\right)$ where (M^{\prime}, E^{\prime}) bounds.

Consider the homomorphism of abelian groups

$$
\begin{aligned}
\mathrm{K}_{0}(\cdot) & \longrightarrow \mathbb{Z} \\
(M, E) & \longmapsto \operatorname{Index}\left(D_{E}\right)
\end{aligned}
$$

Notation

D_{E} is the Dirac operator of M tensored with E.

It is a corollary of Bott periodicity that this homomorphism of abelian groups is an isomorphism.

Equivalently, Index $\left(D_{E}\right)$ is a complete invariant for the equivalence relation generated by the three elementary steps; i.e. $(M, E) \sim\left(M^{\prime}, E^{\prime}\right)$ if and only if $\operatorname{Index}\left(D_{E}\right)=\operatorname{Index}\left(D_{E^{\prime}}^{\prime}\right)$.

BOTT PERIODICITY

$$
\begin{gathered}
\pi_{j} G L(n, \mathbb{C})= \begin{cases}\mathbb{Z} & j \text { odd } \\
0 & j \text { even }\end{cases} \\
j=0,1,2, \ldots, 2 n-1
\end{gathered}
$$

Why does Bott periodicity imply that

$$
\begin{aligned}
\mathrm{K}_{0}(\cdot) & \longrightarrow \mathbb{Z} \\
(M, E) & \longmapsto \operatorname{Index}\left(D_{E}\right)
\end{aligned}
$$

is an isomorphism?

To prove surjectivity must find an (M, E) with $\operatorname{Index}\left(D_{E}\right)=1$.
e.g. Let $M=\mathbb{C} P^{n}$, and let E be the trivial (complex) line bundle on $\mathbb{C} P^{n}$
$E=1_{\mathbb{C}}=\mathbb{C} P^{n} \times \mathbb{C}$
$\operatorname{Index}\left(\mathbb{C} P^{n}, 1_{\mathbb{C}}\right)=1$

Thus Bott periodicity is not used in the proof of surjectivity.

Lemma used in the Proof of Injectivity

Given any (M, E) there exists an even-dimensional sphere $S^{2 n}$ and a \mathbb{C}-vector bundle F on $S^{2 n}$ with $(M, E) \sim\left(S^{2 n}, F\right)$.

Bott periodicity is not used in the proof of this lemma. The lemma is proved by a direct argument using the definition of the equivalence relation on the pairs (M, E).

Let r be a positive integer, and let $\operatorname{Vect}_{\mathbb{C}}\left(S^{2 n}, r\right)$
be the set of isomorphism classes of \mathbb{C} vector bundles on $S^{2 n}$ of rank r, i.e. of fiber dimension r.

$$
\operatorname{Vect}_{\mathbb{C}}\left(S^{2 n}, r\right) \longleftrightarrow \pi_{2 n-1} G L(r, \mathbb{C})
$$

PROOF OF INJECTIVITY

Let (M, E) have $\operatorname{Index}(M, E)=0$.
By the above lemma, we may assume that $(M, E)=\left(S^{2 n}, F\right)$. Using Bott periodicity plus the bijection

$$
\operatorname{Vect}_{\mathbb{C}}\left(S^{2 n}, r\right) \longleftrightarrow \pi_{2 n-1} G L(r, \mathbb{C})
$$

we may assume that F is of the form

$$
F=\theta^{p} \oplus q \beta
$$

$\theta^{p}=S^{2 n} \times \mathbb{C}^{p}$ and β is the Bott generator vector bundle on $S^{2 n}$.
Convention. If $q<0$, then $q \beta=|q| \beta^{*}$.
$\operatorname{Index}\left(S^{2 n}, \beta\right)=1 \quad \operatorname{Index}\left(S^{2 n}, \theta^{p}\right)=0$
Therefore

$$
\operatorname{Index}\left(S^{2 n}, F\right)=0 \Longrightarrow q=0
$$

Hence $\left(S^{2 n}, F\right)=\left(S^{2 n}, \theta^{p}\right)$. This bounds

$$
\left(S^{2 n}, \theta^{p}\right)=\partial\left(B^{2 n+1}, B^{2 n+1} \times \mathbb{C}^{p}\right)
$$

and so is zero in $\mathrm{K}_{0}(\cdot)$.
QED

Define a homomorphism of abelian groups

$$
\begin{aligned}
\mathrm{K}_{0}(\cdot) & \longrightarrow \mathbb{Q} \\
(M, E) & \longmapsto(\operatorname{ch}(E) \cup \operatorname{Td}(M))[M]
\end{aligned}
$$

where $\operatorname{ch}(E)$ is the Chern character of E and $\operatorname{Td}(M)$ is the Todd class of M.
$\operatorname{ch}(E) \in H^{*}(M, \mathbb{Q})$ and $\operatorname{Td}(M) \in H^{*}(M, \mathbb{Q})$.
$[M]$ is the orientation cycle of $M .[M] \in H_{*}(M, \mathbb{Z})$.

Granted that

$$
\begin{aligned}
\mathrm{K}_{0}(\cdot) & \longrightarrow \mathbb{Z} \\
(M, E) & \longmapsto \operatorname{Index}\left(D_{E}\right)
\end{aligned}
$$

is an isomorphism, to prove that these two homomorphisms are equal, it suffices to check one nonzero example.

Let X be a compact C^{∞} manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

$$
\delta: C^{\infty}\left(X, E_{0}\right) \longrightarrow C^{\infty}\left(X, E_{1}\right)
$$

be an elliptic differential (or pseudo-differential) operator.
$\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}\right) \in \mathrm{K}_{0}(\cdot)$, and

$$
\operatorname{Index}\left(D_{E_{\sigma}}\right)=\operatorname{Index}(\delta)
$$

$$
\begin{gathered}
\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}\right) \\
\Downarrow
\end{gathered}
$$

$$
\operatorname{Index}(\delta)=\left(\operatorname { c h } (E _ { \sigma }) \cup \operatorname { T d } ((S (T X \oplus 1 _ { \mathbb { R } }))) \left[\left(S\left(T X \oplus 1_{\mathbb{R}}\right)\right]\right.\right.
$$

and this is the general Atiyah-Singer formula.
$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is the unit sphere bundle of $T X \oplus 1_{\mathbb{R}}$.
$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is even dimensional and is - in a natural way - a Spin ${ }^{c}$ manifold.
E_{σ} is the \mathbb{C} vector bundle on $S\left(T X \oplus 1_{\mathbb{R}}\right)$ obtained by doing a clutching construction using the symbol σ of δ.

