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Minicourse of five lectures:

. Dirac operatorv’

. Atiyah-Singer revisited

1
2
3. What is K-homology?
4. Beyond ellipticity

5

. The Riemann-Roch theorem

The minicourse is based on joint work with Erik van Erp.



ATIYAH-SINGER REVISITED

Dedicated to the memory of Friedrich Hirzebruch.

This is an expository talk about the Atiyah-Singer index theorem.
Dirac operator of R™ will be defined.v’

Some low dimensional examples of the theorem will be
considered.v’

A special case of the theorem will be proved, with the proof
based on Bott periodicity.v’

The proof will be outlined that the special case implies the full
theorem.



Atiyah-Singer Index theorem

M compact C*° manifold without boundary

D an elliptic differential (or pseudo-differential) operator on M
E° E', (C* C vector bundles on M

C>(M, E7) denotes the C vector space of all C* sections of F7.
D: C*®(M,E%) — C>®(M, E")

D is a linear transformation of C vector spaces.



Atiyah-Singer Index theorem
M compact C*° manifold without boundary
D an elliptic differential (or pseudo-differential) operator on M

Index(D) := dim¢ (Kernel D) — dim¢ (Cokernel D)

Theorem (M.Atiyah and |.Singer)

Index (D) = (a topological formula)



M =SS! ={(t1,t) e R? | 2 + 13 =1}

Dg: L2(SY) — L2(SY) is

Tf 0

0 I

where L2(S1) = L2 (SY) @ L2 (S1).

L2 (S') has as orthonormal basis ™ with n =0,1,2,...
L% (S') has as orthonormal basis ¢ with n = —1,-2, -3, .. ..



f: 81 — R? — {0} is a C* map.

St R? — {(0,0)}

TN -
NP2

Ty: L% (S') — L2 (S') is the composition
I2(8Y) 4 [2(81) — L3(SY)

Ty: L2 (S') — L2(S') is the Toeplitz operator associated to f



Thus T is composition
M P
T- LA(SH) =5 L2(SY) — L2 (ST)

where L2 (S1) 247 L2(SY) is v — fo
fv(tl,tg) = f(tl,tQ)v(tl,tg) V(tl,tg) € Sl R2 = C

and L%(S') -2 L?% (S') is the Hilbert space projection.
Dy(v+w) :=Ty(v) + w veL2(SY), weL%(Sh)

Index(Dy) = -winding number (f).



RIEMANN - ROCH

M compact connected Riemann surface

genus of M = # of holes

_ % rank Hy (M; Z)|



D a divisor of M

D consists of a finite set of points of M p1,pa,...

integer assigned to each point ny,no,...,n;
Equivalently

D is a function D: M — 7Z with finite support
Support(D) = {p € M | D(p) # 0}

Support(D) is a finite subset of M

,p and an



D a divisor on M

deg(D) := > e D(p)

Remark

D1, Dy two divisors

Dy 2 D, iff Vp € M, D1(p) = Da(p)

Remark

D a divisor, —D is



Let f: M — CU{oo} be a meromorphic function.

Define a divisor 0(f) by:

0 if p is neither a zero nor a pole of f
d(f)(p) = { order of the zero if f(p) =0
—(order of the pole) if p is a pole of f



Let w be a meromorphic 1-form on M. Locally w is f(z)dz where
f is a (locally defined) meromorphic function. Define a divisor

d(w) by:

0 if p is neither a zero nor a pole of w
d(w)(p) = { order of the zero if w(p) =0
—(order of the pole) if p is a pole of w



D a divisor on M

meromorphic functions
HY(M,D) := P )= -D
f: M — CU{oo}
meromorphic 1-forms
HY(M,D) := { P S(w) = D}
w on M

Lemma

H°(M, D) and H*(M, D) are finite dimensional C vector spaces

dime H(M, D) < oo
dim¢ H' (M, D) < oo



Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a
divisor on M. Then:

dim¢c H°(M, D) — dim¢ H'(M,D) =d — g + 1

d = degree (D)
g = genus (M)



HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / C
FE an algebraic vector bundle on M

E = sheaf of germs of algebraic sections of E
HJ (M, E) := j-th cohomology of M using E,
j=0,1,2,3,...



LEMMA
Forall j =0,1,2,... dim¢c H'(M, E) < oo.

For all j > dim¢ (M), HY(M,E)=0.

X(M,E) := Y (-1)) dim¢ H (M, E)
j=0
n = dimc (M)

THEOREM[HRR] Let M be a non-singular projective algebraic
variety / C and let E be an algebraic vector bundle on M. Then

X(M, E) = (ch(E) UTd(M))[M]



Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / C and let E
be an algebraic vector bundle on M. Then

X(M, E) = (ch(E) UTd(M))[M]



Various well-known structures on a C° manifold M make M into
a Spin¢ manifold

(complex-analytic)
4
(symplectic) = (almost complex)

4

(contact) = (stably almost complex)

\
Spin = Spin®
.

(oriented)

A Spin® manifold can be thought of as an oriented manifold with a
slight extra bit of structure. Most of the oriented manifolds which
occur in practice are Spin® manifolds.



Two Out Of Three Lemma

Lemma

Let

0—F —FE—E"—0

be a short exact sequence of R-vector bundles on X . If two out of
three are Spin® vector bundles, then so is the third.



Let M be a C*° manifold (with or without boundary). M is a
Spin® manifold iff the tangent bundle TM of M is a Spin® vector
bundle on M.

The Two Out Of Three Lemma implies that the boundary OM of
a Spin® manifold M with boundary is again a Spin® manifold.



A Spin® manifold comes equipped with a first-order elliptic
differential operator known as its Dirac operator.

If M is a Spin® manifold, then T'd(M) is
Td(M) = exp*M)/2 A(M) Td(M) € H*(M;Q)

If M is a complex-analyic manifold, then M has Chern classes
c1,¢2,...,Cy and

eXPCI(M)/2A\(M) — PTOdd(Cl7 627 e ,Cn)



EXAMPLE. Let M be a compact complex-analytic manifold.

Set QP4 = C°° (M, APIT* M)

QP4 is the C vector space of all C*° differential forms of type (p, q)
Dolbeault complex

O—)QO’O—>QO’1—>QO’2—>---—>QO’R—>O

The Dirac operator (of the underlying Spin® manifold) is the
assembled Dolbeault complex

o+ ot — hatHt
J J

The index of this operator is the arithmetic genus of M — i.e. is
the Euler number of the Dolbeault complex.



TWO POINTS OF VIEW ON SPIN¢ MANIFOLDS

1. Spin€ is a slight strengthening of oriented. The oriented
manifolds that occur in practice are Spin©.

2. Spin® is much weaker than complex-analytic. BUT the
assempled Dolbeault complex survives (as the Dirac operator).
AND the Todd class survives.

M Spin®= 3 Td(M)e H*(M;Q)



SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spin® manifold
without boundary. Let E be a C vector bundle on M.

Dp denotes the Dirac operator of M tensored with F.
Dp: C®(M,ST®E) — C®(M,S” ® E)
St,S~ are the positive (negative) spinor bundles on M.

THEOREM Index(Dg) = (ch(E) UTd(M))[M].



Ko(")

Define an abelian group denoted Ky(-) by considering pairs (M, E)
such that:

M is a compact even-dimensional Spin® manifold without
boundary.

FE is a C vector bundle on M.



Set Ko() = {(M,E)}/ ~ where the the equivalence relation ~
is generated by the three elementary steps

m Bordism
m Direct sum - disjoint union

m Vector bundle modification

Addition in K(-) is disjoint union.
(M,E)+ (M',E')= (MUM',EUE

In Ko(+) the additive inverse of (M, E) is (—M, E) where —M
denotes M with the Spin® structure reversed.

—(M,E)=(-M,E)



Isomorphism (M, E) is isomorphic to (M', E’) iff 3 a
diffeomorphism
i M — M’

preserving the Spin®-structures on M, M’ and with

U (E') = E.



Bordism (M, Ey) is bordant to (M, Ey) iff 3 (Q, E) such that:

Q) is a compact odd-dimensional Spin® manifold with
boundary.

FE is a C vector bundle on .
(09, Elaq) = (Mo, Ey) U (=M, Ey,)

— M7y is M7 with the Spin® structure reversed.






Direct sum - disjoint union
Let E, I’ be two C vector bundles on M

(M,E)U (M,E"y ~ (M,E® E")



Vector bundle modification
(M, E)
Let F' be a Spin® vector bundle on M

Assume that
dimg(Fp) =0 mod2 pe M

for every fiber F), of F

1r = M xR
S(F @ 1g) := unit sphere bundle of F' & 1y
(M, E) ~ (S(F @ 1), 3 @ 7°E)



S(F @ 1g)
Jw
M
This is a fibration with even-dimensional spheres as fibers.

F @ 1y is a Spin® vector bundle on M with odd-dimensional fibers.

The Spin® structure for F' causes there to appear on S(F @ 1g) a
C-vector bundle 3 whose restriction to each fiber of 7 is the Bott
generator vector bundle of that even-dimensional sphere.

(MaE) ~ (S(F@ 1R)aﬁ®7‘-*E)



Addition in Ko(-) is disjoint union.
(M,E)+ (M',E"Y = (MUM,EUE

In Ko(+) the additive inverse of (M, E) is (—M, E) where —M
denotes M with the Spin® structure reversed.

—(M,E) = (~M, E)



DEFINITION. (M, E) bounds <= 3 (Q, E) with :

) is a compact odd-dimensional Spin® manifold with
boundary.

E is a C vector bundle on .
(697E|89) = (MvE)

REMARK. (M, E) =0 in Ko(-) <= (M, E) ~ (M', E") where
(M', E") bounds.



Consider the homomorphism of abelian groups

(M, E) — Index(Dp)

Dg is the Dirac operator of M tensored with E.




It is a corollary of Bott periodicity that this homomorphism of
abelian groups is an isomorphism.

Equivalently, Index(Dpg) is a complete invariant for the equivalence
relation generated by the three elementary steps; i.e.
(M,E) ~ (M',E") if and only if Index(Dg) = Index(D,).



BOTT PERIODICITY

Z jodd
WjGL(n,(C) =

0 j even

j=0,1,2,...,2n — 1



Why does Bott periodicity imply that

Ko(-) — Z
(M, E) — Index(Dg)

is an isomorphism?



To prove surjectivity must find an (M, E) with Index(Dpg) = 1.

e.g. Let M =CP", and let £

be the trivial (complex) line bundle on CP™
E=1c =CP"x C

Index(CP",1¢) =1

Thus Bott periodicity is not used in the proof of surjectivity.



Lemma used in the Proof of Injectivity

Given any (M, E) there exists an even-dimensional sphere S$*" and
a C-vector bundle F on S?" with (M, E) ~ (S*", F).

Bott periodicity is not used in the proof of this lemma.
The lemma is proved by a direct argument using the definition of
the equivalence relation on the pairs (M, E).



Let r be a positive integer, and let Vectc(S*",7)
be the set of isomorphism classes of C vector bundles on S2"
of rank r, i.e. of fiber dimension r.

Vect(c(SQ”, ) +— mon_1GL(r,C)



PROOF OF INJECTIVITY

Let (M, E) have Index(M, E) = 0.

By the above lemma, we may assume that (M, E) = (S*, F).
Using Bott periodicity plus the bijection

Vecte (52", 1) «+— ma,_1GL(r, C)
we may assume that F' is of the form
F=0"®qp

6P = S?" x CP and [ is the Bott generator vector bundle on S?".
Convention. If ¢ < 0, then ¢ = |¢|3*.



Index(S?",8) =1 Index(5%",6P) =0
Therefore

Index(S*", F) =0=¢=0
Hence (52", F) = (5?",0P). This bounds
(SQn7 Hp) — 8(32n+1’ B2n+1 % (Cp)

and so is zero in Ko(+).
QED



Define a homomorphism of abelian groups

Ko() — Q
(M, E) — (ch(E) UTd(M))[M]

where ch(E) is the Chern character of E and Td(M) is the Todd
class of M.

ch(E) € H*(M,Q) and Td(M) € H*(M,Q).

[M] is the orientation cycle of M. [M]| € H,(M,Z).



Granted that

(M, E) — Index(Dp)

is an isomorphism, to prove that these two homomorphisms are
equal, it suffices to check one nonzero example.



Let X be a compact C*° manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let
0:C*(X,Ey) — C(X, Ey)

be an elliptic differential (or pseudo-differential) operator.
(S(TX @ 1r), E;) € Ko(+), and

Index(Dg, ) = Index(0).



(S(TX @ 1g), E,)

I

Index(9) = (ch(E,) UTA((S(TX & 1r)))[(S(TX & 1r)]
and this is the general Atiyah-Singer formula.

S(TX @ 1g) is the unit sphere bundle of TX & 1.
S(T'X @ 1g) is even dimensional and is — in a natural way — a
Spin¢ manifold.

E, is the C vector bundle on S(TX @ 1r) obtained by doing a
clutching construction using the symbol o of §.



