G topological group, Hausdorff and paracompact
X topological space Hausdorff and paracompact

A principal G-bundle on X is a pair (P, )

(1) P is a Hausdorff and paracompact topological space
with a given continuous (right) action of G

PxG — P
(p,9) — pg
(2) m: P — X is a continuous map, mapping P onto X

such that: Given any z € X, there exists an open subset
U of X with z € U and a homeomorphism

| gO:UXG——>7rf_1(U)
with A‘

T p(u, g) =u V(u,9) €eUXG

90(%91 g2) =, 91) 92 V(u,91,92) €U X G x G



Remark. Such a ¢ : U x G — 7~ (U) is referred to as
a local trivialization.



Two principal G-bundles (P, ) and (Q, 6)

are i1somorphic if there exists a

G-equivariant homeomorphism f : P — @

with commutativity in the diagram

f

P_—————>

J lo

X —X
| 1y

Let G, H be two topological groups
and let (P,7) (Q,6) be a principal



G-bundle and a principal H-bundle on X.
A homomorphism of principal bundles from

(P,7) to (Q,0) is a pair

(n, p) such th&_it;
(i) pis a homomorpiﬁsm of topological groups -
p:G— H -
(ii) P — Q@ is a continuous map with

'commutativity in the diagrams

p—T Q PxGg-AxP, Q x H
o I T
X Pewm—e
[7p = 6(np)] [n(pg) = (np)(pg)]

Notation. A homomorphism of principal bundles
on X will be denoted n: P —s Q.
p: G — H will be referred to as the homomorphism of

topological groups underlying 7.
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Lemma. Let  : P — @ be a homomorphism of prin-
cipal bundles on X with underlying homomorphism of
topological groups p : G — H. Then for any z € X,
there exists an open subset U of X with € U and local
trivializations

0:UxG— a7 HU)

v:Ux H—6YU)
such that the diagram

UxG % 774U)

tyxp | |7

UxH — §7(V)

commutes.



- Example F an R vector bundle on X.
dimg(E,) =n peX
A(FE) =

{(P,’Ulavz,...,'un)l P € X and vy,vs,...,v, is }

a vector space basis for FEp.

—n—
A(E) topologized by AEYCEOE®---0 E
A(E) x GLn(R) — A(E)

(P,Ul,vz,---,vn) [aij] = (pawlaw27'--awn)
wi = ayv; lai;] € GLL(R)
=1
0:A(F) — X H(p,vl,vz,...',vn)zp

(A(E),0) is a principal GL,(R) bundle on X.
S'={deC| =1}

1A%

n

3  mSO(n)=127/2Z
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nzs3 , so(n) = Z/2Z

Spin(n) 1S THE NON-TRIVIAL
2- FOLD COVER OF So(m

Spin(n) —> SO(n)

SpinS(n) = S'x  Spi
P ('Z/zZ)Fn(n)

SFin(r\) 2 S\Dmc(n) —> S0o(n)



Spin(n) is the unique non-trivial 2-fold cover of SO(n)
1 — Z/2Z — Spin(n) — SO(n) — 1 -

- Spin®(n) =S x Spin(n)
Z/27Z .

1 — S* — Spirf(n) £ SO0(n) — 1

Let € be the non-identity element in

Kernel (Spin(n) — SO(n)).

Spin®(n) = §* x Spin(n)/{(1,1) , (-1,€)}

(Aa g) ~ (—')‘) € g)

n=2 Spin(2) =5'=50(2)

Spin(2) — SO(2)

. CH C2

Spin¢(2) = §* Spin(2 X0 =2

pin©(2) Z/EZ pin(2)  p(A, () =¢
=] Spin(l) =Z/2Z  SO(1) = e

Spin®(1) = S
p: St — °

2A



Remark. Since SO(n) C GL,(R) can view the
standard map Spin®(n) —» SO(n) as
Spint(n) — GL,,,(R).

datum

Definition. A Spin® datuafor an R vector

bundle £ on X is a homomorphism of

principai bundles n: P — A(E), where P

is a principal Spin¢(n)-bundle on X (n = dimp(E,))
and the homomorphism of topological groups

underlying 7 is the standard map p : Spinf(n) — G’Ln (R).

Two Spin® datan: P — A(E), n' : P! — A(E)

are isomorphic if there exists an isomorphism

f+P — P’ of principal Spin°(n) bundles on X

P / > P!

with commutativity in the diagram K‘ %

A(E)
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[n=n"of]
Two Spin® data n: P — A(E), 7' : P! — A(E)

are homotopic if there exists a principal

Spin(n)-bundle Q on X and a continuous

map @ : Q x {0,1] — A(F) such that

(i) For t € [0,1], each
d: Q — A(E) is a Spin® data

[9:(a) = 2(g, )] |
Po : Q — A(FE) is isomorphic to 1 : P — A(E) }

@) {
@1 : Q — A(E) is isomorphic to ' : P! —s A(E).

Definition A Spin® structui‘e for F is

an equivalence class of Spin® data, where the

equivalence relation is homotopy.

A Spin€ structure for E determines an orientation of E.

E an R vector bundle on X
w1 (E), we(E),. .. The Stiefel-Whitney classes of E
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- w;(F) € H(X;Z/27Z)

Cech cohomology

E is o;'ientablé iff wi(E)=0.
If F is orientable, fix one orientation of E.
The set of all possible orientations of F is

then in 1 — 1 correspondence with H°(X;Z/27Z).

E is Spinf-able if f wi(E) =0 and wy(F) is
in the image of H*(X;Z) — H*(X;Z/2Z).

If £ is Spin‘-able, fix one Spin® structure for E.
The set of all possible Spin® structures for E is then

in 1 —1 correspondence with H°(X;Z/2Z) x H?*(X;Z).

| A Spin® vector bundle is an R vector bundle

with a given Spin® structure.



A Spin€ manifold is a C* manifold M

(possibly with boundary) whose tangent

bundle T'M is a Spinc vector bundle.



By forgetting some structure a complex vector bundle or
a Spin vector bundle canonically becomes a Spin® vector
bundle

complex
Y
Spin = Spin®

4

oriented

A Spin® structure for the R vector bundle F can be
thought of as an orientation for E plus a slight extra
bit of structure. Spin® structures behave very much like
orientations. For example, an orientation on two out of
three R vector bundles in a short exact sequence deter-
min an orientation on the third vector bundle. Analogous
assertions are true for Spin® structures.

.Two out of three lemma.

Let 0 = B — E— E” — 0 be an exact sequence of R
vector bundles on X. If Spin® structures are given for any
two of E', F/, E” then a Spin® structure is determined for

the third.



Various well-known structures on a manifold M make M
into a Spin¢ manifold

(complex-analytic)
4

(symplectic) =  (almost complex)

4

(contact) = (stably almost complex)

Y
Spin = Spin®

4
(oriented)

A Spin® manifold can be thought of as an oriented man-
ifold with a slight extra bit of structure. Most of the
oriented manifolds which occur in practice are Spin® man-

ifolds.



Two out of three lemma.

Let 0 = E' - E — E” — 0 be an exact sequence of R
vector bundles on X. If Spin® structures are given for any
two of £/, E/, E” then a Spin® structure is determined for

‘the third.

Corollary. If M is a Spin® manifold with boundary
OM, then OM is (in a canonical way) a Spin® manifold.

Proof.
set 1 =0M xR

exact sequence

O——>T(3M>——>TM|(9M—>1—>O
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The Clifford za,lgebra, |
V finite dlmensmnal R vector space

< > a pos:1t1ve definite, symmetric, bilinear

R—valued mmner product on V

tensor algebra:

TV=ReVe(VeV)e(Vevee...

Clff(V)=TV/(v@ v+ < v,0 > -1)

(v®v+ <v,v> :1) denotes the two-sided

1deal in TV generated by all elements of the form

VR Ut < v, v > -1 veV 1eR

As a vector space over R, CLif f(V) is



- canonically isomorphic to the exterior algebra

ANV=ROVOANVE ---®A"V  n=dimg(V)

‘Let ey, e3,...,e, be an orthonormal basis of V.

The monomials

€ n —_
6116262...65 . Ej_ {1}

form a vector space basis of Clif f(V). The canonical

isomorphism of R vector spaces
Clif f(V) «—— A*V

is: eS1e$2 ... efn s est Ae262 A---Nesn
This isomorphism of R vector spaces does not

depend on the choice of orthonormal basis of V.

dimg (Cliff V) = 2" n = dimg V
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ei,es,...,€eyan orthonormal |-
InCliff V:
basis of V'
e?z-‘—l g = 1, 2400060
eiej—l—ejeizo '1,75]
VCcChffVv

Cliff V = (Cliff V)o@ (Cliff V)

CLfF(V)o Clif f(V)r

R vector space spanned R vector space spanned
by esles?...eSr with by e$tes? ... eS” with |
€1+ €+t € even | € +€x4-+ €, odd

This Z/2Z-grading of Clif f V does not

depend on the choice of orthonormal basis of V.
Take R™ with its usual inner product
S*—t CcR™ C Clif f (R™)

The elements of S™! are invertible in Clif f(R™).
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Definition. Pin(n) is the subgroup of the

invertible elements of Clif f(R") generated by S™~1.

Spin(n) = Pin(n) ﬂ Clif f(R")o

p : Spin(n) — SO(n)
ges

(pg)(z) = gz g1
z e R"

For n 2 3 this is the unique non-trivial

2-fold covering space of SO(n)

Clif fc V="C%Cliff V

Clif fc V is a C* algebra
veV CCLffV C CliffcV
v = —v |

C® C’lz’ff_(R”) j
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Spin(n) = S' x Spin(n) C Clif fc(R™)
: 2/2Z -

Spin€(n) is a subgrou;; of the group of unitary elements of
the C* algebra Clif fc(R™).



Cliffc(V) = C ® CIff(V)

V C Cliff(V) C Cliff¢(V)

Cliffc(V) is a C* algebra

veV v = —v

Choose an orthogonal basis ey, es, ..., e, for V
n = dlmR(V)

neven . n=2r

Ei Es, ..., B, | 2" x 2" matrices

Isomorphism of C* algebras



nodd n=2r+1 - n = dimg(V)
@4 : Cliffc(V) — M (27, C)

Eh B, ... E, 2" x 2" matrices
p+(e;) = E; j=1,2...,n
p_ : Cliffc(V) — M(2",C)

p_(e;) = —E; =12 ....n

v+ ® @ : Cliffc(V) — M(27,C) @ M (27, C)

Isomorphism of C* algebras

Remark. These isomorphisms are non-canonical since
they depend on the choice of an orthornormal basis for

V.



Let E be an R vector bundle on X. Assume given an
inner product ( , ) for E. Cliffc(F) is the bundle of C*
algebras over X whose fibre at p € X is Cliff¢(E,).

Definition. An Hermitian module over Cliffc(F) is a
complex vector bundle F' on X with a C-valued inner
product (, ) and a module structure

Cliffc(F)Q FF — F
such that |

(i) (, ) makes each F), into a finite dimensional Hilbert
space

(ii) For each p € X, the module map Cliff¢(E,) — L(F})
1s a unital homomorphism of C* algebras.

Remark. Of course all structures here are assumed to
be continuous. If X is a C* manifold then we could take
everything to be C'.



If E is oriented, define a section w of Cliffc(F) as follows.
Given p € X, choose a positively oriented orthonormal
basis eq, €9, . - . , én, Of Bp. For n even, n = 2r, set

w(p) = (i) erez...e€ n=2r
For n odd, n = 2r + 1, set

w(p) = (’12)”1 e1€g...6Eo41 n=2r+1

w(p) does not depend on the choice of positively oriented
orthonormal basis. In Cliffc(Ep) we have

(w(p))® =1.

If n is odd, then w(p) is in the center of Cliffc(E,p). Note
that to define w, E must be oriented. Reversing the

orientation will change w to —w.



Definition. Let ££ be an R vector bundle on X. A Splnor system for

F is a triple (e, ( ), I) such that:

(i) € is an orientation of F
(ii) (,) is an inner product for F
(111) F is an Hermitian module over Cliffc(E) with each F,, an irre-
ducible module over Cliffc(Ep)‘
C{iv) If n = dim(Ep) is odd, then w(p) acts as I on F,

Remark. The irreduciBﬂity reQuired in kiii) is equivaién£ to dimg(F,) =
9" where n = 2r ’or n = 2r + 1. In (iv) note that w(p)? = 1. Since
for (iv) n is odd, w(p) is in the center of Cliffc(E,). Hence the ir-
reducibility of (iii) implies that w(p) acts either by I or —I on y o
Thus (iv) normalizes the matter by reciuiring that w(p) act as I. When

n = dimg(£E}) is even no such normalization is made.



Terminology. If (e, (,), F') is a Spinor system for £, then F is referred

to as the Spinor bundle

Suppose that n = dimg(E,) is even. Let B (P ) be the +1 (-1)

elgenspace of w(p). We have a direct sum decomposmon
F=FtgF-

where £'7, F'~ are the 1/2-Spin bundles. EF (F;) is the vector bundle

- of positive {negative) spinors.



(XxG—X
(G acts on X by a right action

Assume <
GxY—=Y
| G acts on Y by a left action

NmaleéY=Xxw~ (zg,y) ~ (z, 9y)

Example. £ R vector bundle on X

A(E) x R'ZE
GL(n,R)

((p, 01,02, ..., 0), (01,02, . .., an)) — ayv1+agva+- - ~+a,vy,



E R vector bundle on X

A Spin® datum 7 : P — A(F) determines
a Spinor system (¢, (, ), F) for F.

eand (,) p€X AnR basis vy, v,...,v, of E, is
positively oriented and orthonormal iff

(v1,v2, ..., v,) € Image (n)

Spinor bundle F'

n =2r or n=2r+1

F=P x 7
Spin®(n)

How does Spin®(n) act on C?* 7



n odd

Spin‘(n) has an irreducible representation known as its
spin representation

Spin‘(n) — GL(2", C)

n=2r+1

7, €evell

Spin€(n) has two irreducible representations known as its
1/2-spin representations

Spin‘(n) — GL(2"1,C)
Spin(n) — GL(2"1,C)

The direct sum Spin®(n) — GL(2", C) of these two rep-
resentations is the spin representation of Spin“(n)

n=2"



Consider R" with its usual inner product and usual or-
thonormal basis e1,e9,..., €,

@ : Cliff¢(R") — M (2", C)
ple;) = F; 9= 12 ey
There is a canonical inclusion

Spin‘(n) C Cliff@(Rn) |

@ : Cliffc(R") — M (2", C) restricted to Spin®(n) maps
Spin‘(n) to 2" x 2" unitary matrices

Spin‘(n) — U(2") € GL(2",C)
This is the Spin representation of Spin®(n)

Spin®(n) acts on C?' via this representation



M C* manifold
OM might be non-empty

| TM = the tangent bundle of M

Spin© datum for 7'M
n:P — A(TM)

l

(Spinor system for T'M )
(&, ), F)

l

Dirac operator
D:CP(M,F)— C*(M,F)

F' is the Spinor bundle

Ce(M, F) = {C™ sections with compact support of F'}



D:CP(M,F)— C*(M,F)
such that

(1) D is C-linear
D(81+82) = Ds1 + Dsy 8; € C?(M,F)
D(Ax)=ADs XeC

(2)TF £+ M — C is a C function, then
D(fs) = (df)s + f(Ds)
(3)Tf s; € C(M, F) then
/ (Ds1, 59) = / (5,2, Dsyr)da
M M

(4) If dim M is even, then D is off-diagonal F' = FT&® F~

0 D~
D =




D : C*(M,F) — CX(M,F) is an elliptic first-order
differential operator.

D can be viewed as an unbounded operator on the Hilbert
space L*(M, F)

(s1, 82) Z/ (812, so)dx
M

D:C®(M,F) — C®(M, F)

1s & symmetric operator



Existence of D?

YES — Construct D locally and patch together with a
C® partition of unity.

Uniqueness of D 7

YES — If Dy and D; both satisfy (1)-(4) then Dy — Dy is

a vector bundle map

Dy—D;: F— F

Hence Dy and D; differ by lower order terms



Example.
n even

Sn c RH

D = Dirac operator of S™

F' = Spinor bundle of S™
F=Fr@F-

D : C®(S™", F) — C>®(S", F)

0 D
D =

DT 0
D* : C®(S™ Ft) — C®(S™, F~)
Index (D7) := dime(Kernel D*) — dimg(Cokernel D)

Theorem. Index (D1) =0



Tensor D with the Bott generator vector bundle 3

D : C=($", F* ® B) — C°(S™, F~ ® )

Theorem. Index (Dj) = 1



