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Minicourse of five lectures:

1. Dirac operatorX

2. Atiyah-Singer revisitedX

3. What is K-homology?X

4. Beyond ellipticity

5. The Riemann-Roch theorem

The minicourse is based on joint work with Erik van Erp.
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BEYOND ELLIPTICITY
K-homology is the dual theory to K-theory. The BD (Baum-Douglas)
isomorphism of Kasparov K-homology and K-cycle K-homology can be
taken as providing a framework within which the Atiyah-Singer index
theorem can be extended to certain non-elliptic operators. This talk will
consider a class of non-elliptic differential operators on compact contact
manifolds. These operators have been studied by a number of
mathematicians. Working within the BD framework, the index problem
will be solved for these operators. This is joint work with Erik van Erp.
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FACT:
If M is a closed odd-dimensional C∞ manifold
and D is any elliptic differential operator on M ,
then Index(D) = 0.
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EXAMPLE:
M = S3 = {(a1, a2, a3, a4) ∈ R4 | a2

1 + a2
2 + a2

3 + a2
4 = 1}

x1, x2, x3, x4 are the usual co-ordinate functions on R4.

xj(a1, a2, a3, a4) = aj j = 1, 2, 3, 4

∂/∂xj usual vector fields on R4 j = 1, 2, 3, 4
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On S3 consider the (tangent) vector fields V1, V2, V3

V1 = −x2∂/∂x1 + x1∂/∂x2 − x4∂/∂x3 + x3∂/∂x4

V2 = −x3∂/∂x1 + x4∂/∂x2 + x1∂/∂x3 − x2∂/∂x4

V3 = −x4∂/∂x1 − x3∂/∂x2 + x2∂/∂x3 + x1∂/∂x4

Let r be a positive integer and let γ : S3 −→M(r,C) be a C∞ map.
M(r,C):= {r×r matrices of complex numbers}.
Form the operator Pγ := 2iγ(V1 ⊗ Ir)− V 2

2 ⊗ Ir − V 2
3 ⊗ Ir.

Ir := r × r identity matrix.

Pγ : C∞(S3, S3 × Cr) −→ C∞(S3, S3 × Cr)
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Pγ := 2iγ(V1 ⊗ Ir)− V 2
2 ⊗ Ir − V 2

3 ⊗ Ir
Ir := r × r identity matrix. i =

√
−1.

Pγ : C∞(S3, S3 × Cr) −→ C∞(S3, S3 × Cr)

LEMMA.
Assume that for all p ∈ S3, γ(p) does not have any odd integers among its
eigenvalues i.e.

∀p ∈ S3, ∀λ ∈ {. . .− 3,−1, 1, 3, . . .} =⇒ λIr − γ(p) ∈ GL(r,C)

then dimC (Kernel Pγ) <∞ and dimC (Cokernel Pγ) <∞.
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With γ as in the above lemma, for each odd integer n , let

γn : S3 −→ GL(r,C) be

p 7−→ nIr − γ(p)

By Bott periodicity if r ≥ 2, then π3GL(r,C) = Z.
Hence for each odd integer n have the Bott number β(γn).

PROPOSITION. With γ as above and r ≥ 2

Index(Pγ) =
∑
n odd

β(γn)
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K-homology in topology

Problem

How can K-homology be taken from algebraic geometry to topology?

There are three ways in which this has been done:

Homotopy Theory K-homology is the homology theory
determined by the Bott spectrum.

K-Cycles K-homology is the group of K-cycles.

C∗-algebras K-homology is the Kasparov group KK∗(A,C).
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Kasparov K-homology

M.F. Atiyah Brown-Douglas-Fillmore
Let X be a finite CW complex.
C(X) = {α : X → C | α is continuous}
L(H) = {bounded operators T : H → H}
Any element in the Kasparov K-homology group KK0(C(X),C)
is given by a 5-tuple (H0, ψ0,H1, ψ1, T ) such that :

Paul Baum (Penn State) Beyond Ellipticity June 20, 2013 10 / 47



H0 and H1 are separable Hilbert spaces.

ψ0 : C(X) −→ L(H0) and ψ1 : C(X) −→ L(H1)
are unital ∗-homomorphisms.

T : H0 −→ H1 is a (bounded) Fredholm operator.

For every α ∈ C(X) the commutator T ◦ ψ0(α)− ψ1(α) ◦ T
∈ L(H0,H1) is compact.

KK0(C(X),C) := {(H0, ψ0,H1, ψ1, T )}/ ∼
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KK0(C(X),C) := {(H0, ψ0,H1, ψ1, T )}/ ∼

(H0, ψ0,H1, ψ1, T ) + (H′0, ψ′0,H′1, ψ′1, T ′) =
(H0 ⊕H′0, ψ0 ⊕ ψ′0,H1 ⊕H′1, ψ1 ⊕ ψ′1, T ⊕ T ′)

−(H0, ψ0,H1, ψ1, T ) = (H1, ψ1,H0, ψ0, T
∗)
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Let X be a finite CW complex.
Any element in the Kasparov K-homology group KK1(C(X),C)
is given by a 3-tuple (H, ψ, T ) such that :

H is a separable Hilbert space.

ψ : C(X) −→ L(H) is a unital ∗-homomorphism.

T : H −→ H is a (bounded) self-adjoint Fredholm operator.

For every α ∈ C(X) the commutator T ◦ ψ(α)− ψ(α) ◦ T ∈ L(H)
is compact.
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KK1(C(X),C) := {(H, ψ, T )}/ ∼

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′)

−(H, ψ, T ) = (H, ψ,−T )
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Let X,Y be CW complexes and let f : X → Y be a continuous map.

Denote by f \ : C(X)← C(Y ) the ∗-homomorphism

f \(α) := α ◦ f α ∈ C(Y )

Then f∗ : KKj(C(X),C)→ KKj(C(Y ),C) is

f∗(H, ψ, T ) := (H, ψ ◦ f \, T ) j = 1

f∗(H0, ψ0,H1, ψ1, T ) := (H0, ψ0 ◦ f \,H1, ψ1 ◦ f \, T ) j = 0
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Cycles for K-homology

Let X be a CW complex.

Definition

A K-cycle on X is a triple (M,E,ϕ) such that :

1 M is a compact Spinc manifold without boundary.

2 E is a C vector bundle on M .

3 ϕ : M → X is a continuous map from M to X.
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Chern character in K-theory

X finite CW complex

ch : Kj(X) −→
⊕
l

Hj+2l(X; Q)

j = 0, 1

Q⊗Z K
j(X) −→

⊕
l

Hj+2l(X; Q)

is an isomorphism of Q vector spaces.
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Chern character in K-homology

X finite CW complex (M,E,ϕ) 7→ ϕ∗(ch(E) ∪ Td(M) ∩ [M ])

ch : Kj(X) −→
⊕
l

Hj+2l(X; Q)

j = 0, 1

Q⊗Z Kj(X) −→
⊕
l

Hj+2l(X; Q)

is an isomorphism of Q vector spaces.
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Theorem (B-Douglas-Taylor, B-Higson-Schick)

Let X be a finite CW complex.

Then for j = 0, 1 the natural map of abelian groups

Kj(X)→ KKj(C(X),C)

is an isomorphism.
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For j = 0, 1 the natural map of abelian groups

Kj(X)→ KKj(C(X),C)

is (M,E,ϕ) 7→ ϕ∗[DE ]

where

1 DE is the Dirac operator of M tensored with E.

2 [DE ] ∈ KKj(C(M),C) is the element in the
Kasparov K-homology of M determined by DE .

3 ϕ∗ : KKj(C(M),C)→ KKj(C(X),C) is the homomorphism of
abelian groups determined by ϕ : M → X.
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Comparison of K∗(X) and KK∗(C(X), C)

Given some analytic data on X (i.e. an index problem) it is usually easy to
construct an element in KK∗(C(X),C). This does not solve the given
index problem.KK∗(C(X),C) does not have a simple explicitly defined
chern character mapping it to H∗(X; Q).

K∗(X) does have a simple explicitly defined chern character mapping it to
H∗(X; Q).

ch : Kj(X) −→
⊕
l

Hj+2l(X; Q)

(M,E,ϕ) 7→ ϕ∗(ch(E) ∪ Td(M) ∩ [M ])
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With X a finite CW complex, suppose a datum (i.e. some analytical
information) is given which then determines an element
ξ ∈ KKj(C(X),C).

QUESTION : What does it mean to solve the index problem for ξ?

ANSWER : It means to explicitly construct the K-cycle (M,E,ϕ) such
that

µ(M,E,ϕ) = ξ

where µ : Kj(X)→ KKj(C(X),C) is the natural map of abelian groups.
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Suppose that j = 0 and that a K-cycle (M,E,ϕ) with

µ(M,E,ϕ) = ξ

has been constructed. It then follows that for any C vector bundle F on X

Index(F ⊗ ξ) = ε∗(ch(F ) ∩ ch(M,E,ϕ))

ε : X −→ · ε is the map of X to a point.

ch(M,E,ϕ) := ϕ∗(ch(E) ∪ Td(M) ∩ [M ])
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EQUIVALENTLY Suppose that j = 0 and that a K-cycle (M,E,ϕ) with

µ(M,E,ϕ) = ξ

has been constructed. It then follows that

I(ξ) = ϕ∗(ch(E) ∪ Td(M) ∩ [M ])
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REMARK. If the construction of the K-cycle (M,E,ϕ) with

µ(M,E,ϕ) = ξ

has been done correctly, then it will work in the equivariant case and in the
case of families of operators.
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Example

General case of the Atiyah-Singer index theorem

Let X be a compact C∞ manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

δ : C∞(X,E0) −→ C∞(X,E1)

be an elliptic differential (or pseudo-differential) operator.
Then δ determines an element

[δ] ∈ KK0(C(X),C)

The K-cycle on X – which solves the index problem for δ – is

(S(TX ⊕ 1R), Eσ, π).
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(S(TX ⊕ 1R), Eσ, π)

S(TX ⊕ 1R) is the unit sphere bundle of TX ⊕ 1R.

π : S(TX ⊕ 1R) −→ X is the projection of S(TX ⊕ 1R) onto X.

S(TX ⊕ 1R) is even-dimensional and is a Spinc manifold.

Eσ is the C vector bundle on S(TX ⊕ 1R) obtained by doing a clutching
construction using the symbol σ of δ.

µ((S(TX ⊕ 1R), Eσ, π)) = [δ]ww�
Index(δ) = (ch(Eσ) ∪ Td(S(TX ⊕ 1R)))[(S(TX ⊕ 1R)]

which is the general Atiyah-Singer formula.
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Contact Manifolds

A contact manifold is an odd dimensional C∞ manifold X
dimension(X) = 2n+ 1
with a given C∞ 1-form θ such that

θ(dθ)n is non zero at every x ∈ X − i.e. θ(dθ)n is a volume form for X.
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Let X be a compact connected contact manifold without boundary
(∂X = ∅).
Set dimension(X) = 2n+ 1.
Let r be a positive integer and let γ : X −→M(r,C) be a C∞ map.
M(r,C):= {r×r matrices of complex numbers}.

Assume: For each x ∈ X,
{Eigenvalues of γ(x)} ∩ {. . . ,−n− 4,−n− 2,−n, n, n+ 2, n+ 4, . . .} = ∅
i.e. ∀x ∈ X,
λ ∈ {. . .−n−4,−n−2,−n, n, n+2, n+4, . . .} =⇒ λIr−γ(x) ∈ GL(r,C)
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γ : X −→M(r,C)
Are assuming : ∀x ∈ X,
λ ∈ {. . .−n−4,−n−2,−n, n, n+2, n+4, . . .} =⇒ λIr−γ(x) ∈ GL(r,C)

Associated to γ is a differential operator Pγ which is hypoelliptic and
Fredholm.

Pγ : C∞(X,X × Cr) −→ C∞(X,X × Cr)

Pγ is constructed as follows.
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The sub-Laplacian ∆H

Let H be the null-space of θ.

H = {v ∈ TX | θ(v) = 0}

H is a C∞ sub vector bundle of TX with

For all x ∈ X,dimR(Hx) = 2n

The sub-Laplacian
∆H : C∞(X)→ C∞(X)

is locally −W 2
1 −W 2

2 − · · · −W 2
2n

where W1,W2, . . . ,W2n is a locally defined C∞ orthonormal frame for H.
These locally defined operators are then patched together using a C∞

partition of unity to give the sub-Laplacian ∆H .
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The Reeb vector field

The Reeb vector field is the unique C∞ vector field W on X with :

θ(W ) = 1 and ∀v ∈ TX, dθ(W, v) = 0

Let
γ : X −→M(r,C)

be as above, Pγ : C∞(X,X × Cr)→ C∞(X,X × Cr) is defined:

Pγ = iγ(W ⊗Ir)+(∆H)⊗Ir Ir = r×r identity matrix i =
√
−1

Pγ is a differential operator (of order 2) and is hypoelliptic but not elliptic.
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These operators Pγ have been studied by :

R.Beals and P.Greiner Calculus on Heisenberg Manifolds Annals of
Math. Studies 119 (1988).

C.Epstein and R.Melrose.

E. van ErpThe Atiyah-Singer index formula for subelliptic operators
on contact manifolds. Part 1 and Part 2 Annals of Math. 171(2010).

A class of operators with somewhat similar analytic and topological
properties has been studied by A. Connes and H. Moscovici.
M. Hilsum and G. Skandalis.
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Set Tγ = Pγ(I + P ∗γPγ)−1/2.

Let ψ : C(X)→ L(L2(X)⊗C Cr) be

ψ(α)(u1, u2, . . . , ur) = (αu1, αu2, . . . , αur)

where for x ∈ X and u ∈ L2(X), (αu)(x) = α(x)u(x)

α ∈ C(X) u ∈ L2(X)

Then

(L2(X)⊗C Cr, ψ, L2(X)⊗C Cr, ψ, Tγ) ∈ KK0(C(X),C)

Denote this element of KK0(C(X),C) by [Pγ ].

[Pγ ] ∈ KK0(C(X),C)
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[Pγ ] ∈ KK0(C(X),C)

QUESTION.What is the K-cycle that solves the index problem for [Pγ ]?

ANSWER. To construct this K-cycle, first recall that the given 1-form
θ which makes X a contact manifold also makes X a stably almost
complex manifold :

(contact) =⇒ (stably almost complex)
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(contact) =⇒ (stably almost complex)

Let θ, H, and W be as above. Then :

TX = H ⊕ 1R where 1R is the (trivial) R line bundle spanned by W .

A morphism of C∞ R vector bundles J : H → H can be chosen with
J2 = −I and ∀x ∈ X and u, v ∈ Hx

dθ(Ju, Jv) = dθ(u, v) dθ(Ju, u) ≥ 0

J is unique up to homotopy.
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(contact) =⇒ (stably almost complex)

J : H → H is unique up to homotopy.
Once J has been chosen :

H is a C∞ C vector bundle on X.
⇓

TX ⊕ 1R = H ⊕ 1R ⊕ 1R = H ⊕ 1C is a C∞ C vector bundle on X.
⇓

X × S1 is an almost complex manifold.
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REMARK. An almost complex manifold is a C∞ manifold Ω with a given
morphism ζ : TΩ→ TΩ of C∞ R vector bundles on Ω such that

ζ ◦ ζ = −I

The conjugate almost complex manifold is Ω with ζ replaced by −ζ.

NOTATION. As above X × S1 is an almost complex manifold, X × S1

denotes the conjugate almost complex manifold.

Since (almost complex)=⇒ (Spinc), the disjoint union X × S1 tX × S1

can be viewed as a Spinc manifold.
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Let
π : X × S1 tX × S1 −→ X

be the evident projection of X × S1 tX × S1 ontoX.
i.e.

π(x, λ) = x (x, λ) ∈ X × S1 tX × S1

The solution K-cycle for [Pγ ] is (X × S1 tX × S1, Eγ , π)
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Eγ =
(j=N⊕
j=0

L(γ, n+2j)⊗π∗Symj(H)
)⊔(j=N⊕

j=0

L(γ,−n−2j)⊗π∗Symj(H∗)
)

1 “Symj” is “ j-th symmetric power”.

2 H∗ is the dual vector bundle of H.

3 N is any positive integer such that : n+ 2N > sup{||γ(x)||, x ∈ X}.
4 L(γ, n+ 2j) is the C vector bundle on X × S1 obtained by doing a

clutching construction using (n+ 2j)Ir − γ : X → GL(r,C).
5 Similarly, L(γ,−n− 2j) is obtained by doing a clutching construction

using (−n− 2j)Ir − γ : X → GL(r,C).
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Restriction of Eγ to X × S1

Let N be any positive integer such that :

n+ 2N > sup{||γ(x)||, x ∈ X}

The restriction of Eγ to X × S1 is:

Eγ | X × S1 =
j=N⊕
j=0

L(γ, n+ 2j)⊗ π∗Symj(H)
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Restriction of Eγ to X × S1

The restriction of Eγ to X × S1 is:

Eγ | X × S1 =
j=N⊕
j=0

L(γ,−n− 2j)⊗ π∗Symj(H∗)

Here H∗ is the dual vector bundle of H:

H∗x = HomC(Hx,C) x ∈ X
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Eγ =
(j=N⊕
j=0

L(γ, n+2j)⊗π∗Symj(H)
)⊔(j=N⊕

j=0

L(γ,−n−2j)⊗π∗Symj(H∗)
)

Theorem (PB and Erik van Erp)

µ(X × S1 tX × S1, Eγ , π) = [Pγ ]
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