# BEYOND ELLIPTICITY 

Paul Baum<br>Penn State

Fields Institute<br>Toronto, Canada

June 20, 2013

Minicourse of five lectures:

1. Dirac operator $\checkmark$
2. Atiyah-Singer revisited $\checkmark$
3. What is K-homology? $\checkmark$
4. Beyond ellipticity
5. The Riemann-Roch theorem

The minicourse is based on joint work with Erik van Erp.


#### Abstract

BEYOND ELLIPTICITY K-homology is the dual theory to K-theory. The BD (Baum-Douglas) isomorphism of Kasparov K-homology and K-cycle K-homology can be taken as providing a framework within which the Atiyah-Singer index theorem can be extended to certain non-elliptic operators. This talk will consider a class of non-elliptic differential operators on compact contact manifolds. These operators have been studied by a number of mathematicians. Working within the BD framework, the index problem will be solved for these operators. This is joint work with Erik van Erp.


## FACT:

If $M$ is a closed odd-dimensional $C^{\infty}$ manifold and $D$ is any elliptic differential operator on $M$, then $\operatorname{Index}(D)=0$.

## EXAMPLE:

$M=S^{3}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4} \mid a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=1\right\}$ $x_{1}, x_{2}, x_{3}, x_{4}$ are the usual co-ordinate functions on $\mathbb{R}^{4}$.

$$
x_{j}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=a_{j} \quad j=1,2,3,4
$$

$\partial / \partial x_{j}$ usual vector fields on $\mathbb{R}^{4}$

$$
j=1,2,3,4
$$

On $S^{3}$ consider the (tangent) vector fields $V_{1}, V_{2}, V_{3}$

$$
\begin{aligned}
& V_{1}=-x_{2} \partial / \partial x_{1}+x_{1} \partial / \partial x_{2}-x_{4} \partial / \partial x_{3}+x_{3} \partial / \partial x_{4} \\
& V_{2}=-x_{3} \partial / \partial x_{1}+x_{4} \partial / \partial x_{2}+x_{1} \partial / \partial x_{3}-x_{2} \partial / \partial x_{4} \\
& V_{3}=-x_{4} \partial / \partial x_{1}-x_{3} \partial / \partial x_{2}+x_{2} \partial / \partial x_{3}+x_{1} \partial / \partial x_{4}
\end{aligned}
$$

Let $r$ be a positive integer and let $\gamma: S^{3} \longrightarrow M(r, \mathbb{C})$ be a $C^{\infty}$ map. $M(r, \mathbb{C}):=\{r \times r$ matrices of complex numbers $\}$.
Form the operator $P_{\gamma}:=2 i \gamma\left(V_{1} \otimes I_{r}\right)-V_{2}^{2} \otimes I_{r}-V_{3}^{2} \otimes I_{r}$. $I_{r}:=r \times r$ identity matrix.

$$
P_{\gamma}: C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right) \longrightarrow C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right)
$$

$$
P_{\gamma}:=2 i \gamma\left(V_{1} \otimes I_{r}\right)-V_{2}^{2} \otimes I_{r}-V_{3}^{2} \otimes I_{r}
$$

$I_{r}:=r \times r$ identity matrix. $\quad i=\sqrt{-1}$.

$$
P_{\gamma}: C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right) \longrightarrow C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right)
$$

## LEMMA.

Assume that for all $p \in S^{3}, \gamma(p)$ does not have any odd integers among its eigenvalues i.e.

$$
\forall p \in S^{3}, \forall \lambda \in\{\ldots-3,-1,1,3, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(p) \in G L(r, \mathbb{C})
$$

then $\operatorname{dim}_{\mathbb{C}}\left(\right.$ Kernel $\left.P_{\gamma}\right)<\infty$ and $\operatorname{dim}_{\mathbb{C}}\left(\right.$ Cokernel $\left.P_{\gamma}\right)<\infty$.

With $\gamma$ as in the above lemma, for each odd integer $n$, let

$$
\begin{aligned}
\gamma_{n}: S^{3} & \longrightarrow G L(r, \mathbb{C}) \quad \text { be } \\
p & \longmapsto n I_{r}-\gamma(p)
\end{aligned}
$$

By Bott periodicity if $r \geq 2$, then $\pi_{3} G L(r, \mathbb{C})=\mathbb{Z}$. Hence for each odd integer n have the Bott number $\beta\left(\gamma_{n}\right)$. PROPOSITION. With $\gamma$ as above and $r \geq 2$

$$
\operatorname{Index}\left(P_{\gamma}\right)=\sum_{n \text { odd }} \beta\left(\gamma_{n}\right)
$$

## $K$-homology in topology

## Problem

How can $K$-homology be taken from algebraic geometry to topology?

There are three ways in which this has been done:

Homotopy Theory $K$-homology is the homology theory determined by the Bott spectrum.
K-Cycles $K$-homology is the group of $K$-cycles.
$C^{*}$-algebras $K$-homology is the Kasparov group $K K^{*}(A, \mathbb{C})$.

## Kasparov K-homology

M.F. Atiyah Brown-Douglas-Fillmore

Let $X$ be a finite CW complex.
$C(X)=\{\alpha: X \rightarrow \mathbb{C} \quad \mid \quad \alpha$ is continuous $\}$
$\mathcal{L}(\mathcal{H})=\{$ bounded operators $T: \mathcal{H} \rightarrow \mathcal{H}\}$
Any element in the Kasparov K-homology group $K K^{0}(C(X), \mathbb{C})$
is given by a 5 -tuple $\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)$ such that :

- $\mathcal{H}_{0}$ and $\mathcal{H}_{1}$ are separable Hilbert spaces.
- $\psi_{0}: C(X) \longrightarrow \mathcal{L}\left(\mathcal{H}_{0}\right)$ and $\psi_{1}: C(X) \longrightarrow \mathcal{L}\left(\mathcal{H}_{1}\right)$ are unital $*$-homomorphisms.
- $T: \mathcal{H}_{0} \longrightarrow \mathcal{H}_{1}$ is a (bounded) Fredholm operator.
- For every $\alpha \in C(X)$ the commutator $T \circ \psi_{0}(\alpha)-\psi_{1}(\alpha) \circ T$ $\in \mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ is compact.

$$
K K^{0}(C(X), \mathbb{C}):=\left\{\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)\right\} / \sim
$$

$$
K K^{0}(C(X), \mathbb{C}):=\left\{\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)\right\} / \sim
$$

$\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)+\left(\mathcal{H}_{0}^{\prime}, \psi_{0}^{\prime}, \mathcal{H}_{1}^{\prime}, \psi_{1}^{\prime}, T^{\prime}\right)=$
$\left(\mathcal{H}_{0} \oplus \mathcal{H}_{0}^{\prime}, \psi_{0} \oplus \psi_{0}^{\prime}, \mathcal{H}_{1} \oplus \mathcal{H}_{1}^{\prime}, \psi_{1} \oplus \psi_{1}^{\prime}, T \oplus T^{\prime}\right)$
$-\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)=\left(\mathcal{H}_{1}, \psi_{1}, \mathcal{H}_{0}, \psi_{0}, T^{*}\right)$

Let $X$ be a finite CW complex.
Any element in the Kasparov K-homology group $K K^{1}(C(X), \mathbb{C})$ is given by a 3-tuple $(\mathcal{H}, \psi, T)$ such that:

- $\mathcal{H}$ is a separable Hilbert space.
- $\psi: C(X) \longrightarrow \mathcal{L}(\mathcal{H})$ is a unital $*$-homomorphism.
- $T: \mathcal{H} \longrightarrow \mathcal{H}$ is a (bounded) self-adjoint Fredholm operator.
- For every $\alpha \in C(X)$ the commutator $T \circ \psi(\alpha)-\psi(\alpha) \circ T \in \mathcal{L}(\mathcal{H})$ is compact.

$$
K K^{1}(C(X), \mathbb{C}):=\{(\mathcal{H}, \psi, T)\} / \sim
$$

$(\mathcal{H}, \psi, T)+\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right)=\left(\mathcal{H} \oplus \mathcal{H}^{\prime}, \psi \oplus \psi^{\prime}, T \oplus T^{\prime}\right)$

$$
-(\mathcal{H}, \psi, T)=(\mathcal{H}, \psi,-T)
$$

Let $X, Y$ be CW complexes and let $f: X \rightarrow Y$ be a continuous map. Denote by $f^{\natural}: C(X) \leftarrow C(Y)$ the $*$-homomorphism

$$
f^{\natural}(\alpha):=\alpha \circ f \quad \alpha \in C(Y)
$$

Then $f_{*}: K K^{j}(C(X), \mathbb{C}) \rightarrow K K^{j}(C(Y), \mathbb{C})$ is

$$
\begin{aligned}
f_{*}(\mathcal{H}, \psi, T) & :=\left(\mathcal{H}, \psi \circ f^{\natural}, T\right) & j=1 \\
f_{*}\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right) & :=\left(\mathcal{H}_{0}, \psi_{0} \circ f^{\natural}, \mathcal{H}_{1}, \psi_{1} \circ f^{\natural}, T\right) & j=0
\end{aligned}
$$

## Cycles for $K$-homology

Let $X$ be a CW complex.

## Definition

A $K$-cycle on $X$ is a triple $(M, E, \varphi)$ such that :
(1) $M$ is a compact $\mathrm{Spin}^{c}$ manifold without boundary.
(2) $E$ is a $\mathbb{C}$ vector bundle on $M$.
(3) $\varphi: M \rightarrow X$ is a continuous map from $M$ to $X$.

## Chern character in $K$-theory

$X$ finite CW complex

$$
\begin{aligned}
& c h: K^{j}(X) \longrightarrow \bigoplus_{l} H^{j+2 l}(X ; \mathbb{Q}) \\
& j=0,1 \\
& \mathbb{Q} \otimes_{\mathbb{Z}} K^{j}(X) \longrightarrow \bigoplus_{l} H^{j+2 l}(X ; \mathbb{Q})
\end{aligned}
$$

is an isomorphism of $\mathbb{Q}$ vector spaces.

## Chern character in $K$-homology

$X$ finite CW complex $\quad(M, E, \varphi) \mapsto \varphi_{*}(\operatorname{ch}(E) \cup T d(M) \cap[M])$

$$
\begin{aligned}
& c h: K_{j}(X) \longrightarrow \bigoplus_{l} H_{j+2 l}(X ; \mathbb{Q}) \\
& j=0,1 \\
& \mathbb{Q} \otimes_{\mathbb{Z}} K_{j}(X) \longrightarrow \bigoplus_{l} H_{j+2 l}(X ; \mathbb{Q})
\end{aligned}
$$

is an isomorphism of $\mathbb{Q}$ vector spaces.

Theorem (B-Douglas-Taylor, B-Higson-Schick)
Let $X$ be a finite CW complex.
Then for $j=0,1$ the natural map of abelian groups

$$
K_{j}(X) \rightarrow K K^{j}(C(X), \mathbb{C})
$$

is an isomorphism.

For $j=0,1$ the natural map of abelian groups

$$
K_{j}(X) \rightarrow K K^{j}(C(X), \mathbb{C})
$$

is $(M, E, \varphi) \mapsto \varphi_{*}\left[D_{E}\right]$
where
(1) $D_{E}$ is the Dirac operator of $M$ tensored with $E$.
(2) $\left[D_{E}\right] \in K K^{j}(C(M), \mathbb{C})$ is the element in the Kasparov $K$-homology of $M$ determined by $D_{E}$.
(3) $\varphi_{*}: K K^{j}(C(M), \mathbb{C}) \rightarrow K K^{j}(C(X), \mathbb{C})$ is the homomorphism of abelian groups determined by $\varphi: M \rightarrow X$.

## Comparison of $K_{*}(X)$ and $K K^{*}(C(X), \mathbb{C})$

Given some analytic data on $X$ (i.e. an index problem) it is usually easy to construct an element in $K K^{*}(C(X), \mathbb{C})$. This does not solve the given index problem. $K K^{*}(C(X), \mathbb{C})$ does not have a simple explicitly defined chern character mapping it to $H_{*}(X ; \mathbb{Q})$.
$K_{*}(X)$ does have a simple explicitly defined chern character mapping it to $H_{*}(X ; \mathbb{Q})$.

$$
\begin{gathered}
c h: K_{j}(X) \longrightarrow \bigoplus_{l} H_{j+2 l}(X ; \mathbb{Q}) \\
(M, E, \varphi) \mapsto \varphi_{*}(\operatorname{ch}(E) \cup \operatorname{Td}(M) \cap[M])
\end{gathered}
$$

With $X$ a finite CW complex, suppose a datum (i.e. some analytical information) is given which then determines an element
$\xi \in K K^{j}(C(X), \mathbb{C})$.
QUESTION : What does it mean to solve the index problem for $\xi$ ?

ANSWER : It means to explicitly construct the $K$-cycle $(M, E, \varphi)$ such that

$$
\mu(M, E, \varphi)=\xi
$$

where $\mu: K_{j}(X) \rightarrow K K^{j}(C(X), \mathbb{C})$ is the natural map of abelian groups.

Suppose that $j=0$ and that a $K$-cycle $(M, E, \varphi)$ with

$$
\mu(M, E, \varphi)=\xi
$$

has been constructed. It then follows that for any $\mathbb{C}$ vector bundle $F$ on $X$

$$
\begin{aligned}
& \operatorname{Index}(F \otimes \xi)=\epsilon_{*}(\operatorname{ch}(F) \cap \operatorname{ch}(M, E, \varphi)) \\
& \epsilon: X \longrightarrow \cdot \quad \epsilon \text { is the map of } X \text { to a point. } \\
& \operatorname{ch}(M, E, \varphi):=\varphi_{*}(\operatorname{ch}(E) \cup \operatorname{Td}(M) \cap[M])
\end{aligned}
$$

EQUIVALENTLY Suppose that $j=0$ and that a $K$-cycle $(M, E, \varphi)$ with

$$
\mu(M, E, \varphi)=\xi
$$

has been constructed. It then follows that

$$
\mathcal{I}(\xi)=\varphi_{*}(\operatorname{ch}(E) \cup T d(M) \cap[M])
$$

REMARK. If the construction of the $K$-cycle $(M, E, \varphi)$ with

$$
\mu(M, E, \varphi)=\xi
$$

has been done correctly, then it will work in the equivariant case and in the case of families of operators.

## Example

General case of the Atiyah-Singer index theorem

Let $X$ be a compact $C^{\infty}$ manifold without boundary.
$X$ is not required to be oriented.
$X$ is not required to be even dimensional.
On $X$ let

$$
\delta: C^{\infty}\left(X, E_{0}\right) \longrightarrow C^{\infty}\left(X, E_{1}\right)
$$

be an elliptic differential (or pseudo-differential) operator.
Then $\delta$ determines an element

$$
[\delta] \in K K^{0}(C(X), \mathbb{C})
$$

The $K$-cycle on $X$ - which solves the index problem for $\delta$ - is

$$
\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)
$$

$$
\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)
$$

$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is the unit sphere bundle of $T X \oplus 1_{\mathbb{R}}$.
$\pi: S\left(T X \oplus 1_{\mathbb{R}}\right) \longrightarrow X$ is the projection of $S\left(T X \oplus 1_{\mathbb{R}}\right)$ onto $X$.
$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is even-dimensional and is a $\mathrm{Spin}^{c}$ manifold.
$E_{\sigma}$ is the $\mathbb{C}$ vector bundle on $S\left(T X \oplus 1_{\mathbb{R}}\right)$ obtained by doing a clutching construction using the symbol $\sigma$ of $\delta$.

$$
\mu\left(\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)\right)=[\delta]
$$



$$
\operatorname{Index}(\delta)=\left(\operatorname{ch}\left(E_{\sigma}\right) \cup T d\left(S\left(T X \oplus 1_{\mathbb{R}}\right)\right)\right)\left[\left(S\left(T X \oplus 1_{\mathbb{R}}\right)\right]\right.
$$

which is the general Atiyah-Singer formula.

## Contact Manifolds

A contact manifold is an odd dimensional $C^{\infty}$ manifold $X$ $\operatorname{dimension}(X)=2 n+1$ with a given $C^{\infty} 1$-form $\theta$ such that
$\theta(d \theta)^{n}$ is non zero at every $x \in X-i . e . \theta(d \theta)^{n}$ is a volume form for $X$.

Let $X$ be a compact connected contact manifold without boundary $(\partial X=\emptyset)$.
Set dimension $(X)=2 n+1$.
Let $r$ be a positive integer and let $\gamma: X \longrightarrow M(r, \mathbb{C})$ be a $C^{\infty}$ map.
$M(r, \mathbb{C}):=\{r \times r$ matrices of complex numbers $\}$.
Assume: For each $x \in X$,
$\{$ Eigenvalues of $\gamma(x)\} \cap\{\ldots,-n-4,-n-2,-n, n, n+2, n+4, \ldots\}=\emptyset$
i.e. $\forall x \in X$,
$\lambda \in\{\ldots-n-4,-n-2,-n, n, n+2, n+4, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(x) \in G L(r, \mathbb{C})$
$\gamma: X \longrightarrow M(r, \mathbb{C})$
Are assuming : $\forall x \in X$,
$\lambda \in\{\ldots-n-4,-n-2,-n, n, n+2, n+4, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(x) \in G L(r, \mathbb{C})$
Associated to $\gamma$ is a differential operator $P_{\gamma}$ which is hypoelliptic and Fredholm.

$$
P_{\gamma}: C^{\infty}\left(X, X \times \mathbb{C}^{r}\right) \longrightarrow C^{\infty}\left(X, X \times \mathbb{C}^{r}\right)
$$

$P_{\gamma}$ is constructed as follows.

## The sub-Laplacian $\Delta_{H}$

Let $H$ be the null-space of $\theta$.

$$
H=\{v \in T X \mid \theta(v)=0\}
$$

H is a $C^{\infty}$ sub vector bundle of $T X$ with

$$
\text { For all } x \in X, \operatorname{dim}_{\mathbb{R}}\left(H_{x}\right)=2 n
$$

The sub-Laplacian

$$
\Delta_{H}: C^{\infty}(X) \rightarrow C^{\infty}(X)
$$

is locally $-W_{1}^{2}-W_{2}^{2}-\cdots-W_{2 n}^{2}$
where $W_{1}, W_{2}, \ldots, W_{2 n}$ is a locally defined $C^{\infty}$ orthonormal frame for $H$. These locally defined operators are then patched together using a $C^{\infty}$ partition of unity to give the sub-Laplacian $\Delta_{H}$.

## The Reeb vector field

The Reeb vector field is the unique $C^{\infty}$ vector field $W$ on $X$ with :

$$
\theta(W)=1 \text { and } \forall v \in T X, d \theta(W, v)=0
$$

Let

$$
\gamma: X \longrightarrow M(r, \mathbb{C})
$$

be as above, $P_{\gamma}: C^{\infty}\left(X, X \times \mathbb{C}^{r}\right) \rightarrow C^{\infty}\left(X, X \times \mathbb{C}^{r}\right)$ is defined:
$P_{\gamma}=i \gamma\left(W \otimes I_{r}\right)+\left(\Delta_{H}\right) \otimes I_{r} \quad I_{r}=r \times r$ identity matrix $\quad i=\sqrt{-1}$
$P_{\gamma}$ is a differential operator (of order 2) and is hypoelliptic but not elliptic.

These operators $P_{\gamma}$ have been studied by :

- R.Beals and P.Greiner Calculus on Heisenberg Manifolds Annals of Math. Studies 119 (1988).
- C.Epstein and R.Melrose.
- E. van ErpThe Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part 1 and Part 2 Annals of Math. 171(2010).

A class of operators with somewhat similar analytic and topological properties has been studied by A. Connes and H. Moscovici. M. Hilsum and G. Skandalis.

Set $T_{\gamma}=P_{\gamma}\left(I+P_{\gamma}^{*} P_{\gamma}\right)^{-1 / 2}$.
Let $\psi: C(X) \rightarrow \mathcal{L}\left(L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}\right)$ be

$$
\psi(\alpha)\left(u_{1}, u_{2}, \ldots, u_{r}\right)=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{r}\right)
$$

where for $x \in X$ and $u \in L^{2}(X),(\alpha u)(x)=\alpha(x) u(x)$

$$
\alpha \in C(X) \quad u \in L^{2}(X)
$$

Then

$$
\left(L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}, \psi, L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}, \psi, T_{\gamma}\right) \in K K^{0}(C(X), \mathbb{C})
$$

Denote this element of $K K^{0}(C(X), \mathbb{C})$ by $\left[P_{\gamma}\right]$.

$$
\left[P_{\gamma}\right] \in K K^{0}(C(X), \mathbb{C})
$$

$$
\left[P_{\gamma}\right] \in K K^{0}(C(X), \mathbb{C})
$$

QUESTION.What is the K -cycle that solves the index problem for $\left[P_{\gamma}\right]$ ? ANSWER. To construct this K-cycle, first recall that the given 1-form $\theta$ which makes $X$ a contact manifold also makes $X$ a stably almost complex manifold :

$$
\text { (contact) } \Longrightarrow \text { (stably almost complex) }
$$

## $($ contact $) \Longrightarrow($ stably almost complex $)$

Let $\theta, H$, and $W$ be as above. Then :

- $T X=H \oplus 1_{\mathbb{R}}$ where $1_{\mathbb{R}}$ is the (trivial) $\mathbb{R}$ line bundle spanned by $W$.
- A morphism of $C^{\infty} \mathbb{R}$ vector bundles $J: H \rightarrow H$ can be chosen with $J^{2}=-I$ and $\forall x \in X$ and $u, v \in H_{x}$

$$
d \theta(J u, J v)=d \theta(u, v) \quad d \theta(J u, u) \geq 0
$$

- $J$ is unique up to homotopy.


## $($ contact $) \Longrightarrow($ stably almost complex $)$

$J: H \rightarrow H$ is unique up to homotopy.
Once $J$ has been chosen :

## $H$ is a $C^{\infty} \mathbb{C}$ vector bundle on X . $\Downarrow$

$T X \oplus 1_{\mathbb{R}}=H \oplus 1_{\mathbb{R}} \oplus 1_{\mathbb{R}}=H \oplus 1_{\mathbb{C}}$ is a $C^{\infty} \mathbb{C}$ vector bundle on $X$. $\Downarrow$

$$
X \times S^{1} \text { is an almost complex manifold. }
$$

REMARK. An almost complex manifold is a $\mathbb{C}^{\infty}$ manifold $\Omega$ with a given morphism $\zeta: T \Omega \rightarrow T \Omega$ of $C^{\infty} \mathbb{R}$ vector bundles on $\Omega$ such that

$$
\zeta \circ \zeta=-I
$$

The conjugate almost complex manifold is $\Omega$ with $\zeta$ replaced by $-\zeta$.

NOTATION. As above $X \times S^{1}$ is an almost complex manifold, $\overline{X \times S^{1}}$ denotes the conjugate almost complex manifold.

Since (almost complex) $\Longrightarrow\left(\right.$ Spin $\left.^{c}\right)$, the disjoint union $X \times S^{1} \sqcup \overline{X \times S^{1}}$ can be viewed as a Spin $^{c}$ manifold.

Let

$$
\pi: X \times S^{1} \sqcup \overline{X \times S^{1}} \longrightarrow X
$$

be the evident projection of $X \times S^{1} \sqcup \overline{X \times S^{1}}$ onto $X$. i.e.

$$
\pi(x, \lambda)=x \quad(x, \lambda) \in X \times S^{1} \sqcup \overline{X \times S^{1}}
$$

The solution $K$-cycle for $\left[P_{\gamma}\right]$ is $\left(X \times S^{1} \sqcup \overline{X \times S^{1}}, E_{\gamma}, \pi\right)$
$E_{\gamma}=\left(\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)\right) \bigsqcup\left(\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)\right)$
(1) "Sym" is " j -th symmetric power".
(2) $H^{*}$ is the dual vector bundle of $H$.

- $N$ is any positive integer such that : $n+2 N>\sup \{\|\gamma(x)\|, x \in X\}$.
(0) $L(\gamma, n+2 j)$ is the $\mathbb{C}$ vector bundle on $X \times S^{1}$ obtained by doing a clutching construction using $(n+2 j) I_{r}-\gamma: X \rightarrow G L(r, \mathbb{C})$.
- Similarly, $L(\gamma,-n-2 j)$ is obtained by doing a clutching construction using $(-n-2 j) I_{r}-\gamma: X \rightarrow G L(r, \mathbb{C})$.


## Restriction of $E_{\gamma}$ to $X \times S^{1}$

Let $N$ be any positive integer such that:

$$
n+2 N>\sup \{\|\gamma(x)\|, x \in X\}
$$

The restriction of $E_{\gamma}$ to $X \times S^{1}$ is:

$$
E_{\gamma} \mid X \times S^{1}=\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)
$$

## Restriction of $E_{\gamma}$ to $\overline{X \times S^{1}}$

The restriction of $E_{\gamma}$ to $\overline{X \times S^{1}}$ is:

$$
E_{\gamma} \mid \overline{X \times S^{1}}=\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)
$$

Here $H^{*}$ is the dual vector bundle of $H$ :

$$
H_{x}^{*}=\operatorname{Hom}_{\mathbb{C}}\left(H_{x}, \mathbb{C}\right) \quad x \in X
$$

$E_{\gamma}=\left(\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)\right) \bigsqcup\left(\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)\right)$

Theorem (PB and Erik van Erp)

$$
\mu\left(X \times S^{1} \sqcup \overline{X \times S^{1}}, E_{\gamma}, \pi\right)=\left[P_{\gamma}\right]
$$

