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THE RIEMANN-ROCH THEOREM

Topics in this talk :

1. Classical Riemann-Roch

2. Hirzebruch-Riemann-Roch (HRR)

3. Grothendieck-Riemann-Roch (GRR)

4. RR for possibly singular varieties (Baum-Fulton-MacPherson)



CLASSSICAL RIEMANN - ROCH

M compact connected Riemann surface

genus of M = # of holes

_ % [rankH, (M; Z)]



D a divisor of M

D consists of a finite set of points of M p1,pa,...

integer assigned to each point ny,no,...,n;
Equivalently

D is a function D: M — 7Z with finite support
Support(D) = {p € M | D(p) # 0}

Support(D) is a finite subset of M

,p and an



D a divisor on M

deg(D) := > e D(p)

Remark

D1, Dy two divisors

Dy 2 D, iff Vp € M, D1(p) = Da(p)

Remark

D a divisor, —D is



Let f: M — CU {occ} be a meromorphic function.

Define a divisor 0(f) by:

0 if p is neither a zero nor a pole of f
d(f)(p) = { order of the zero if f(p) =0
—(order of the pole) if p is a pole of f



Let w be a meromorphic 1-form on M. Locally w is f(z)dz where
f is a (locally defined) meromorphic function. Define a divisor

d(w) by:

0 if p is neither a zero nor a pole of w
d(w)(p) = { order of the zero if w(p) =0
—(order of the pole) if p is a pole of w



D a divisor on M

HOM. D) — meromorphic functions
(M,D) = f: M — CuU {0}

1 meromorphic 1-forms
H(M, D)= won M

H°(M, D) and H'(M, D) are finite dimensional C vector spaces

dimc H°(M, D) < oo
dim¢ H' (M, D) < o0



Theorem (RR)

Let M be a compact connected Riemann surface and let D be a
divisor on M. Then:

dim¢c H°(M, D) — dim¢ H'(M,D) =d — g + 1

d = degree (D)
g = genus (M)



HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / C
FE an algebraic vector bundle on M

E = sheaf of germs of algebraic sections of E
HJ (M, E) := j-th cohomology of M using E,
j=0,1,2,3,...



LEMMA
Forall j =0,1,2,... dim¢c H'(M, E) < oo.

For all j > dim¢ (M), HY(M,E)=0.

X(M,E) := zn:(—nj dim¢ H (M, E)
j=0

n = dim(c(M)

THEOREMI[HRR] Let M be a non-singular projective algebraic
variety / C and let E be an algebraic vector bundle on M. Then

X(M, E) = (ch(E) UTd(M))[M]



Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / C and let E
be an algebraic vector bundle on M. Then

X(M, E) = (ch(E) UTd(M))[M]



EXAMPLE. Let M be a compact complex-analytic manifold.

Set QP71 = C°°(M, APIT*M)

QP4 is the C vector space of all C* differential forms of type (p, q)
Dolbeault complex

0—>QO’0—>QO’1—>QO’2—>-~—>QO’n—>O

The Dirac operator (of the underlying Spin® manifold) is the
assembled Dolbeault complex

1o @Y . Pos¥t
J J

The index of this operator is the arithmetic genus of M — i.e. is
the Euler number of the Dolbeault complex.



K-theory and K-homology in algebraic geometry

Let X be a (possibly singular) projective algebraic variety / C.
Grothendieck defined two abelian groups:

KO

X)) = Grothendieck group of algebraic vector bundles on X.
alg

Kglg(X) = Grothendieck group of coherent algebraic sheaves on
X.

KO

alg(X) = the algebraic geometry K-theory of X contravariant.

Kglg(X) = the algebraic geometry K-homology of X covariant.



K-theory in algebraic geometry

Vecty g X =
set of isomorphism classes of algebraic vector bundles on X.

A(Vectqy X) = free abelian group
with one generator for each element [E] € Vecty, X.

For each short exact sequence &
0—-—F —-E—E"—0
of algebraic vector bundles on X, let 7(§) € A(VectqyX) be

r(§) == [E] + [E"] - [E]



K-theory in algebraic geometry

R C A(Vectqy(X)) is the subgroup of A(Vect,;yX)
generated by all 7(£) € A(VectyqX).

DEFINITION. K9, (X) := A(Vectay X)/R

Let X,Y be (possibly singular) projective algebraic varieties /C.
Let

i X—Y
be a morphism of algebraic varieties.

Then have the map of abelian groups

7o Kapg(X) «— Kgig(Y)

0

alg
[f*E] < [E]

Vector bundles pull back. f*FE is the pull-back via f of F.



K-homology in algebraic geometry

SuigX =
set of isomorphism classes of coherent algebraic sheaves on X.

A(Sa9X) = free abelian group
with one generator for each element [£] € S, X.

For each short exact sequence &
08 —-€—-E"-0
of coherent algebraic sheaves on X, let r(§) € A(Sq4X) be

r(©) =€+ [E"] - [€]



K-homology in algebraic geometry
R C A(Sq14(X)) is the subgroup of A(SgyX)
generated by all 7(£) € A(SuX).
DEFINITION. K3¥(X) := A(Su,X)/R

Let X,Y be (possibly singular) projective algebraic varieties /C.
Let

f: X —Y

be a morphism of algebraic varieties.
Then have the map of abelian groups

for K§9(X) — KgH(Y)

[€] = (1) [(R7 £)E]



f: X =Y morphism of algebraic varieties
&€ coherent algebraic sheaf on X
For j > 0, define a presheaf (W7 f)€ on Y by

U~ H(f'U; €|1f7'0) U an open subset of Y’

Then A ‘
(R’ )€ := the sheafification of (W7 f)E



f: X —Y morphism of algebraic varieties

for K§H(X) — KgH(Y)
[€] = B5(~1Y[(RI f)€E]



SPECIAL CASE of f.: K¥(X) — KJ¥(Y)

Y is a point. Y =

€: X — - is the map of X to a point.
!

Kgy() =Kg?() =2

et KG9(X) = KGU() =12

(&) = x(X;&) = 8j(=1)/dimc HI (X; €)



X non-singular = K7 (X) = KY(X)

Let X be non-singular.

Let E be an algebraic vector bundle on X.

E denotes the sheaf of germs of algebraic sections of E.
Then F — E is an isomorphism of abelian groups

K%, (X) — K§¥(X)

This is Poincaré duality within the context of algebraic geometry
K-theory&K-homology.



Grothendieck-Riemann-Roch

Theorem (GRR)

Let X,Y be non-singular projective algebraic varieties /C , and let
f: X — Y be a morphism of algebraic varieties. Then there is
commutativity in the diagram :

Kqg(X) — Kq(Y)

0

alg

ch()UTd(X) | I eh()UTd(Y)
H*(X;Q) — H*(Y;Q)



WARNING!!!
The horizontal arrows in the GRR commutative diagram

Kglg(X) - alg(Y)
ch()UTd(X) | I ch()UTd(Y)
H*(X;Q) — H*(Y;Q)

are wrong-way (i.e. Gysin) maps.

fx
-

Kay(X) 2= Kg(X) == Kg(Y) 2 Kg (V)

H*(X;Q) = H.(X;Q) 15 H.(Y;Q) 2 B (Y; Q)

Poincaré duality Poincaré duality



K-homology is the dual theory to K-theory.

How can K-homology be taken from algebraic geometry to
topology?

There are three ways in which this has been done:

Homotopy Theory K-homology is the homology
theory determined by the Bott spectrum.
Geometric Cycles K-homology is the group of
K-cycles.

C* algebras K-homology is the Kasparov group
KK*(A,C) .



Riemann-Roch for possibly singular complex projective
algebraic varieties

Let X be a (possibly singular) projective algebraic variety / C
Then (Baum-Fulton-MacPherson) there are functorial maps

ax: Kglg(X) — K?OP(X) K-theory contravariant
natural transformation of contravariant functors

v KA9(X) — KIP(X K-homolo covariant
0 0 gy
natural transformation of covariant functors

Everything is natural. No wrong-way (i.e. Gysin) maps are used.



ax: K, (X) — K, (X)

is the forgetful map which sends an algebraic vector bundle £
to the underlying topological vector bundle of E.

aX(E> = Etopological



Let X,Y be projective algebraic varieties /C , and let f: X — Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

Kglg(X) A ((z)lg(Y)
ax | L ay

Kl?op(X) — Kz?op(y)

i.e. natural transformation of contravariant functors



Let X,Y be projective algebraic varieties /C , and let f: X — Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

Ko(X) —— Ky (Y)
ax | I ay

Kipp(X) e Ky, (Y)
ch | lch

H*(X;Q) «— H*(Y;Q)



Let X,Y be projective algebraic varieties /C , and let f: X — Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

Kg'(X) — Kg(Y)
Bx | I By
K™ (X) — Ky"(Y)

i.e. natural transformation of covariant functors



Let X,Y be projective algebraic varieties /C , and let f: X — Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

Ko(X) —— Ky (Y)
ax | I ay

Kipp(X) e Ky, (Y)
ch | lch

H*(X;Q) «— H*(Y;Q)



Let X,Y be projective algebraic varieties /C , and let f: X — Y
be a morphism of algebraic varieties. Then there is commutativity

in the diagram :
K(X) — Kg(Y)

Bx | 1 By
Ky (X) — K (Y)
ch | 1l ch

H.(X;Q) — H.(Y;Q)



