The Riemann-Roch Theorem

Paul Baum
Penn State

TIFR
Mumbai, India

20 February, 2013

THE RIEMANN-ROCH THEOREM

Topics in this talk:

1. Classical Riemann-Roch
2. Hirzebruch-Riemann-Roch (HRR)
3. Grothendieck-Riemann-Roch (GRR)
4. RR for possibly singular varieties (Baum-Fulton-MacPherson)

CLASSSICAL RIEMANN - ROCH

M compact connected Riemann surface

$$
\text { genus of } \begin{aligned}
M & =\# \text { of holes } \\
& =\frac{1}{2}\left[\operatorname{rank} H_{1}(M ; \mathbb{Z})\right]
\end{aligned}
$$

D a divisor of M
D consists of a finite set of points of $M p_{1}, p_{2}, \ldots, p_{l}$ and an integer assigned to each point $n_{1}, n_{2}, \ldots, n_{l}$

Equivalently
D is a function $D: M \rightarrow \mathbb{Z}$ with finite support
Support $(D)=\{p \in M \mid D(p) \neq 0\}$
Support (D) is a finite subset of M
D a divisor on M

$$
\operatorname{deg}(D):=\sum_{p \in M} D(p)
$$

Remark

D_{1}, D_{2} two divisors

$$
D_{1} \geqq D_{2} \text { iff } \forall p \in M, D_{1}(p) \geqq D_{2}(p)
$$

Remark

D a divisor, $-D$ is

$$
(-D)(p)=-D(p)
$$

Example

Let $f: M \rightarrow \mathbb{C} \cup\{\infty\}$ be a meromorphic function.
Define a divisor $\delta(f)$ by:

$$
\delta(f)(p)=\left\{\begin{array}{l}
0 \text { if } p \text { is neither a zero nor a pole of } f \\
\text { order of the zero if } f(p)=0 \\
-(\text { order of the pole) if } p \text { is a pole of } f
\end{array}\right.
$$

Example

Let ω be a meromorphic 1-form on M. Locally ω is $f(z) d z$ where f is a (locally defined) meromorphic function. Define a divisor $\delta(\omega)$ by:

$$
\delta(\omega)(p)=\left\{\begin{array}{l}
0 \text { if } p \text { is neither a zero nor a pole of } \omega \\
\text { order of the zero if } \omega(p)=0 \\
-(\text { order of the pole) if } p \text { is a pole of } \omega
\end{array}\right.
$$

D a divisor on M

$$
\begin{aligned}
& H^{0}(M, D):=\left\{\left.\begin{array}{l}
\text { meromorphic functions } \\
f: M \rightarrow \mathbb{C} \cup\{\infty\}
\end{array} \right\rvert\, \delta(f) \geqq-D\right\} \\
& H^{1}(M, D):=\left\{\begin{array}{l}
\text { meromorphic 1-forms } \\
\omega \text { on } M
\end{array}\right. \\
&\hline \delta(\omega) \geqq D\}
\end{aligned}
$$

Lemma

$H^{0}(M, D)$ and $H^{1}(M, D)$ are finite dimensional \mathbb{C} vector spaces

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}} H^{0}(M, D)<\infty \\
& \operatorname{dim}_{\mathbb{C}} H^{1}(M, D)<\infty
\end{aligned}
$$

Theorem (RR)

Let M be a compact connected Riemann surface and let D be a divisor on M. Then:

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}} H^{0}(M, D)-\operatorname{dim}_{\mathbb{C}} H^{1}(M, D)=d-g+1 \\
d=\operatorname{degree}(D) \\
g=\text { genus }(M)
\end{gathered}
$$

HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / \mathbb{C}
E an algebraic vector bundle on M
$\underline{E}=$ sheaf of germs of algebraic sections of E
$H^{j}(M, \underline{E}):=j$-th cohomology of M using \underline{E},
$j=0,1,2,3, \ldots$

LEMMA
For all $j=0,1,2, \ldots \operatorname{dim}_{\mathbb{C}} H^{j}(M, \underline{E})<\infty$.
For all $j>\operatorname{dim}_{\mathbb{C}}(M), \quad H^{j}(M, \underline{E})=0$.

$$
\chi(M, E):=\sum_{j=0}^{n}(-1)^{j} \operatorname{dim}_{\mathbb{C}} H^{j}(M, \underline{E})
$$

$n=\operatorname{dim}_{\mathbb{C}}(M)$

THEOREM[HRR] Let M be a non-singular projective algebraic variety / \mathbb{C} and let E be an algebraic vector bundle on M. Then

$$
\chi(M, E)=(\operatorname{ch}(E) \cup T d(M))[M]
$$

Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / \mathbb{C} and let E be an algebraic vector bundle on M. Then

$$
\chi(M, E)=(\operatorname{ch}(E) \cup T d(M))[M]
$$

EXAMPLE. Let M be a compact complex-analytic manifold. Set $\Omega^{p, q}=C^{\infty}\left(M, \Lambda^{p, q} T^{*} M\right)$ $\Omega^{p, q}$ is the \mathbb{C} vector space of all C^{∞} differential forms of type (p, q) Dolbeault complex

$$
0 \longrightarrow \Omega^{0,0} \longrightarrow \Omega^{0,1} \longrightarrow \Omega^{0,2} \longrightarrow \cdots \longrightarrow \Omega^{0, n} \longrightarrow 0
$$

The Dirac operator (of the underlying Spin ${ }^{c}$ manifold) is the assembled Dolbeault complex

$$
\bar{\partial}+\bar{\partial}^{*}: \bigoplus_{j} \Omega^{0,2 j} \longrightarrow \bigoplus_{j} \Omega^{0,2 j+1}
$$

The index of this operator is the arithmetic genus of M - i.e. is the Euler number of the Dolbeault complex.

K-theory and K-homology in algebraic geometry

Let X be a (possibly singular) projective algebraic variety / \mathbb{C}.
Grothendieck defined two abelian groups:
$K_{\text {alg }}^{0}(X)=$ Grothendieck group of algebraic vector bundles on X.
$K_{0}^{a l g}(X)=$ Grothendieck group of coherent algebraic sheaves on X.
$K_{\text {alg }}^{0}(X)=$ the algebraic geometry K-theory of X contravariant.
$K_{0}^{\text {alg }}(X)=$ the algebraic geometry K-homology of X covariant.

K-theory in algebraic geometry

$\operatorname{Vect}_{\text {alg }} X=$ set of isomorphism classes of algebraic vector bundles on X.
$\mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right)=$ free abelian group with one generator for each element $[E] \in \operatorname{Vect}_{\text {alg }} X$.

For each short exact sequence ξ

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime} \rightarrow 0
$$

of algebraic vector bundles on X, let $r(\xi) \in \mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right)$ be

$$
r(\xi):=\left[E^{\prime}\right]+\left[E^{\prime \prime}\right]-[E]
$$

K-theory in algebraic geometry

$\mathcal{R} \subset \mathrm{A}\left(\operatorname{Vect}_{\text {alg }}(X)\right)$ is the subgroup of $\mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right)$
generated by all $r(\xi) \in \mathrm{A}\left(\right.$ Vect $\left._{\text {alg }} X\right)$.
DEFINITION. $K_{\text {alg }}^{0}(X):=\mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right) / \mathcal{R}$
Let X, Y be (possibly singular) projective algebraic varieties $/ \mathbb{C}$. Let

$$
f: X \longrightarrow Y
$$

be a morphism of algebraic varieties.
Then have the map of abelian groups

$$
\begin{aligned}
f^{*}: K_{a l g}^{0}(X) & \longleftarrow K_{a l g}^{0}(Y) \\
{\left[f^{*} E\right] } & \leftarrow[E]
\end{aligned}
$$

Vector bundles pull back. $f^{*} E$ is the pull-back via f of E.

K-homology in algebraic geometry

$\mathcal{S}_{\text {alg }} X=$
set of isomorphism classes of coherent algebraic sheaves on X.
$\mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right)=$ free abelian group with one generator for each element $[\mathcal{E}] \in \mathcal{S}_{\text {alg }} X$.

For each short exact sequence ξ

$$
0 \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\prime \prime} \rightarrow 0
$$

of coherent algebraic sheaves on X, let $r(\xi) \in \mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right)$ be

$$
r(\xi):=\left[\mathcal{E}^{\prime}\right]+\left[\mathcal{E}^{\prime \prime}\right]-[\mathcal{E}]
$$

K-homology in algebraic geometry

$\Re \subset \mathrm{A}\left(\mathcal{S}_{\text {alg }}(X)\right)$ is the subgroup of $\mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right)$ generated by all $r(\xi) \in \mathrm{A}\left(\mathcal{S}_{a l g} X\right)$.
DEFINITION. $K_{0}^{a l g}(X):=\mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right) / \mathfrak{R}$
Let X, Y be (possibly singular) projective algebraic varieties $/ \mathbb{C}$. Let

$$
f: X \longrightarrow Y
$$

be a morphism of algebraic varieties.
Then have the map of abelian groups

$$
\begin{gathered}
f_{*}: K_{0}^{a l g}(X) \longrightarrow K_{0}^{a l g}(Y) \\
{[\mathcal{E}] \mapsto \Sigma_{j}(-1)^{j}\left[\left(R^{j} f\right) \mathcal{E}\right]}
\end{gathered}
$$

$f: X \rightarrow Y$ morphism of algebraic varieties
\mathcal{E} coherent algebraic sheaf on X
For $j \geq 0$, define a presheaf $\left(W^{j} f\right) \mathcal{E}$ on Y by

$$
U \mapsto H^{j}\left(f^{-1} U ; \mathcal{E} \mid f^{-1} U\right) \quad U \text { an open subset of } Y
$$

Then

$$
\left(R^{j} f\right) \mathcal{E}:=\text { the sheafification of }\left(W^{j} f\right) \mathcal{E}
$$

$f: X \rightarrow Y$ morphism of algebraic varieties

$$
\begin{gathered}
f_{*}: K_{0}^{\text {alg }}(X) \longrightarrow K_{0}^{a l g}(Y) \\
{[\mathcal{E}] \mapsto \Sigma_{j}(-1)^{j}\left[\left(R^{j} f\right) \mathcal{E}\right]}
\end{gathered}
$$

SPECIAL CASE of $f_{*}: K_{0}^{a l g}(X) \longrightarrow K_{0}^{a l g}(Y)$
Y is a point. $Y=$.
$\epsilon: X \rightarrow \cdot$ is the map of X to a point.
$K_{\text {alg }}^{0}(\cdot)=K_{0}^{\text {alg }}(\cdot)=\mathbb{Z}$
$\epsilon_{*}: K_{0}^{a l g}(X) \rightarrow K_{0}^{a l g}(\cdot)=\mathbb{Z}$
$\epsilon_{*}(\mathcal{E})=\chi(X ; \mathcal{E})=\Sigma_{j}(-1)^{j} \operatorname{dim}_{\mathbb{C}} H^{j}(X ; \mathcal{E})$

X non-singular $\Longrightarrow K_{\text {alg }}^{0}(X) \cong K_{0}^{\text {alg }}(X)$

Let X be non-singular.
Let E be an algebraic vector bundle on X.
\underline{E} denotes the sheaf of germs of algebraic sections of E.
Then $E \mapsto \underline{E}$ is an isomorphism of abelian groups

$$
K_{a l g}^{0}(X) \longrightarrow K_{0}^{a l g}(X)
$$

This is Poincaré duality within the context of algebraic geometry K-theory\&K-homology.

Grothendieck-Riemann-Roch

Theorem (GRR)

Let X, Y be non-singular projective algebraic varieties \mathbb{C}, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{aligned}
K_{a l g}^{0}(X) & \longrightarrow K_{a l g}^{0}(Y) \\
\operatorname{ch}() \cup T d(X) \quad \downarrow & \downarrow \quad \operatorname{ch}() \cup T d(Y) \\
H^{*}(X ; \mathbb{Q}) & \longrightarrow H^{*}(Y ; \mathbb{Q})
\end{aligned}
$$

WARNING!!!

The horizontal arrows in the GRR commutative diagram

$$
\begin{array}{cc}
K_{a l g}^{0}(X) & \longrightarrow K_{a l g}^{0}(Y) \\
\operatorname{ch}() \cup T d(X) \quad \downarrow & \downarrow \quad \operatorname{ch}() \cup T d(Y) \\
H^{*}(X ; \mathbb{Q}) & \longrightarrow H^{*}(Y ; \mathbb{Q})
\end{array}
$$

are wrong-way (i.e. Gysin) maps.

$$
\begin{aligned}
& K_{a l g}^{0}(X) \cong K_{0}^{a l g}(X) \xrightarrow{f_{*}} K_{0}^{a l g}(Y) \cong K_{a l g}^{0}(Y) \\
& H^{*}(X ; \mathbb{Q}) \cong H_{*}(X ; \mathbb{Q}) \xrightarrow{f_{*}} H_{*}(Y ; \mathbb{Q}) \cong H^{*}(Y ; \mathbb{Q})
\end{aligned}
$$

Poincaré duality
Poincaré duality
K-homology is the dual theory to K-theory.
How can K-homology be taken from algebraic geometry to topology?
There are three ways in which this has been done:

Homotopy Theory K-homology is the homology theory determined by the Bott spectrum.
Geometric Cycles K-homology is the group of K-cycles.
C* algebras K-homology is the Kasparov group $K K^{*}(A, \mathbb{C})$.

Riemann-Roch for possibly singular complex projective algebraic varieties

Let X be a (possibly singular) projective algebraic variety / \mathbb{C}
Then (Baum-Fulton-MacPherson) there are functorial maps
$\alpha_{X}: K_{\text {alg }}^{0}(X) \longrightarrow K_{\text {top }}^{0}(X) \quad K$-theory \quad contravariant natural transformation of contravariant functors

$$
\begin{array}{r}
\beta_{X}: K_{0}^{\text {alg }}(X) \longrightarrow K_{0}^{\text {top }}(X) \quad K \text {-homology covariant } \\
\text { natural transformation of covariant functors }
\end{array}
$$

Everything is natural. No wrong-way (i.e. Gysin) maps are used.
$\alpha_{X}: K_{\text {alg }}^{0}(X) \longrightarrow K_{\text {top }}^{0}(X)$
is the forgetful map which sends an algebraic vector bundle E to the underlying topological vector bundle of E.

$$
\alpha_{X}(E):=E_{\text {topological }}
$$

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{rr}
K_{a l g}^{0}(X) & \longleftarrow K_{a l g}^{0}(Y) \\
\alpha_{X} \downarrow & \downarrow \alpha_{Y} \\
K_{t o p}^{0}(X) & \longleftarrow K_{t o p}^{0}(Y)
\end{array}
$$

i.e. natural transformation of contravariant functors

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{rr}
K_{\text {alg }}^{0}(X) & \longleftarrow K_{\text {alg }}^{0}(Y) \\
\alpha_{X} \downarrow & \downarrow \alpha_{Y} \\
K_{\text {top }}^{0}(X) & \longleftarrow K_{\text {top }}^{0}(Y) \\
c h \downarrow & \downarrow c h \\
H^{*}(X ; \mathbb{Q}) & \longleftarrow H^{*}(Y ; \mathbb{Q})
\end{array}
$$

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{rr}
K_{0}^{a l g}(X) & \longrightarrow K_{0}^{a l g}(Y) \\
\beta_{X} \downarrow & \downarrow \beta_{Y} \\
K_{0}^{t o p}(X) \longrightarrow K_{0}^{t o p}(Y)
\end{array}
$$

i.e. natural transformation of covariant functors

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{rr}
K_{\text {alg }}^{0}(X) & \longleftarrow K_{\text {alg }}^{0}(Y) \\
\alpha_{X} \downarrow & \downarrow \alpha_{Y} \\
K_{\text {top }}^{0}(X) & \longleftarrow K_{\text {top }}^{0}(Y) \\
c h \downarrow & \downarrow c h \\
H^{*}(X ; \mathbb{Q}) & \longleftarrow H^{*}(Y ; \mathbb{Q})
\end{array}
$$

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{cr}
K_{0}^{a l g}(X) & \longrightarrow K_{0}^{a l g}(Y) \\
\beta_{X} \downarrow & \downarrow \beta_{Y} \\
K_{0}^{t o p}(X) & \longrightarrow K_{0}^{t o p}(Y) \\
c h \downarrow & \downarrow c h \\
H_{*}(X ; \mathbb{Q}) & \longrightarrow H_{*}(Y ; \mathbb{Q})
\end{array}
$$

