The Riemann-Roch Theorem

Paul Baum Penn State

TIFR Mumbai, India

20 February, 2013

THE RIEMANN-ROCH THEOREM

Topics in this talk :

- 1. Classical Riemann-Roch
- 2. Hirzebruch-Riemann-Roch (HRR)
- 3. Grothendieck-Riemann-Roch (GRR)
- 4. RR for possibly singular varieties (Baum-Fulton-MacPherson)

CLASSSICAL RIEMANN - ROCH

 ${\cal M}$ compact connected Riemann surface

genus of
$$M = \#$$
 of holes $= rac{1}{2} \left[\mathrm{rank} H_1(M; \mathbb{Z})
ight]$

 \boldsymbol{D} a divisor of \boldsymbol{M}

D consists of a finite set of points of M p_1, p_2, \ldots, p_l and an integer assigned to each point n_1, n_2, \ldots, n_l

Equivalently

D is a function $D\colon M\to \mathbb{Z}$ with finite support

 $\mathsf{Support}(D) = \{ p \in M \mid D(p) \neq 0 \}$

 $\mathsf{Support}(D)$ is a finite subset of M

 \boldsymbol{D} a divisor on \boldsymbol{M}

$$\deg(D):=\sum_{p\in M}D(p)$$

Remark

 D_1, D_2 two divisors

$$D_1 \ge D_2$$
 iff $\forall p \in M, D_1(p) \ge D_2(p)$

Remark

D a divisor, -D is

$$(-D)(p) = -D(p)$$

Example

Let $f: M \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function.

Define a divisor $\delta(f)$ by:

$$\delta(f)(p) = \begin{cases} 0 \text{ if } p \text{ is neither a zero nor a pole of } f \\ \text{order of the zero if } f(p) = 0 \\ -(\text{order of the pole}) \text{ if } p \text{ is a pole of } f \end{cases}$$

Example

Let ω be a meromorphic 1-form on M. Locally ω is f(z)dz where f is a (locally defined) meromorphic function. Define a divisor $\delta(\omega)$ by:

$$\delta(\omega)(p) = \begin{cases} 0 \text{ if } p \text{ is neither a zero nor a pole of } \omega \\ \text{order of the zero if } \omega(p) = 0 \\ -(\text{order of the pole}) \text{ if } p \text{ is a pole of } \omega \end{cases}$$

 ${\cal D}$ a divisor on ${\cal M}$

$$H^{0}(M,D) := \left\{ \begin{array}{l} \text{meromorphic functions} \\ f \colon M \to \mathbb{C} \cup \{\infty\} \end{array} \middle| \delta(f) \geqq -D \right\}$$
$$H^{1}(M,D) := \left\{ \begin{array}{l} \text{meromorphic 1-forms} \\ \omega \text{ on } M \end{array} \middle| \delta(\omega) \geqq D \right\}$$

Lemma

 $H^0(M,D)$ and $H^1(M,D)$ are finite dimensional $\mathbb C$ vector spaces

 $\dim_{\mathbb{C}} H^0(M, D) < \infty$ $\dim_{\mathbb{C}} H^1(M, D) < \infty$

Theorem (RR)

Let M be a compact connected Riemann surface and let D be a divisor on M. Then:

$$\dim_{\mathbb{C}} H^0(M,D) - \dim_{\mathbb{C}} H^1(M,D) = d - g + 1$$

$$d = degree (D)$$
$$g = genus (M)$$

HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / \mathbb{C} E an algebraic vector bundle on M \underline{E} = sheaf of germs of algebraic sections of E $H^{j}(M, \underline{E}) := j$ -th cohomology of M using \underline{E} , j = 0, 1, 2, 3, ...

LEMMA

For all $j = 0, 1, 2, \dots \dim_{\mathbb{C}} H^j(M, \underline{E}) < \infty$. For all $j > \dim_{\mathbb{C}}(M), \quad H^j(M, \underline{E}) = 0$.

$$\chi(M,E) := \sum_{j=0}^{n} (-1)^{j} \dim_{\mathbb{C}} H^{j}(M,\underline{E})$$

 $n = \dim_{\mathbb{C}}(M)$

<u>THEOREM[HRR]</u> Let M be a non-singular projective algebraic variety / \mathbb{C} and let E be an algebraic vector bundle on M. Then

 $\chi(M,E) = (ch(E) \cup Td(M))[M]$

Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety $/ \mathbb{C}$ and let E be an algebraic vector bundle on M. Then

 $\chi(M,E) = (ch(E) \cup Td(M))[M]$

EXAMPLE. Let M be a compact complex-analytic manifold. Set $\Omega^{p,q} = C^{\infty}(M, \Lambda^{p,q}T^*M)$ $\Omega^{p,q}$ is the \mathbb{C} vector space of all C^{∞} differential forms of type (p,q)Dolbeault complex

$$0 \longrightarrow \Omega^{0,0} \longrightarrow \Omega^{0,1} \longrightarrow \Omega^{0,2} \longrightarrow \cdots \longrightarrow \Omega^{0,n} \longrightarrow 0$$

The Dirac operator (of the underlying $Spin^c$ manifold) is the assembled Dolbeault complex

$$\bar{\partial} + \bar{\partial}^* \colon \bigoplus_j \Omega^{0, \, 2j} \longrightarrow \bigoplus_j \Omega^{0, \, 2j+1}$$

The index of this operator is the arithmetic genus of M — i.e. is the Euler number of the Dolbeault complex.

K-theory and K-homology in algebraic geometry

Let X be a (possibly singular) projective algebraic variety $/ \mathbb{C}$.

Grothendieck defined two abelian groups:

 $K_{ala}^0(X) =$ Grothendieck group of algebraic vector bundles on X.

 $K_0^{alg}(\boldsymbol{X}) = \mbox{Grothendieck}$ group of coherent algebraic sheaves on $\boldsymbol{X}.$

 $K_{alg}^0(X)$ = the algebraic geometry K-theory of X contravariant. $K_0^{alg}(X)$ = the algebraic geometry K-homology of X covariant.

K-theory in algebraic geometry

 $\operatorname{Vect}_{alg} X =$ set of isomorphism classes of algebraic vector bundles on X.

 $A(\operatorname{Vect}_{alg} X) =$ free abelian group with one generator for each element $[E] \in \operatorname{Vect}_{alg} X$.

For each short exact sequence ξ

$$0 \to E' \to E \to E'' \to 0$$

of algebraic vector bundles on X, let $r(\xi) \in A(\operatorname{Vect}_{alg} X)$ be

$$r(\xi) := [E'] + [E''] - [E]$$

K-theory in algebraic geometry

 $\mathcal{R} \subset A(\operatorname{Vect}_{alg}(X))$ is the subgroup of $A(\operatorname{Vect}_{alg}X)$ generated by all $r(\xi) \in A(\operatorname{Vect}_{alg}X)$.

DEFINITION. $K^0_{alg}(X) := A(\operatorname{Vect}_{alg}X)/\mathcal{R}$

Let X, Y be (possibly singular) projective algebraic varieties $/\mathbb{C}$. Let

$$f: X \longrightarrow Y$$

be a morphism of algebraic varieties. Then have the map of abelian groups

$$\begin{split} f^* \colon K^0_{alg}(X) &\longleftarrow K^0_{alg}(Y) \\ [f^*E] &\leftarrow [E] \end{split}$$

Vector bundles pull back. f^*E is the pull-back via f of E.

K-homology in algebraic geometry

 $S_{alg}X =$ set of isomorphism classes of coherent algebraic sheaves on X.

 $A(S_{alg}X) =$ free abelian group with one generator for each element $[\mathcal{E}] \in S_{alg}X$.

For each short exact sequence ξ

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

of coherent algebraic sheaves on X, let $r(\xi) \in A(\mathcal{S}_{alg}X)$ be

$$r(\xi) := [\mathcal{E}'] + [\mathcal{E}''] - [\mathcal{E}]$$

K-homology in algebraic geometry

 $\mathfrak{R} \subset \mathcal{A}(\mathcal{S}_{alg}(X)) \text{ is the subgroup of } \mathcal{A}(\mathcal{S}_{alg}X) \\ \text{generated by all } r(\xi) \in \mathcal{A}(\mathcal{S}_{alg}X).$

DEFINITION. $K_0^{alg}(X) := \mathcal{A}(\mathcal{S}_{alg}X)/\mathfrak{R}$

Let X, Y be (possibly singular) projective algebraic varieties $/\mathbb{C}$. Let

$$f\colon X \longrightarrow Y$$

be a morphism of algebraic varieties. Then have the map of abelian groups

$$f_* \colon K_0^{alg}(X) \longrightarrow K_0^{alg}(Y)$$
$$[\mathcal{E}] \mapsto \Sigma_j (-1)^j [(R^j f)\mathcal{E}]$$

 $\begin{array}{l} f\colon X\to Y \quad \text{morphism of algebraic varieties} \\ \mathcal{E} \quad \text{coherent algebraic sheaf on } X \\ \text{For } j\geq 0 \text{, define a presheaf } (W^jf)\mathcal{E} \text{ on } Y \text{ by} \end{array}$

$$U \mapsto H^j(f^{-1}U; \mathcal{E}|f^{-1}U)$$
 U an open subset of Y

Then

$$(R^{j}f)\mathcal{E} :=$$
 the sheafification of $(W^{j}f)\mathcal{E}$

$$\begin{aligned} f \colon X \to Y & \text{morphism of algebraic varieties} \\ f_* \colon K_0^{alg}(X) \longrightarrow K_0^{alg}(Y) \\ & [\mathcal{E}] \mapsto \Sigma_j (-1)^j [(R^j f) \mathcal{E}] \end{aligned}$$

SPECIAL CASE of $f_* \colon K_0^{alg}(X) \longrightarrow K_0^{alg}(Y)$ Y is a point. $Y = \cdot$ $\epsilon \colon X \to \cdot$ is the map of X to a point. $K_{alg}^0(\cdot) = K_0^{alg}(\cdot) = \mathbb{Z}$ $\epsilon_* \colon K_0^{alg}(X) \to K_0^{alg}(\cdot) = \mathbb{Z}$ $\epsilon_*(\mathcal{E}) = \chi(X; \mathcal{E}) = \Sigma_j(-1)^j \dim_{\mathbb{C}} H^j(X; \mathcal{E})$

X non-singular $\Longrightarrow K^0_{alg}(X) \cong K^{alg}_0(X)$

Let X be non-singular. Let E be an algebraic vector bundle on X. \underline{E} denotes the sheaf of germs of algebraic sections of E. Then $E \mapsto \underline{E}$ is an isomorphism of abelian groups

$$K^0_{alg}(X) \longrightarrow K^{alg}_0(X)$$

This is Poincaré duality within the context of algebraic geometry K-theory&K-homology.

Grothendieck-Riemann-Roch

Theorem (GRR)

Let X, Y be non-singular projective algebraic varieties $/\mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$\begin{aligned} K^0_{alg}(X) &\longrightarrow K^0_{alg}(Y) \\ ch(\) \cup Td(X) & \downarrow \qquad \downarrow \qquad ch(\) \cup Td(Y) \\ H^*(X;\mathbb{Q}) &\longrightarrow H^*(Y;\mathbb{Q}) \end{aligned}$$

WARNING!!!

The horizontal arrows in the GRR commutative diagram

$$\begin{split} K^0_{alg}(X) &\longrightarrow K^0_{alg}(Y) \\ ch(\) \cup Td(X) & \downarrow \qquad \downarrow \qquad ch(\) \cup Td(Y) \\ & H^*(X;\mathbb{Q}) &\longrightarrow H^*(Y;\mathbb{Q}) \end{split}$$

are wrong-way (i.e. Gysin) maps.

$$\begin{split} K^0_{alg}(X) &\cong K^{alg}_0(X) \stackrel{f_*}{\longrightarrow} K^{alg}_0(Y) \cong K^0_{alg}(Y) \\ H^*(X;\mathbb{Q}) &\cong H_*(X;\mathbb{Q}) \stackrel{f_*}{\longrightarrow} H_*(Y;\mathbb{Q}) \cong H^*(Y;\mathbb{Q}) \\ \text{Poincaré duality} \\ \end{split}$$

K-homology is the dual theory to K-theory. How can K-homology be taken from algebraic geometry to topology?

There are three ways in which this has been done:

Homotopy Theory *K*-homology is the homology theory determined by the Bott spectrum.

Geometric Cycles *K*-homology is the group of K-cycles.

 ${\rm C}^*$ algebras $K\text{-}{\rm homology}$ is the Kasparov group $KK^*(A,{\mathbb C})$.

Riemann-Roch for possibly singular complex projective algebraic varieties

Let X be a (possibly singular) projective algebraic variety / $\mathbb C$

Then (Baum-Fulton-MacPherson) there are functorial maps

 $\begin{aligned} \alpha_X \colon K^0_{alg}(X) \longrightarrow K^0_{top}(X) & K\text{-theory} \quad \begin{array}{c} \text{contravariant} \\ \text{natural transformation of contravariant functors} \end{aligned}$

 $\beta_X \colon K_0^{alg}(X) \longrightarrow K_0^{top}(X) \qquad \begin{array}{c} K\text{-homology} & \text{covariant} \\ \text{natural transformation of covariant functors} \end{array}$

Everything is natural. No wrong-way (i.e. Gysin) maps are used.

 $\alpha_X \colon K^0_{alg}(X) \longrightarrow K^0_{top}(X)$ is the forgetful map which sends an algebraic vector bundle Eto the underlying topological vector bundle of E.

$$\alpha_X(E) := E_{\text{topological}}$$

Let X, Y be projective algebraic varieties $/\mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$K^{0}_{alg}(X) \longleftarrow K^{0}_{alg}(Y)$$

$$\alpha_{X} \downarrow \qquad \qquad \downarrow \alpha_{Y}$$

$$K^{0}_{top}(X) \longleftarrow K^{0}_{top}(Y)$$

i.e. natural transformation of contravariant functors

Let X,Y be projective algebraic varieties $/\mathbb{C}$, and let $f:X\longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$K^{0}_{alg}(X) \longleftarrow K^{0}_{alg}(Y)$$

$$\alpha_{X} \downarrow \qquad \qquad \downarrow \alpha_{Y}$$

$$K^{0}_{top}(X) \longleftarrow K^{0}_{top}(Y)$$

$$ch \downarrow \qquad \qquad \downarrow ch$$

$$H^{*}(X; \mathbb{Q}) \longleftarrow H^{*}(Y; \mathbb{Q})$$

ŀ

Let X, Y be projective algebraic varieties $/\mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$\begin{aligned} K_0^{alg}(X) &\longrightarrow K_0^{alg}(Y) \\ \beta_X \downarrow & \downarrow \beta_Y \\ K_0^{top}(X) &\longrightarrow K_0^{top}(Y) \end{aligned}$$

i.e. natural transformation of covariant functors

Let X,Y be projective algebraic varieties $/\mathbb{C}$, and let $f:X\longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$K^{0}_{alg}(X) \longleftarrow K^{0}_{alg}(Y)$$

$$\alpha_{X} \downarrow \qquad \qquad \downarrow \alpha_{Y}$$

$$K^{0}_{top}(X) \longleftarrow K^{0}_{top}(Y)$$

$$ch \downarrow \qquad \qquad \downarrow ch$$

$$H^{*}(X; \mathbb{Q}) \longleftarrow H^{*}(Y; \mathbb{Q})$$

ŀ

Let X, Y be projective algebraic varieties $/\mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$\begin{split} K_0^{alg}(X) &\longrightarrow K_0^{alg}(Y) \\ \beta_X \downarrow & \downarrow \beta_Y \\ K_0^{top}(X) &\longrightarrow K_0^{top}(Y) \\ ch \downarrow & \downarrow ch \\ H_*(X;\mathbb{Q}) &\longrightarrow H_*(Y;\mathbb{Q}) \end{split}$$