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THE RIEMANN-ROCH THEOREM

Topics in this talk :
1. Classical Riemann-Roch
2. Hirzebruch-Riemann-Roch (HRR)
3. Grothendieck-Riemann-Roch (GRR)
4. RR for possibly singular varieties (Baum-Fulton-MacPherson)



CLASSSICAL RIEMANN - ROCH

M compact connected Riemann surface

genus of M = # of holes

=
1
2

[rankH1(M ; Z)]



D a divisor of M

D consists of a finite set of points of M p1, p2, . . . , pl and an
integer assigned to each point n1, n2, . . . , nl

Equivalently

D is a function D : M → Z with finite support

Support(D) = {p ∈M | D(p) 6= 0}

Support(D) is a finite subset of M



D a divisor on M

deg(D) :=
∑

p∈M D(p)

Remark

D1, D2 two divisors

D1 = D2 iff ∀p ∈M,D1(p) = D2(p)

Remark

D a divisor, −D is
(−D)(p) = −D(p)



Example

Let f : M → C ∪ {∞} be a meromorphic function.

Define a divisor δ(f) by:

δ(f)(p) =


0 if p is neither a zero nor a pole of f

order of the zero if f(p) = 0
−(order of the pole) if p is a pole of f



Example

Let ω be a meromorphic 1-form on M . Locally ω is f(z)dz where
f is a (locally defined) meromorphic function. Define a divisor
δ(ω) by:

δ(ω)(p) =


0 if p is neither a zero nor a pole of ω

order of the zero if ω(p) = 0
−(order of the pole) if p is a pole of ω



D a divisor on M

H0(M,D) :=

{
meromorphic functions

f : M → C ∪ {∞}

∣∣∣∣∣ δ(f) = −D

}

H1(M,D) :=

{
meromorphic 1-forms

ω onM

∣∣∣∣∣ δ(ω) = D

}

Lemma

H0(M,D) and H1(M,D) are finite dimensional C vector spaces

dimCH
0(M,D) <∞

dimCH
1(M,D) <∞



Theorem (RR)

Let M be a compact connected Riemann surface and let D be a
divisor on M . Then:

dimCH
0(M,D)− dimCH

1(M,D) = d− g + 1

d = degree (D)
g = genus (M)



HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / C
E an algebraic vector bundle on M

E = sheaf of germs of algebraic sections of E

Hj(M,E) := j-th cohomology of M using E,
j = 0, 1, 2, 3, . . .



LEMMA
For all j = 0, 1, 2, . . . dimCH

j(M,E) <∞.

For all j > dimC(M), Hj(M,E) = 0.

χ(M,E) :=
n∑

j=0

(−1)j dimCH
j(M,E)

n = dimC(M)

THEOREM[HRR] Let M be a non-singular projective algebraic
variety / C and let E be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]



Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / C and let E
be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]



EXAMPLE. Let M be a compact complex-analytic manifold.
Set Ωp,q = C∞(M,Λp,qT ∗M)
Ωp,q is the C vector space of all C∞ differential forms of type (p, q)
Dolbeault complex

0 −→ Ω0,0 −→ Ω0,1 −→ Ω0,2 −→ · · · −→ Ω0,n −→ 0

The Dirac operator (of the underlying Spinc manifold) is the
assembled Dolbeault complex

∂̄ + ∂̄∗ :
⊕

j

Ω0, 2j −→
⊕

j

Ω0, 2j+1

The index of this operator is the arithmetic genus of M — i.e. is
the Euler number of the Dolbeault complex.



K-theory and K-homology in algebraic geometry

Let X be a (possibly singular) projective algebraic variety / C.

Grothendieck defined two abelian groups:

K0
alg(X) = Grothendieck group of algebraic vector bundles on X.

Kalg
0 (X) = Grothendieck group of coherent algebraic sheaves on

X.

K0
alg(X) = the algebraic geometry K-theory of X contravariant.

Kalg
0 (X) = the algebraic geometry K-homology of X covariant.



K-theory in algebraic geometry

VectalgX =
set of isomorphism classes of algebraic vector bundles on X.

A(VectalgX) = free abelian group
with one generator for each element [E] ∈ VectalgX.

For each short exact sequence ξ

0→ E′ → E → E′′ → 0

of algebraic vector bundles on X, let r(ξ) ∈ A(VectalgX) be

r(ξ) := [E′] + [E′′]− [E]



K-theory in algebraic geometry

R ⊂ A(Vectalg(X)) is the subgroup of A(VectalgX)
generated by all r(ξ) ∈ A(VectalgX).

DEFINITION. K0
alg(X) := A(VectalgX)/R

Let X,Y be (possibly singular) projective algebraic varieties /C.
Let

f : X −→ Y

be a morphism of algebraic varieties.
Then have the map of abelian groups

f∗ : K0
alg(X)←− K0

alg(Y )

[f∗E]← [E]

Vector bundles pull back. f∗E is the pull-back via f of E.



K-homology in algebraic geometry

SalgX =
set of isomorphism classes of coherent algebraic sheaves on X.

A(SalgX) = free abelian group
with one generator for each element [E ] ∈ SalgX.

For each short exact sequence ξ

0→ E ′ → E → E ′′ → 0

of coherent algebraic sheaves on X, let r(ξ) ∈ A(SalgX) be

r(ξ) := [E ′] + [E ′′]− [E ]



K-homology in algebraic geometry

R ⊂ A(Salg(X)) is the subgroup of A(SalgX)
generated by all r(ξ) ∈ A(SalgX).

DEFINITION. Kalg
0 (X) := A(SalgX)/R

Let X,Y be (possibly singular) projective algebraic varieties /C.
Let

f : X −→ Y

be a morphism of algebraic varieties.
Then have the map of abelian groups

f∗ : Kalg
0 (X) −→ Kalg

0 (Y )

[E ] 7→ Σj(−1)j [(Rjf)E ]



f : X → Y morphism of algebraic varieties
E coherent algebraic sheaf on X
For j ≥ 0, define a presheaf (W jf)E on Y by

U 7→ Hj(f−1U ; E|f−1U) U an open subset of Y

Then
(Rjf)E := the sheafification of (W jf)E



f : X → Y morphism of algebraic varieties

f∗ : Kalg
0 (X) −→ Kalg

0 (Y )

[E ] 7→ Σj(−1)j [(Rjf)E ]



SPECIAL CASE of f∗ : Kalg
0 (X) −→ Kalg

0 (Y )

Y is a point. Y = ·
ε : X → · is the map of X to a point.

K0
alg(·) = Kalg

0 (·) = Z

ε∗ : Kalg
0 (X)→ Kalg

0 (·) = Z

ε∗(E) = χ(X; E) = Σj(−1)jdimCH
j(X; E)



X non-singular =⇒ K0
alg(X) ∼= Kalg

0 (X)

Let X be non-singular.
Let E be an algebraic vector bundle on X.
E denotes the sheaf of germs of algebraic sections of E.
Then E 7→ E is an isomorphism of abelian groups

K0
alg(X) −→ Kalg

0 (X)

This is Poincaré duality within the context of algebraic geometry
K-theory&K-homology.



Grothendieck-Riemann-Roch

Theorem (GRR)

Let X,Y be non-singular projective algebraic varieties /C , and let
f : X −→ Y be a morphism of algebraic varieties. Then there is
commutativity in the diagram :

K0
alg(X) −→ K0

alg(Y )

ch( ) ∪ Td(X) ↓ ↓ ch( ) ∪ Td(Y )

H∗(X; Q) −→ H∗(Y ; Q)



WARNING!!!
The horizontal arrows in the GRR commutative diagram

K0
alg(X) −→ K0

alg(Y )

ch( ) ∪ Td(X) ↓ ↓ ch( ) ∪ Td(Y )

H∗(X; Q) −→ H∗(Y ; Q)

are wrong-way (i.e. Gysin) maps.

K0
alg(X) ∼= Kalg

0 (X)
f∗−→ Kalg

0 (Y ) ∼= K0
alg(Y )

H∗(X; Q) ∼= H∗(X; Q)
f∗−→ H∗(Y ; Q) ∼= H∗(Y ; Q)

Poincaré duality Poincaré duality



K-homology is the dual theory to K-theory.
How can K-homology be taken from algebraic geometry to
topology?
There are three ways in which this has been done:

Homotopy Theory K-homology is the homology
theory determined by the Bott spectrum.

Geometric Cycles K-homology is the group of
K-cycles.

C* algebras K-homology is the Kasparov group
KK∗(A,C) .



Riemann-Roch for possibly singular complex projective
algebraic varieties

Let X be a (possibly singular) projective algebraic variety / C

Then (Baum-Fulton-MacPherson) there are functorial maps

αX : K0
alg(X) −→ K0

top(X) K-theory contravariant
natural transformation of contravariant functors

βX : Kalg
0 (X) −→ Ktop

0 (X) K-homology covariant
natural transformation of covariant functors

Everything is natural. No wrong-way (i.e. Gysin) maps are used.



αX : K0
alg(X) −→ K0

top(X)
is the forgetful map which sends an algebraic vector bundle E
to the underlying topological vector bundle of E.

αX(E) := Etopological



Let X,Y be projective algebraic varieties /C , and let f : X −→ Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

K0
alg(X)←− K0

alg(Y )

αX ↓ ↓ αY

K0
top(X)←− K0

top(Y )

i.e. natural transformation of contravariant functors



Let X,Y be projective algebraic varieties /C , and let f : X −→ Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

K0
alg(X)←− K0

alg(Y )

αX ↓ ↓ αY

K0
top(X)←− K0

top(Y )

ch ↓ ↓ ch

H∗(X; Q)←− H∗(Y ; Q)



Let X,Y be projective algebraic varieties /C , and let f : X −→ Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

Kalg
0 (X) −→ Kalg

0 (Y )

βX ↓ ↓ βY

Ktop
0 (X) −→ Ktop

0 (Y )

i.e. natural transformation of covariant functors



Let X,Y be projective algebraic varieties /C , and let f : X −→ Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

K0
alg(X)←− K0

alg(Y )

αX ↓ ↓ αY

K0
top(X)←− K0

top(Y )

ch ↓ ↓ ch

H∗(X; Q)←− H∗(Y ; Q)



Let X,Y be projective algebraic varieties /C , and let f : X −→ Y
be a morphism of algebraic varieties. Then there is commutativity
in the diagram :

Kalg
0 (X) −→ Kalg

0 (Y )

βX ↓ ↓ βY

Ktop
0 (X) −→ Ktop

0 (Y )

ch ↓ ↓ ch

H∗(X; Q) −→ H∗(Y ; Q)


