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Abstract

Suppose one is given a discrete group G, a cocompact proper G-

manifold M , and a G-self-map f : M → M . Then we introduce the equiv-

ariant Lefschetz class of f , which is globally defined in terms of cellular

chain complexes, and the local equivariant Lefschetz class of f , which is

locally defined in terms of fixed point data. We prove the equivariant Lef-

schetz fixed point theorem, which says that these two classes agree. As a

special case, we prove an equivariant Poincaré-Hopf Theorem, computing

the universal equivariant Euler characteristic in terms of the zeros of an

equivariant vector field, and also obtain an orbifold Lefschetz fixed point

theorem. Finally, we prove a realization theorem for universal equivariant

Euler characteristics.
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0. Introduction

Let us recall the classical Lefschetz fixed point theorem. Let f : M →M be
a smooth self-map of a compact smooth manifoldM , such that Fix(f)∩∂M = ∅
and for each x ∈ Fix(f), the determinant of the linear map (id−Txf) : TxM →
TxM is different from zero. Denote by TxM

c the one-point compactification of
TxM , which is homeomorphic to a sphere. Let (id−Txf)

c : TxM
c → TxM

c be
the homeomorphism induced by the self-homeomorphism (id−Txf) : TxM →
TxM . Denote by deg((id−Txf)c) its degree, which is 1 or −1, depending on
whether det(id−Txf) is positive or negative. Let

LZ[{1}](f) :=
∑

p≥0

(−1)p · trQ(Hp(f ;Q)) =
∑

p≥0

(−1)p · trZ(Cp(f))

∗Partially supported by NSF grants DMS-9625336 and DMS-0103647.
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be the classical Lefschetz number of f , whereHp(f ;Q) is the map on the singular
homology with rational coefficients and Cp(f) is the chain map on the cellular Z-
chain complex induced by f for some smooth triangulation ofM . The Lefschetz
fixed point theorem says that under the conditions above the fixed point set
Fix(f) = {x ∈M | f(x) = x} is finite and

LZ[{1}](f) =
∑

x∈Fix(f)

deg((id−Txf)
c). (0.1)

For more information about it we refer for instance to [1].
The purpose of this paper is to generalize this to the following equivariant

setting. Let G be a (not necessarily finite) discrete group G. A smooth G-
manifold M is a smooth manifold with an action of G by diffeomorphisms. It is
called cocompact if the quotient space G\M is compact. It is proper if the map
G×M →M ×M, (g,m) 7→ (g ·m,m) is proper; when the action is cocompact,
this happens if and only if all isotropy groups are finite. One can equip M
with the structure of a proper finite G-CW -complex by an equivariant smooth
triangulation [4]. The main result of this paper is
Theorem 0.2 (Equivariant Lefschetz fixed point theorem) Let G be a

discrete group. Let M be a cocompact proper G-manifold (possibly with bound-

ary) and let f : M →M be a smooth G-map. Suppose that Fix(f)∩∂M = ∅ and
for each x ∈ Fix(f) the determinant of the linear map id−Txf : TxM → TxM
is different from zero.

Then G\Fix(f) is finite, the equivariant Lefschetz class of f (see Definition
3.6)

ΛG(f) ∈ UG(M)

is defined in terms of cellular chain complexes, and the local equivariant Lef-
schetz class of f (see Definition 4.6)

ΛGloc(f) ∈ UG(M)

is defined. Also ΛG(f) and ΛGloc(f) depend only on the differentials Txf for

x ∈ Fix(f), and
ΛG(f) = ΛGloc(f).

If G is trivial, Theorem 0.2 reduces to (0.1). We emphasize that we want to
treat arbitrary discrete groups and take the component structure of the various
fixed point sets into account.

In Section 1 we will define the orbifold Lefschetz number, which can also be
viewed as an L2-Lefschetz number, and prove the orbifold Lefschetz fixed point
theorem 2.1 in Section 2. It is both a key ingredient in the proof of and a special
case of the equivariant Lefschetz fixed point theorem 0.2.

In Section 3 we introduce the equivariant Lefschetz class ΛG(f), which is
globally defined in terms of cellular chain complexes, and in Section 4 we in-
troduce the local equivariant Lefschetz class ΛGloc(f), which is locally defined
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in terms of the differentials at the fixed points. These two are identified by
the equivariant Lefschetz fixed point theorem 0.2, whose proof is completed in
Section 5.

A classical result (the Poincaré-Hopf Theorem) says that the Euler charac-
teristic of a compact smooth manifold can be computed by counting (with signs)
the zeros of a vector field which is transverse to the zero-section and points out-
ward at the boundary. This is a corollary of the classical Lefschetz fixed point
theorem (0.1) via the associated flow. In Section 6 we will extend this result
to the equivariant setting for proper cocompact G-manifolds by defining the
universal equivariant Euler characteristic, defining the index of an equivariant
vector field which is transverse to the zero-section and points outward at the
boundary, and proving their equality in Theorem 6.6. As an illustration we
explicitly compute the universal equivariant Euler characteristic and the local
equivariant index of an equivariant vector field for the standard action of the
infinite dihedral group on R in Example 6.9.

To prove Theorem 6.6 was one motivation for this paper, since it is a key
ingredient in [10]. There a complete answer is given to the question of what infor-
mation is carried by the element EulG(M) ∈ KOG0 (M), the class defined by the
equivariant Euler operator for a proper cocompact G-manifold M . Rosenberg
[11] has already settled this question in the non-equivariant case by perturbing
the Euler operator by a vector field and using the classical result that the Euler
characteristic can be computed by counting the zeros of a vector field. The
equivariant version of this strategy will be applied in [10], which requires having
Theorem 6.6 available.

In Section 7 we discuss the problem whether there exists a proper smooth G-
manifold M with prescribed sets π0(M

H) for H ⊆ G such that χG(M) realizes
a given element in UG(M). A necessary and sufficient condition for this is given
in Theorem 7.6. Again this will have applications in [10].

The paper is organized as follows:

1. The orbifold Lefschetz number
2. The orbifold Lefschetz fixed point theorem
3 The equivariant Lefschetz classes
4. The local equivariant Lefschetz class
5. The proof of the equivariant Lefschetz fixed point theorem
6. Euler characteristic and index of a vector field in the equivariant setting
7. Constructing equivariant manifolds with given component structure and

universal equivariant Euler characteristic
References

1. The orbifold Lefschetz number

In order to define the various Lefschetz classes and prove the various Lef-
schetz fixed point theorems for cocompact proper G-manifolds, we need some
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input about traces.
Let R be a commutative associative ring with unit, for instance R = Z or

R = Q. Let u : P → P be an endomorphism of a finitely generated projective
RG-module. Choose a finitely generated projective RG-module Q and an iso-

morphism v : P ⊕ Q
∼=
−→

⊕

i∈I RG for some finite index set I. We obtain an
RG-endomorphism

v ◦ (u⊕ 0) ◦ v−1 :
⊕

i∈I

RG→
⊕

i∈I

RG.

Let A = (ai,j)i,j∈I be the matrix associated to this map, i.e.,

v ◦ (u⊕ 0) ◦ v−1({wi | i ∈ I}) =

{

∑

i∈J

wi · ai,j

∣

∣

∣

∣

∣

j ∈ I

}

.

Define

trRG : RG → R,
∑

g∈G

rg · g 7→ r1 (1.1)

where r1 is the coefficient of the unit element 1 ∈ G. Define the RG-trace of u
by

trRG(u) :=
∑

i∈I

trRG(aii) ∈ R. (1.2)

We omit the easy and well-known proof that this definition is independent
of the various choices such as Q and v and that the following Lemma 1.3 is true.
Lemma 1.3 (a) Let u : P → Q and v : Q→ P be RG-maps of finitely gener-

ated projective RG-modules. Then

trRG(v ◦ u) = trRG(u ◦ v);

(b) Let P1 and P2 be finitely generated projective RG-modules. Let

(

u1,1 u1,2
u2,1 u2,2

)

: P1 ⊕ P2 → P1 ⊕ P2

be a RG-self-map. Then

trRG

(

u1,1 u1,2
u2,1 u2,2

)

= trRG(u1,1) + trRG(u2,2);

(c) Let u1, u2 : P → P be RG-endomorphisms of a finitely generated projective
RG-module and r1, r2 ∈ R. Then

trRG(r1 · u1 + r2 · u2) = r1 · trRG(u1) + r2 · trRG(u2);
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(d) Let α : G → K be an inclusion of groups and u : P → P be an endomor-

phism of a finitely generated projective RG-module. Then induction with α
yields an endomorphism α∗u of a finitely generated projective RK-module,

and

trRK(α∗u) = trRG(u);

(e) Let α : H → G be an inclusion of groups with finite index [G : H] and
u : P → P be an endomorphism of a finitely generated projective RG-
module. Then the restriction to RH with α yields an endomorphism α∗u
of a finitely generated projective RH-module, and

trRH(α∗u) = [G : H] · trRG(u);

(f ) Let H ⊆ G be finite such that |H| is invertible in R. Let u : R[G/H] →
R[G/H] be a RG-map which sends 1H to

∑

gH∈G/H rgH · gH. Then

R[G/H] is a finitely generated projective RG-module and

trRG(u) = |H|−1 · r1H ;

trRG(idR[G/H]) = |H|−1.

Let G be a discrete group. A relative G-CW -complex (X,A) is finite if and
only if X is obtained from A by attaching finitely many equivariant cells, or,
equivalently, G\(X/A) is compact. A relative G-CW -complex (X,A) is proper
if and only if the isotropy group Gx of each point x ∈ X − A is finite (see
for instance [7, Theorem 1.23 on page 18]). Let (f, f0) : (X,A) → (X,A) be
a cellular G-self-map of a finite proper relative G-CW -complex (X,A). Let R
be a commutative ring such that for any x ∈ X − A the order of its isotropy
group Gx is invertible in R. Then the cellular RG-chain complex C∗(X,A)
is finite projective, i.e., each chain module is finitely generated projective and
Cp(X,A) = 0 for p ≥ d for some integer d.

Definition 1.4 Define the orbifold Lefschetz number of (f, f0) by

LRG(f, f0) :=
∑

p≥0

(−1)p · trRG(Cp(f, f0)) ∈ R. (1.5)

One easily proves using Lemma 1.3

Lemma 1.6 Let (f, f0) : (X,A) → (X,A) be a cellular G-self-map of a finite

proper relative G-CW -complex such that |Gx| is invertible in R for each x ∈
X −A. Then:

(a) The equivariant Lefschetz number LRG(f, f0) depends only on the G-homo-
topy class of (f, f0);

(b) Let (g, g0) : (X,A) → (Y,B) and (h, h0) : (Y,B) → (X,A) be cellular G-
maps of finite proper relative G-CW -complexes such that |Gx| is invertible
in R for each x ∈ X − A and |Gy| is invertible in R for each y ∈ Y −B.
Then

LRG(g ◦ h, g0 ◦ h0) = LRG(h ◦ g, h0 ◦ g0);
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(c) Let α : G → K be an inclusion of groups. Then induction with α yields

a cellular K-self-map α∗(f, f0) of a finite proper relative K-CW -complex,

and

LRK(α∗(f, f0)) = LRG(f, f0);

(d) Let α : H → G be an inclusion of groups with finite index [G : H]. Then

restriction with α yields a cellular H-self-map α∗(f, f0) of a finite proper

relative H-CW -complex, and

LRH(α∗f) = [G : H] · LRG(f).

Remark 1.7 The rational number LQG(f, f0) agrees with the L2-Lefschetz
number L(2)(f, f0;N (G)) introduced in [9, Section 6.8]. It can be read off from
the map induced by (f, f0) on the L2-homology of (X,X0) by the analog of the
usual formula, namely by

LQG(f, f0) = L(2)(f, f0;N (G)) =
∑

p≥0

(−1)p · trN (G)

(

H(2)p (f, f0;N (G))
)

,

where trN (G) is the standard trace of the group von Neumann algebra N (G). A
similar formula exists in terms of Hn(X,X0;Q) only under the very restrictive
assumption, that each QG-module Hp(X,X0;Q) is finitely generated projec-
tive. If G acts freely, then LQG(f) agrees with the (ordinary) Lefschetz number
LZ[{1}](G\(f, f0)) of the cellular self-map G\(f, f0) of the finite relative CW -
complex G\(X,A). If G is finite, then (X,X0) is a finite relative CW -complex
and

LQG(f, f0) =
1

|G|
· LZ[{1}](f, f0).

The following description of LG(f) will be useful later. Let Ip(X,A) be the
set of path components of Xp −Xp−1. This is the same as the set of open cells
of (X,A) regarded as relative CW -complex (after forgetting the group action).
The group G acts on Ip(X,A). For an open p-cell e let Ge be its isotropy group,
e be its closure and ∂e = e− e. Then e/∂e is homeomorphic to Sp and there is
a homeomorphism

h :
∨

e′∈Ip(X,A)

e′/∂e′
∼=
−→ Xp/Xp−1.

For an open cell e ∈ Ip(X,A) define the incidence number

inc(f, e) ∈ Z (1.8)

to be the degree of the composition

e/∂e
ie−→

∨

e′∈Ip(X,A)

e′/∂e′
h
−→ Xp/Xp−1

f
−→ Xp/Xp−1

h−1

−−→
∨

e′∈Ip(X,A)

e′/∂e′
pre−−→ e/∂e,
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where ie is the obvious inclusion and pre is the obvious projection. Obviously
inc(f, e) = inc(f, ge) for g ∈ G. One easily checks using Lemma 1.3

Lemma 1.9 Let (X,A) be a finite proper relative G-CW -complex. Consider a

cellular G-map (f, f0) : (X,A)→ (X,A). Then

LQG(f, f0) =
∑

p≥0

(−1)p ·
∑

Ge∈G\Ip(X,A)

|Ge|
−1 · inc(f, e).

2. The orbifold Lefschetz fixed point theorem

This section is devoted to the proof of:
Theorem 2.1 (The orbifold Lefschetz fixed point theorem) Let M be a

cocompact proper G-manifold (possibly with boundary) and let f : M → M be

a smooth G-map. Suppose that Fix(M) ∩ ∂M = ∅ and for any x ∈ Fix(f) the
determinant of the map (idTxM −Txf) is different from zero. Then G\Fix(f)
is finite, and

LQG(f) =
∑

G\Fix(f)

|Gx|
−1 · deg ((idTxM −Txf))

c
) .

Theorem 2.1 above will be a key ingredient in the proof of the equivariant
Lefschetz fixed point theorem 0.2. On the other hand Theorem 0.2 implies
Theorem 2.1.

Let us first consider as an illustration the easy case, where G is finite. Then

LQG(f) = |G|−1 · LQ[{1}](f) = |G|−1 · LZ[{1}](f)

by Lemma 1.6 (d) and LZ[{1}](f) is the (ordinary) Lefschetz number of the self-
map f : M → M of the compact manifold M . The non-equivariant Lefschetz
fixed point theorem says

LZ{1}(f) =
∑

Fix(f)

deg ((idTxM −Txf)
c
) .

Thus Theorem 2.1 follows for finite G. The proof in the case of an infinite group
cannot be reduced to the non-equivariant case in such an easy way since M is
not compact anymore. Instead we extend the proof in the non-equivariant case
to the equivariant setting.
Proof of Theorem 2.1:

Fix a G-invariant Riemannian metric on M . Choose ε1 > 0 such that for all
x ∈ M the exponential map is defined on Dε1TxM = {v ∈ TxM | ‖v‖ ≤ ε1},
where ‖v‖ for v ∈ TxM is the norm coming from the Riemannian metric. Such
ε1 > 0 exists because G\M is compact. The image Nx,ε1 of the exponential
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map on Dε1TxM is a Gx-submanifold of M and a compact neighborhood of x.
The exponential map induces a Gx-diffeomorphism

expx,ε1 : Dε1TxM
∼=
−→ Nx,ε1

with expx,ε1(0) = x whose differential at 0 is the identity under the canonical
identification T0Dε1TxM = TxM .

Since G\M is compact, we can choose ε2 > 0 such that f(Nx,ε2) ⊆ Nx,ε1
and Txf(Dε2TxM) ⊆ Dε1TxM holds for all x ∈ Fix(f). Notice that expx,ε1
restricted to Dε2TxM is expx,ε2 . We want to change f up to G-homotopy
without changing Fix(f) such that exp−1x,ε1 ◦f◦expx,ε2 and Txf agree onDε3TxM
for some positive number ε3 > 0 and all x ∈ Fix(f). Consider x ∈ Fix(f). Notice
that exp−1x,ε1 ◦f ◦ expx,ε2 sends 0 to 0 and has Txf as differential at 0 under the
canonical identification T0Dε1TxM = TxM . By Taylor’s theorem we can find
a constant C1 > 0 such that with respect to the norm on TxM induced by the
Riemannian metric on M

|| exp−1x,ε1 ◦f ◦ expx,ε2(v)− Txf(v)|| ≤ C1 · ||v||
2 for v ∈ Dε2TxM. (2.2)

Since det(id−Txf) 6= 0, we can find a constant C2 > 0 such that

||Txf(v)− v|| ≥ C2 · ||v|| for v ∈ TxM. (2.3)

Choose a smooth function φ : [0, ε2] → [0, 1] with the properties that φ(t) = 1
for t ≤ min{C2/3C1, ε2/3} and φ(t) = 0 for t ≥ min{C2/2C1, ε2/2}. Define

h : Dε2TxM × [0, 1] → Dε1TxM

by

h(y, t) :=
(

1− tφ(||v||)
)

· exp−1x,ε1 ◦f ◦ expx,ε2(v) + tφ(||v||) · Txf(v).

Obviously h is a Gx-homotopy from h0 = exp−1x,ε1 ◦f ◦ expx,ε2 to a Gx-map
h1. The homotopy h is stationary outside Dmin{C2/2C1,ε2/2}TxM and h1 agrees
with Txf on Dε3TxM if we put ε3 = min{C2/3C1, ε2/3}. Each map ht has on
Dmin{C2/2C1,ε2/2}TxM only one fixed point, namely 0. This follows from the
following estimate based on (2.2) and (2.3) for v ∈ Dmin{C2/2C1,ε2/2}TxM :

||ht(v)− v||

≥ ||Txf(v)− v|| −

||(1− tφ(||v||)) · exp−1x,ε1 ◦f ◦ expx,ε2(v)− (1− tφ(||v||)) · Txf(v)||

= ||Txf(v)− v|| − (1− tφ(||v||)) · || exp−1x,ε1 ◦f ◦ expx,ε2(v)− Txf(v)||

≥ C2 · ||v|| − (1− tφ(||v||)) · C1 · ||v||
2

≥ (C2 − (1− tφ(||v||)) · C1 · ||v||) · ||v||

≥ C2 · ||v||/2.

In particular we see that the only fixed point of f on Nmin{C2/2C1,ε2/2},x is
x. After possibly decreasing ε1 we can assume without loss of generality that
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Nε1,x ∩Nε1,y = ∅ for x, y ∈ Fix(f), x 6= y. Since M is cocompact, G\Fix(f) is
finite.

Since ht = h0 has no fixed points outside Dmin{C2/2C1,ε2/2}TxM , each map
ht has only one fixed point, namely 0. Since the Gx-homotopy h is stationary
outside Dmin{C2/2C1,ε2/2}TxM , it extends to a G-homotopy from f to a G-map
f ′ such that Fix(f) = Fix(f ′) and

exp−1x,ε1 ◦f
′ ◦ expx,ε2(v) = Txf

′(v) = Txf(v)

holds for each x ∈ Fix(f) and each v ∈ Dε3TxM . In the sequel we will identify
Dε1TxM with the compact neighborhood Nε1,x of x by expx,ε1 for x ∈ Fix(f).

Since LQG(f) depends only on the G-homotopy class of f , we can assume in
the sequel that f agrees with Txf : Dε3TxM → Dε1TxM on Dε3TxM for each
x ∈ Fix(f).

Next we analyze the Gx-linear map Txf : TxM → TxM for x ∈ Fix(f). We
can decompose the orthogonal Gx-representation TxM as

TxM =

n
⊕

i=1

V mi
i

for pairwise non-isomorphic irreducible Gx-representations V1, V2, . . . , Vn and
positive integers m1, m2, . . ., mn. The Gx-linear automorphism Txf splits as
⊕ni=1fi for Gx-linear automorphisms fi : V

mi
i → V mi

i . Let Di = EndRGx(Vi) be
the skew-field of Gx-linear endomorphisms of Vi. It is either the field of real
numbers R, the field of complex numbers C or the skew-field of quaternions H.
There is a canonical isomorphism of normed vector spaces

EndRGi(V
mi
i ) ∼=Mmi

(Di).

Since the open subspace GLmi
(Di) ⊆ Mmi

(Di) is connected for Di = C and
Di = H and the sign of the determinant induces a bijection π0(GLmi

(R)) →
{±1}, we can connect fi ∈ AutGx(Vi) by a (continuous) path to either id : V mi

i →
V mi
i or to − idVi ⊕ id

V
mi−1

i
: V mi

i → V mi
i . This implies that we can find a de-

composition
TxM = Vx ⊕Wx

of the orthogonalGx-representation TxM into orthogonalGx-subrepresentations
and a (continuous) path wt : TxM → TxM of linear Gx-maps from Txf to
2 · idVx ⊕ 0Wx

such that id−wt is an isomorphism for all t ∈ [0, 1]. Since wt is
continuous on the compact set [0, 1], there is a constant C3 ≥ 1 such that for
each v ∈ TxM and each t ∈ [0, 1],

||wt(v)|| ≤ C3 · ||v||.

Choose a smooth function ψ : [0, ε3/C3] → [0, 1] such that ψ(t) = 1 for t ≤
ε3/3C3 and ψ(t) = 0 for t ≥ 2ε3/3C3. Define a Gx-homotopy

u : Dε3/C3
TxM × [0, 1] → Dε3TxM, (y, t) 7→ wt·ψ(||v||)(v).
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This is a Gx-homotopy from f |Dε3
TxM = Txf |Dε3

TxM = w0|Dε3
TxM to a linear

Gx-map u1. The map u1 and the map 2 idVx ⊕ 0Wx
: TxM → TxM agree on

Dε3/3C3
TxM . For each t ∈ [0, 1] the map ut : Dε3/C3

TxM → Dε3TxM has
only one fixed point, namely 0, since this is true for wt for each t ∈ [0, 1] by
construction. The Gx-homotopy u is stationary outside D2ε/3C3

TxM . Hence
it can be extended to a G-homotopy U : M × [0, 1] → M which is stationary
outside D2ε/3C3

TxM . Since

LQG(f) = LQG(U1);

deg((id−Txf)
c) = deg((id−TxU1)

c),

we can assume without loss of generality that f looks on Dε3/C3
TxM like

2 idVx ⊕ 0Wx
: TxM = Vx ⊕Wx → TxM = Vx ⊕Wx

for each x ∈ Fix(f). By scaling the metric with a constant, we can arrange
that we can take ε/3C3 = 1/2 and ε1 = 2, in other words, we can identify
D2TxM with a neighborhood of x in M and f is given on D1/2TxM by Txf =
2 · idVx ⊕0Wx

.
Let d be the metric on M coming from the Riemannian metric. Choose an

integer δ > 0 such that the inequality d(y, f(y)) ≥ δ holds for each y ∈ M ,
which does not lie in D1/2TxM for each x ∈ Fix(f). Consider x ∈ Fix(f).
Choose Gx-equivariant triangulations on the unit spheres SVx and SWx such
that the diameter of each simplex measured with respect to the metric d is
smaller than δ/8. Equip [0, 1] with the CW -structure whose 0-skeleton is { i

2n |
i = 0, 1, 2, . . . , 2n} for some positive integer n which will be specified later.
Equip D1Vx with the Gx-CW -structure which is induced from the product Gx-
CW -structure on SVx × [0, 1] by the quotient map

SVx × [0, 1]→ DVx, (y, t) 7→ t · y.

This is not yet the structure of a simplicial Gx-complex since the cells look like
cones over simplices or products of simplices. The cones over simplices are again
simplices and will not be changed. There is a standard way of subdividing a
product of simplices to get a simplicial structure again. We use the resulting
simplicial Gx-structure on D1Vx. It is actually a Gx-equivariant triangulation.
Define analogously a Gx-simplicial structure on D1W .

Notice that D1/2Vx ⊆ D1Vx inherits a Gx-CW -simplicial substructure. We
will also use a second Gx-simplicial structure on D1/2Vx, which will be denoted
by D1/2V

′
x. It is induced by the product Gx-CW -structure on SVx× [0, 1] above

together with the the quotient map

SVx × [0, 1]→ D1/2Vx, (y, t) 7→ t/2 · y.

The Gx-simplicial -structure on D1/2V
′
x is finer than the one on D1/2Vx but

agrees with the one on D1/2Vx on the boundary. The map 2 id: Vx → Vx

induces an isomorphism of Gx-simplicial complexes 2 id : D1/2V
′
x

∼=
−→ D1/2Vx,
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but it does not induce a simplicial map 2 id: D1/2Vx → D1Vx. The latter map
is at least cellular with respect to the Gx-CW -structures induced from the Gx-
simplicial structures since the p-skeleton of D1/2Vx is contained in the p-skeleton
of D1/2V

′
x.

We equip D1Vx × D1Wx, D1/2Vx × D1Wx and D1/2Vx × D1Wx with the
product Gx-simplicial structure. Again this requires subdividing products of
simplices (except for products of a simplex with a vertex).

Recall that we have identified D2TxM with its image under the exponen-
tial map. Choose a complete set of representatives {x1, x2, . . . , xk} for the
G-orbits in Fix(f). By the construction above we get a G-triangulation on

the G-submanifold
∐k
i=1G ×Gxi D1Vxi ×D1Wxi of M such that the diameter

of each simplex is smaller than δ/4 if we choose the integer n above small
enough. It can be extended to a G-triangulation K of M such that each
simplex has a diameter less than δ/4. Let K ′ be the refinement of K which
agrees with K outside D1/2Vxi × D1W and is D1/2V

′
xi × D1W on the sub-

space D1/2Vxi × D1W . Then f : K ′ → K is a G-map which is simplicial on
∐k
i=1G ×Gxi (D1/2V

′
xi × D1WxiTxM). The construction in the proof of the

(non-equivariant) simplicial approximation theorem yields a subdivision K ′′ of

K ′ such that K ′′ and K ′ agree on
∐k
i=1G ×Gxi (D1/2V

′
xi × D1Wxi) and a G-

homotopy h : M × [0, 1] → M from h0 = f to a simplicial map h1 : K
′′ → K

such that h is stationary on
∐k
i=1G ×Gxi (D1/2V

′
xi ×D1Wxi) and the track of

the homotopy for each point in M lies within a simplex of K. Recall that any
simplex ofK has diameter at most δ/4 and d(y, f(y)) ≥ δ holds for y ∈M which

does not lie in
∐k
i=1G×Gxi (D1/2V

′
xi ×D1Wxi). Hence for any simplex e ∈ K ′′

outside
∐k
i=1G ×Gxi (D1/2V

′
xi × D1Wxi) we have h1(e) ∩ e = ∅. The G-map

h1 : K
′′ → K ′′ is not simplicial anymore but at least cellular with respect to the

G-CW -structure on M coming from K ′′. This comes from the fact that each
skeleton of K ′′ is larger than the one of K ′.

Next we compute inc(h1, e) for cells e in M with respect to the G-CW -
structure induced by K ′′. Obviously inc(h1, e) = 0 if e does not belong to
∐k
i=1G×Gxi (D1/2V

′
xi×D1Wxi) since for such cells e we have h1(e)∩e = ∅. If e

belongs to D1/2V
′
xi ×D1Wxi its image under h1 = f = 2 idVxi ⊕ 0Wxi

does not
meet the interior of e unless it is the zero simplex sitting at (0, 0) ∈ Vxi⊕Wxi or
a simplex of the shape {t · x | t ∈ [0, 1/4n], x ∈ e}× {0} for some simplex in e ∈
SVxi . Hence among the cells inD1/2V

′
xi×D1Wxi only the zero simplex sitting at

(0, 0) ∈ Vxi ⊕Wxi and the simplex of the shape {t ·x | t ∈ [0, 1/4n], x ∈ e}×{0}
for some simplex in e ∈ SVxi can have non-zero incidence numbers inc(f, e) and
one easily checks that these incidence numbers are all equal to 1. Hence we get
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using Lemma 1.9 and the equality inc(f, e) = inc(f, ge)

LQG(f) = LQG(h1)

=
∑

p≥0

(−1)p ·
∑

Ge∈G\Ip(K′′)

|Ge|
−1 · inc(f, e)

=
∑

p≥0

(−1)p ·
k
∑

i=1

∑

Gxie∈

Gxi\Ip(D1/2V
′
xi
×D1W )

|(Gxi)e|
−1 · inc(f, e)

=
∑

p≥0

(−1)p ·
k
∑

i=1

|Gxi |
−1

∑

Gxie∈

Gxi\Ip(D1/2V
′
xi
×D1W )

|Gxi/(Gxi)e| · inc(f, e)

=
∑

p≥0

(−1)p ·
k
∑

i=1

|Gxi |
−1

∑

e∈Ip(D1/2V ′
xi
×D1W )

inc(f, e)

=

k
∑

i=1

|Gxi |
−1
∑

p≥0

(−1)p ·
∑

e∈Ip(D1/2V ′
xi
×D1W )

inc(f, e)

=

k
∑

i=1

|Gxi |
−1



1 +
∑

p≥1

(−1)p · |Ip−1(SVxi)|





=

k
∑

i=1

|Gxi |
−1 (1− χ(SVxi))

=
k
∑

i=1

|Gxi |
−1(−1)dim(Vxi )

=
k
∑

i=1

|Gxi |
−1 det(id−Txif)

|det(id−Txif)|

=
k
∑

i=1

|Gxi |
−1 deg((id−Txif)

c)

=
∑

Gx∈G\Fix(f)

|Gx|
−1 · deg((id−Txif)

c).

This finishes the proof of Theorem 2.1.

3. The equivariant Lefschetz classes

In this section we define the equivariant Lefschetz class appearing in the
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equivariant Lefschetz fixed point Theorem 0.2. We will use the following nota-
tion in the sequel.
Notation 3.1 Let G be a discrete group and H ⊆ G be a subgroup. Let NH =
{g ∈ G | gHg−1 = H} be its normalizer and let WH := NH/H be its Weyl
group.

Denote by consub(G) the set of conjugacy classes (H) of subgroups H ⊆ G.
Let X be a G-CW -complex. Put

XH := {x ∈ X | H ⊆ Gx};

X>H := {x ∈ X | H ( Gx},

where Gx is the isotropy group of x under the G-action.
Let x : G/H → X be a G-map. Let XH(x) be the component of XH con-

taining x(1H). Put
X>H(x) = XH(x) ∩X>H .

Let WHx be the isotropy group of XH(x) ∈ π0(X
H) under the WH-action.

Next we define the group UG(X), where the equivariant Lefschetz class will
take its values.

Let Π0(G,X) be the component category of the G-space X in the sense
of tom Dieck [2, I.10.3]. Objects are G-maps x : G/H → X. A morphism
σ from x : G/H → X to y : G/K → X is a G-map σ : G/H → G/K such
that y ◦ σ and x are G-homotopic. A G-map f : X → Y induces a functor
Π0(G, f) : Π0(G,X)→ Π0(G,Y ) by composition with f . Denote by IsΠ0(G,X)
the set of isomorphism classes [x] of objects x : G/H → X in Π0(G,X). Define

UG(X) := Z[Is Π0(G,X)], (3.2)

where for a set S we denote by Z[S] the free abelian group with basis S. Thus
we obtain a covariant functor from the category of G-spaces to the category of
abelian groups. Obviously UG(f) = UG(g) if f, g : X → Y are G-homotopic.

There is a natural bijection

IsΠ0(G,X)
∼=
−→

∐

(H)∈consub(G)

WH\π0(X
H), (3.3)

which sends x : G/H → X to the orbit under the WH-action on π0(X
H) of the

component XH(x) of XH which contains the point x(1H). It induces a natural
isomorphism

UG(X)
∼=
−→

⊕

(H)∈consub(G)

Z[WH\π0(XH)]. (3.4)

Let α : G→ K be a group homomorphism and X be a G-CW -complex. We
obtain from α a functor

α∗ : Π0(G,X)→ Π0(K,α∗X)
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which sends an object x : G/H → X to the object α∗(x) : K/α(H) = α∗(G/H)→
α∗X and similarly for morphisms. Thus we obtain an induction homomorphism

of abelian groups

α∗ : U
G(X) → UK(α∗X). (3.5)

Next we define the equivariant Lefschetz class. Let X be a finite proper G-
CW -complex. Let f : X → X be a cellular G-map such that for each subgroup
K ⊆ G the map π0(f

K) : π0(X
K) → π0(X

K) is the identity. For any G-map
x : G/H → X it induces a map

(fH(x), f>H(x)) : (XH(x), X>H(x))→ (XH(x), X>H(x))

of pairs of finite proper WHx-CW -complexes. Then

LZWHx(fH(x), f>H(x)) ∈ Z

is defined (see (1.5)) since the isotropy group under theWHx-action of any point
in XH(x)−X>H(x) is trivial.

Definition 3.6 We define the equivariant Lefschetz class of f

ΛG(f) ∈ UG(X)

by assigning to [x : G/H → X] ∈ IsΠ0(G,X) the integer

LZWHx
(

fH(x), f>H(x) : (XH(x), X>H(x))→ (XH(x), X>H(x))
)

,

if fH : XH → XH maps XH(x) to itself, and zero otherwise.

Since X>H(x) 6= XH(x) and therefore LZWHx(fH(x), f>H(x)) 6= 0 holds
only for finitely many elements [x] in IsΠ0(G,X), Definition 3.6 makes sense.
Notice for the sequel that fH(XH(x)) ∩ XH(x) 6= ∅ implies fH(XH(x)) ⊆
XH(x). The elementary proof that Lemma 1.6 implies the following lemma is
left to the reader.

Lemma 3.7 Let X be a finite proper G-CW -complex. Let f : X → X be a

cellular G-map. Then

(a) The equivariant Lefschetz class ΛG(f) depends only on the cellular G-
homotopy class of f ;

(b) If f ′ : Y → Y is a cellular G-self-map of a finite G-CW -complex and

h : X → Y is a cellular G-homotopy equivalence satisfying h◦ f 'G f ′ ◦h,

then UG(h) : UG(X)
∼=
−→ UG(Y ) is bijective and sends ΛG(f) to ΛG(f ′);

(c) Let α : G → K be an inclusion of groups. Denote by α∗f the cellular

K-self-map obtained by induction with α. Then

ΛK(α∗f) = α∗Λ
G(f).
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By the equivariant cellular approximation theorem (see for instance [7, The-
orem 2.1 on page 32]) any G-map of G-CW -complexes is G-homotopic to a
cellular G-map and two cellular G-maps which are G-homotopic are actually
cellularly G-homotopic. Hence we can drop the assumption cellular in the se-
quel because of G-homotopy invariance of the equivariant Lefschetz class (see
Lemma 3.7 (a)).

4. The local equivariant Lefschetz class

In this section we introduce the local equivariant Lefschetz class in terms of
fixed point data. Before we can define it, we recall the classical notion of the
equivariant Lefschetz class with values in the Burnside ring for a finite group.

Let K be a finite group. The abelian group UK({∗}) is canonically isomor-
phic to the abelian group which underlies the Burnside ring A(K). Recall that
the Burnside ring is the Grothendieck ring of finite K-sets with the additive
structure coming from disjoint union and the multiplicative structure coming
from the Cartesian product.

Let X be a finite K-CW -complex. Define the equivariant Lefschetz class

with values in the Burnside ring of f

ΛK0 (f) ∈ A(K) = UK({∗}) (4.1)

by

ΛK0 (f) :=
∑

(H)∈consub(K)

LZWH(fH , f>H) · [K/H].

(Here and elsewhere the subscript 0 shall indicate that the corresponding in-
variant takes values in the Burnside ring and the component structure of the
various fixed point sets is not taken into account.) Denote by

chK0 : A(K) →
∏

(H)∈consub(K)

Z (4.2)

the character map which sends the class of a finite set S to the collection {|SH | |
(H) ∈ consub(K)} given by the orders of the various H-fixed point sets. The
character map is a ring homomorphism, and it is injective (see Lemma 5.3).
The equivariant Lefschetz class ΛK0 (f) is characterized by the property (see for
instance [5, Theorem 2.19 on page 504]), [6, Lemma 3.3 on page 138])

chK0 (Λ
K
0 (f)) = {LZ[{1}](fH) | (H) ∈ consub(K)}. (4.3)

If pr : X → {∗} is the projection, then UK(pr) : UK(X) → UK({∗}) = A(K)
sends ΛK(f) (see Definition 3.6) to ΛK0 (f) defined in (4.1).

Let V be a (finite-dimensional) K-representation and let f : V c → V c be a
K-self-map of the one-point-compactification V c. Define its equivariant degree

DegK0 (f) ∈ A(K) = UK({∗}) (4.4)
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by
DegK0 (f) := (ΛK0 (f)− 1) · (ΛK0 (idV c)− 1).

Since the character map (4.2) is an injective ring homomorphism, we conclude
from (4.3) above that DegK0 (f) is uniquely characterized by the equality

chK0 (DegK0 (f)) = {deg(fH) | (H) ∈ consub(K)}, (4.5)

where deg(fH) is the degree of the self-map fH : (V c)H → (V c)H of the con-
nected closed orientable manifold (V c)H , if dim((V c)H) ≥ 1, and deg(fH) is
defined to be 1, if dim((V c)H) = 0. The equivariant degree of (4.4) induces
an isomorphism from the K-equivariant stable cohomotopy of a point to the
Burnside ring A(K) [3, Theorem 7.6.7 on page 190], [13].

Let M be a cocompact proper G-manifold (possibly with boundary). Let
f : M → M be a smooth G-map. Denote by Fix(f) = {x ∈ X | f(x) = x} the
set of fixed points of f . Suppose that for any x ∈ Fix(f) the determinant of the
linear map id−Txf : TxM → TxM is different from zero. (One can always find
a representative in the G-homotopy class of f which satisfies this assumption.)
Then G\Fix(f) is finite. Consider an element x ∈ Fix(f). Let αx : Gx → G
be the inclusion. We obtain from (αx)∗ (see (3.5)) and UG(x) for x ∈ Fix(f)
interpreted as a G-map x : G/Gx → X a homomorphism

UGx({∗})
(αx)∗
−−−→ UG(G/Gx)

UG(x)
−−−−→ UG(X).

Thus we can assign to x ∈ Fix(f) the element UG(x)◦(αx)∗(DegGx0 ((id−Txf)c)),
where DegGx0 ((id−Txf)

c) is the equivariant degree (see (4.4)) of the map in-
duced on the one-point-compactifications by the isomorphism (id−Txf) : TxM
→ TxM . One easily checks that this element depends only on the G-orbit of
x ∈ Fix(X).
Definition 4.6 We can define the local equivariant Lefschetz class by

ΛGloc(f)

:=
∑

Gx∈G\Fix(f)

UG(x) ◦ (αx)∗
(

DegGx0 ((id−Txf)
c))
)

∈ UG(M).

Now have defined all the ingredients appearing in the Equivariant Lefschetz fixed
point theorem 0.2. Before we give its proof, we discuss the following example

Example 4.7 Let G be a discrete group and M be a cocompact proper G-
manifold (possibly with boundary). Suppose that the isotropy group Gx of
each point x ∈ M has odd order. This holds automatically if G itself is a fi-
nite group of odd order. Let f : M → M be a smooth G-map. Suppose that
Fix(f) ∩ ∂M = ∅ and for each x ∈ Fix(f) the determinant of the linear map
id−Txf : TxM → TxM is different from zero. If H is a finite group of odd or-
der, then the multiplicative group of units A(H)∗ of the Burnside ring is known
to be {±1} [3, Proposition 1.5.1]. The element DegGx0 ((id−Txf)c) ∈ A(Gx) =
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UGx({∗}) satisfies
(

DegGx0 ((id−Txf)
c)
)2

= 1 since this holds for its image un-

der the injective ring homomorphism chGx0 : A(Gx)→
∏

(H)∈consub(Gx)
Z, whose

coefficient at (H) ∈ consub(Gx) is deg((id−Txf)
c)H) ∈ {±1} (see (4.5)). Hence

DegGx0 ((id−Txf)c) belongs to A(Gx)∗ = {±1}. This implies that

DegGx0 ((id−Txf)
c) =

det(id−Txf : TxM → TxM)

|det(id−Txf : TxM → TxM)|
· [Gx/Gx].

Hence the definition of the local equivariant Lefschetz class reduces to

ΛGloc(f) :=
∑

Gx∈G\Fix(f)

det(id−Txf : TxM → TxM)

|det(id−Txf : TxM → TxM)|
· [x : G/Gx →M ].

where x : G/Gx →M sends g ·Gx to gx.

Remark 4.8 Equivariant Lefschetz classes for compact Lie groups were studied
in [5]. In the non-equivariant setting, universal Lefschetz classes with values in
certain K-groups were defined and analyzed in [8]. It seems to be possible to
combine theK-theoretic invariants there with the equivariant versions presented
here to obtain a universal equivariant Lefschetz class.

5. The proof of the equivariant Lefschetz fixed

point theorem

This section is devoted to the proof of the equivariant Lefschetz fixed point
Theorem 0.2.

First we define the character map for a proper G-CW -complex X:

chG(X) : UG(X) →
⊕

Is Π0(G,X)

Q. (5.1)

We have to define for an isomorphism class [x] of objects x : G/H → X
in Π0(G,X) the component chG(X)([x])[y] of ch

G(X)([x]) which belongs to an
isomorphism class [y] of objects y : G/K → X in Π0(G,X), and check that
χG(X)([x])[y] is different from zero for at most finitely many [y]. Denote by
mor(y, x) the set of morphisms from y to x in Π0(G,X). We have the left
operation

Aut(y)×mor(y, x)→ mor(y, x), (σ, τ) 7→ τ ◦ σ−1.

There is an isomorphism of groups

WKy

∼=
−→ Aut(y)
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which sends gK ∈WKy to the automorphism of y given by the G-map

Rg−1 : G/K → G/K, g′K 7→ g′g−1K.

Thus mor(y, x) becomes a left WKy-set.
The WKy-set mor(y, x) can be rewritten as

mor(y, x) = {g ∈ G/HK | g · x(1H) ∈ XK(y)},

where the left operation of WKy on {g ∈ G/HK | g · x(1H) ∈ Y K(y)} comes
from the canonical left action of G on G/H. Since H is finite and hence contains
only finitely many subgroups, the setWK\(G/HK) is finite for each K ⊆ G and
is non-empty for only finitely many conjugacy classes (K) of subgroups K ⊆ G.
This shows that mor(y, x) 6= ∅ for at most finitely many isomorphism classes [y]
of objects y ∈ Π0(G,X) and that theWKy-set mor(y, x) decomposes into finitely
many WKy orbits with finite isotropy groups for each object y ∈ Π0(G,X). We
define

chG(X)([x])[y] :=
∑

WKy·σ∈
WKy\mor(y,x)

|(WKy)σ|
−1, (5.2)

where (WKy)σ is the isotropy group of σ ∈ mor(y, x) under the WKy-action.

Notice that chG(X)([x])[y] is the same as dimQWKy
(Q(mor(y, x))), if one de-

fines dimQWKy
(P ) of a finitely generated QWKy-module P by trQWKy

(idP ) (see
Lemma 1.3 (f)). This agrees with the more general notion of the von Neumann
dimension of the finitely generated Hilbert N (WKy)-module l2(mor(y, x)).

The character map chG(X) of (5.1) should not be confused with the isomor-
phism appearing in (3.4). IfG is finite andX = {∗}, then character map chG(X)
of (5.1) and the character map chG0 of (4.2) are related under the identifications
UG({∗}) = A(G) and IsΠ0(G, {∗}) = consub(G) by

(chG0 )(H) = |WH| · chG({∗})(H)

for (H) ∈ consub(G).
Lemma 5.3 The map chG of (5.1) is injective.

Proof : Consider u ∈ UG(X) with chG(X)(u) = 0. We can write u as a finite
sum

u =

n
∑

i=1

mi · [xi : G/Hi → X]

for some integer n ≥ 1 and integers mi such that [xi] = [xj ] implies i = j and
such that Hi is subconjugate to Hj only if i ≥ j or (Hi) = (Hj). We have to
show that u = 0. It suffices to prove

chG(X)([xi])[x1] =

{

0 if i > 1
1 if i = 1
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because then m1 = 0 follows and one can show inductively that mi = 0 for
i = 1, 2, . . . , n. Suppose that chG(X)([xi])[x1] 6= 0. Then mor(x1, xi) is non-
empty. This implies that im(xi) ∩ X

H1 is non-empty and hence that H1 is
subconjugate to Hi. From the way we have enumerated the Hi’s we conclude
(Hi) = (H1). Since im(xi)∩XH1(x1) is non-empty, we get [xi] = [x1] and hence
i = 1. Since by definition chG(X)([x1])[x1] = 1, the claim follows.

Lemma 5.4 Let f : X → X be a G-self-map of a finite proper G-CW -complex

X. Let [y] be an isomorphism class of objects y : G/K → X in Π0(G,X). Then

chG(X)(ΛG(f))[y] = LQWKy
(

f |XK(y) : X
K(y)→ XK(y)

)

,

if fK(XK(y)) ⊆ XK(y) and

chG(X)(ΛG(f))[y] = 0

otherwise.

Proof : We first consider the case fK(XK(y)) ⊆ XK(y). Let Xp be the p-th
skeleton of X. Then we can write Xp as a G-pushout

∐np
i=1G/Hi × S

p−1
∐np
i=1 qp,i−−−−−−→ Xp−1





y





y

∐np
i=1G/Hi ×D

p −−−−−−→
∐np
i=1Qp,i

Xp

for an integer np ≥ 0 and finite subgroups Hi ⊆ G. For each i ∈ Ip let
xp,i : G/Hi → X be the G-map obtained by restricting the characteristic map
Qp,i to G/Hi × {0}. For i = 1, 2, . . . , p define

inc(f, p, i) = inc(f, ei) (5.5)

where ei is the open cell Qp,i(gHi× (Dp−Sp−1)) for any choice of gHi ∈ G/Hi

and inc(f, ei) is the incidence number defined in (1.8). Since f is G-equivariant,
the choice of gHi ∈ G/Hi does not matter.

Now the G-CW -structure on X induces a WKy-CW -structure on XK(y)
whose p-skeleton XK(y)p is XK(y) ∩ Xp. Let x : G/H → X be an object in
Π0(G,X). Recall that mor(y, x) is the set of morphisms from y to x in Π0(G,X)
and carries a canonical WKy-operation. One easily checks that there is a WKy-
pushout diagram

∐np
i=1mor(y, xp,i)× Sp−1

∐np
i=1 q

K
p,i(y)

−−−−−−−−→ XK(y)p−1




y





y

∐np
i=1mor(y, xp,i)×Dp −−−−−−−−→

∐np
i=1Q

K
p,i(y)

XK(y)p ,
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where the maps qKp,i(y) and Q
K
p,i(y) are induced by the maps qp,i and Qp,i in the

obvious way. We conclude from Lemma 1.9

LQ[WKy ](fK(y))

=
∑

p≥0

(−1)p ·

np
∑

i=1

∑

WKy·σ∈
WKy\mor(y,xp,i)

|(WKy)σ|
−1 · inc(f, p, i), (5.6)

where the incidence number inc(f, p, i) has been defined in (5.5).
Analogously we get for any object x : G/H → X a WHx-pushout diagram

∐

i=1,2...,np
[xp,i]=[x]

Aut(x, x)× Sp−1
∐np
i=1 q

H
p,i(x)

−−−−−−−−→ XH(x)p−1 ∪X
>H(x)





y





y

∐

i=1,2...,np
[xp,i]=[x]

Aut(x, x)×Dp −−−−−−−−→
∐np
i=1Q

H
p,i(x)

XH(x)p ∪X
>H(x)

describing how the p-skeleton of the relativeWHx-CW -complex (XH(x),X>H(x))
is obtained from its (p− 1)-skeleton. We conclude from Lemma 1.9

LZ[WHx]
(

fH(x), f>H(x)) : (XH(x), X>H(x))→ (XH(x), X>H(x))
)

=
∑

p≥0

(−1)p ·
∑

i=1,2,...,np
[xp,i]=[x]

inc(f, p, i), (5.7)

where inc(f, p, i) is the number introduced in (5.5). We get from the Definition
3.6 of ΛG(f) and (5.7)

chG(X)(ΛG(f))[y] =
∑

p≥0

(−1)p ·

np
∑

i=1

inc(f, p, i) · chG(X)([xp,i])[y]. (5.8)

Now Lemma 5.4 follows from the definition (5.2) of chG(X)([xp,i])[y] and equa-
tions (5.6) and (5.8) in the case fK(XK(y)) ⊆ XK(y).

Now suppose that fK(XK(y)) ∩XK(y) = ∅. For any object x : G/H → X
with mor(y, x) 6= ∅ we conclude fH(XH(x)) ∩ XH(x) = ∅ and hence ΛG(f)
assigns to [x] zero by definition. We conclude chG(X)(ΛG(f))[y] = 0 from the

definition of chG. This finishes the proof of Lemma 5.4.

Lemma 5.9 Let M be a cocompact smooth proper G-manifold. Let f : M →
M be a smooth G-map. Suppose that for any x ∈ Fix(f) the determinant

det(idTxf −Txf) is different from zero. Let y : G/K → M be an object in

Π0(G,M). Denote by (WKy)x the isotropy group for x ∈ Fix(f |MK(y)) under

the WKy-action on MK(y).
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Then G\Fix(f) is finite and we get

chG(M)[y](Λ
G
loc(f))

=
∑

WKy·x∈
WKy\Fix(f |MK (y))

|(WKy)x|
−1 · deg

((

idTxMK(y)−Tx(f |MK(y))
)c)

.

Proof : We have already shown in Theorem 2.1 that G\Fix(f) is finite.
Consider x ∈M . LetGx be its isotropy group under theG-action and denote

by x : G/Gx →M the G-map g 7→ gx. Let αx : Gx → G be the inclusion. Given
a morphism σ : y → x, let (WKy)σ be its isotropy group under the WKy-action
and let (Kσ) be the element in consub(Gx) given by g−1Kg for any element
g ∈ G for which σ : G/K → G/Gx sends g′K to g′gGx. Notice that (Kσ)
depends only on WKy · σ ∈WKy\mor(y, x). We first show for the composition

UGx({∗})
(αx)∗
−−−→ UG(G/Gx)

UG(x)
−−−−→ UG(M)

chG(M)[y]
−−−−−−→ Q

that for each u ∈ UGx({∗})

chG(M)[y] ◦ U
G(x) ◦ (αx)∗(u)

=
∑

WKy·σ∈
WKy\mor(y,x)

|(WKy)σ|
−1 · chGx0 (u)(Kσ). (5.10)

It suffices to check this for a basis element u = [Gx/L] ∈ U
G({∗}) = A(Gx) for

some subgroup L ⊆ Gx. Let pr : G/L→ G/Gx be the projection. We get from
the definitions

chG(M)[y] ◦ U
G(x) ◦ (αx)∗([G/L])

= chG(M)[y]([x ◦ pr: G/L→M ])

=
∑

WKy·τ∈
WKy\mor(y,x◦pr)

|(WKy)τ |
−1. (5.11)

We get a WKy-map

q : mor(y, x ◦ pr)→ mor(y, x), τ 7→ pr ◦τ.

We can write

mor(y, x ◦ pr) =
∐

WKy·σ∈
WKy\mor(y,x)

WKy ×(WKy)σ q
−1(σ).

The (WKy)σ-set q
−1(σ) is a finite disjoint union of orbits

q−1(σ) =
∐

i∈I(σ)

(WKy)σ/Ai.

21



This implies

mor(y, x ◦ pr) =
∐

WKy·σ∈
WKy\mor(y,x)

∐

i∈I(σ)

WKy/Ai

and hence
∑

WKy·τ∈
WKy\mor(y,x◦pr)

|(WKy)τ |
−1 =

∑

WKy·σ∈
WKy\mor(y,x)

∑

i∈I(σ)

|Ai|
−1.

Putting this into (5.11) yields

chG(M)[y] ◦ U
G(x) ◦ (αx)∗([G/L])

=
∑

WKy·σ∈
WKy\mor(y,x)

∑

i∈I(σ)

|Ai|
−1. (5.12)

Obviously

|q−1(σ)| = |(WKy)σ| ·
∑

i∈I(σ)

|Ai|
−1. (5.13)

If σ : G/K → G/Gx sends g′K to g′gGx for appropriate g ∈ G with g−1Kg ⊆
Gx, then there is a bijection

Gx/L
g−1Kg ∼=

−→ q−1(σ)

which maps g′L to the morphism Rgg′ : G/K → G/L, g′′K → g′′gg′L. This
implies

|q−1(σ)| = |Gx/L
g−1Kg| = chGx0 ([Gx/L])(Kσ). (5.14)

We conclude from the equations (5.12), (5.13) and (5.14) above that (5.10)
follows for u = [Gx/L] and hence for all u ∈ UGx({∗}) = A(Gx).

Now we are ready to prove Lemma 5.9. We get from the Definition 4.6 of
ΛGloc(f) and from (5.10)

chG(M)[y](Λ
G
loc(v)) =

∑

Gx∈G\Fix(f)

∑

WKy·σ∈
WKy\mor(y,x)

|(WKy)σ|
−1 · chGx0

(

DegGx0 ((id−Txf)
c))
)

(Kσ)
. (5.15)

We conclude from (4.5)

chGx0

(

DegGx0 ((id−Txf)
c))
)

(Kσ)
= deg

(

(

idTxMKσ −Txf
Kσ
)c
)

.(5.16)
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If σ : G/K → G/Gx is of the form g′K 7→ g′gGx for appropriate g ∈ G with
g−1Kg ⊆ Gx, then

deg
(

(

idTxMKσ −Txf
Kσ
)c
)

= deg
((

idTgxMK(y)−Tgx(f |MK(y))
)c)

(5.17)

since f is G-equivariant. There is a bijection of WKy-sets

∐

Gx∈G\Fix(f)

mor(y, x)
∼=
−→ Fix(f |MK(y))

which sends σ ∈ mor(y, x) to σ(1K) · x. Now Lemma 5.9 follows from (5.15),
(5.16) and (5.17).

Because of Lemma 5.3, Lemma 5.4 and Lemma 5.9 the equivariant Lefschetz
fixed point Theorem 0.2 follows from the orbifold Lefschetz fixed point Theorem
2.1.

6. Euler characteristic and index of a vector

field in the equivariant setting

Definition 6.1 Let X be a finite G-CW -complex X. We define the universal
equivariant Euler characteristic of X

χG(X) ∈ UG(X)

by assigning to [x : G/H → X] ∈ IsΠ0(G,X) the (ordinary) Euler characteris-
tic of the pair of finite CW -complexes (WHx\X

H(x),WHx\X
>H(x)). If X is

proper, we define its orbifold Euler characteristic

χQG(X) :=
∑

p≥0

(−1)p
∑

G·e∈G\Ip(X)

|Ge|
−1 ∈ Q,

where Ip(X) is the set of the open cells of the CW-complex X (after forgetting
the group action) and Ge is the isotropy group of e under the G-action on Ip(X).

One easily checks that χG(X) agrees with the equivariant Lefschetz class
ΛG(idX) (see Definition 3.6). It can also be expressed by counting equivariant
cells. If x : G/H → X is an object in Π0(G,X) and ]p([x]) is the number of
equivariant p-dimensional cells of orbit type G/H which meet the component
XH(x), then

χG(X)([x]) =
∑

p≥0

(−1)p · ]p([x]). (6.2)
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The universal equivariant Euler characteristic is the universal additive invariant
for finite G-CW -complexes in the sense of [7, Theorem 6.7].

The orbifold Euler characteristic χQG(X) can be identified with LQG(idX)
(see Definition 1.4) or with the more general notion of the L2-Euler characteristic
χ(2)(X;N (G)). In analogy with L(2)(f, f0;N (G)) (see Remark 1.7), one can
compute χ(2)(X;N (G)) in terms of L2-homology

χ(2)(X;N (G)) =
∑

p≥0

(−1)p · dimN (G)

(

H(2)p (X;N (G)
)

,

where dimN (G) denotes the von Neumann dimension (see for instance [9, Section
6.6]).

We conclude from Lemma 5.4:

Lemma 6.3 Let X be a finite proper G-CW -complex X. Let [y] be an isomor-

phism class of objects y : G/K → X in π0(G,X). Then

chG(X)[y](χ
G(X)) = χQWKy (XK(y)).

Next we want to express the universal equivariant Euler characteristic of a
cocompact proper G-manifold M , possibly with boundary, in terms of the zeros
of an equivariant vector field.

Consider an equivariant vector field Ξ on M , i.e., a G-equivariant section of
the tangent bundle TM of M . Suppose that Ξ is transverse to the zero-section

i : M → TM , i.e., if Ξ(x) = 0, then TΞ(x)TM is the sum of the subspaces given
by the images of TxΞ: TxM → TΞ(x)(TM) and Txi : TxM → TΞ(x)(TM). Any
equivariant vector field onM can be changed by an arbitrary small perturbation
into one which is transverse to the zero-section. We want to assign to such a Ξ
its equivariant index as follows.

Since Ξ is transverse to the zero-section, the set Zero(Ξ) of points x ∈ M
with Ξ(x) = 0 is discrete. Hence G\Zero(Ξ) is finite, since G acts properly on
M and G\M is compact by assumption. Fix x ∈ Zero(Ξ). The zero-section
i : M → TM and the inclusion jx : TxM → TM induce an isomorphism of
Gx-representations

Txi⊕ Txjx : TxM ⊕ TxM
∼=
−→ Ti(x)(TM)

if we identify Ti(x)(TxM) = TxM in the obvious way. If prk denotes the pro-
jection onto the k-th factor for k = 1, 2 we obtain a linear Gx-equivariant
isomorphism

dxΞ: TxM
TxΞ−−→ TΞ(x)(TM)

(Txi⊕Txjx)
−1

−−−−−−−−−→ TxM ⊕ TxM
pr2−−→ TxM.(6.4)

Notice that we obtain the identity if we replace pr2 by pr1 in the expression (6.4)
above. The Gx-map dxΞ induces a Gx-map (dxΞ)

c : TxM
c → TxM

c on the one-
point compactification. Define analogously to the local equivariant Lefschetz

class (see Definition 4.6) the equivariant index of Ξ

iG(Ξ) ∈ UG(M) (6.5)
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by

iG(Ξ) :=
∑

Gx∈G\Zero(Ξ)

UG(x) ◦ (αx)
(

DegGx0 ((dxΞ)
c)
)

.

We say that Ξ points outward at the boundary if for each x ∈ ∂M the tangent
vector Ξ(x) ∈ TxM does not lie in the subspace Tx∂M and is contained in
the half space TxM

+ of tangent vectors u ∈ TxM for which there is a path
w : [−1, 0] → M with w(0) = x and w′(0) = u. If ∂M = ∅, this condition is
always satisfied.

Theorem 6.6 (Equivariant Euler characteristic and vector fields) Let

M be a cocompact proper smooth G-manifold. Let Ξ be a G-equivariant vector
field which is transverse to the zero-section and points outward at the boundary.

Then we get in UG(M)
χG(M) = iG(Ξ).

Proof : Let Φ: M × (−∞, 0]→M be the flow associated to the vector field Ξ.
It is defined on M × (−∞, 0] since Ξ is equivariant and points outward and M
is cocompact. Moreover, each map Φ−ε : M → M is a G-diffeomorphism and
G-homotopic to idM for ε > 0. This implies

ΛG(Φ−ε) = ΛG(idM ) = χG(M).

Because of the equivariant Lefschetz fixed point Theorem 0.2 it remains to prove
for some ε > 0

iG(Ξ) = ΛGloc(Φ−ε).

If we choose ε > 0 small enough, the diffeomorphism φ−ε : M → M will have
as set of fixed points Fix(φ−ε) precisely Zero(Ξ). It suffices to prove for x ∈
Zero(Ξ) = Fix(Φ−ε)

DegGx0 ((dxΞ)
c) = DegGx0 ((id−TxΦ−ε)

c).

Recall that the character map chGx0 : A(Gx) →
∏

(H)∈consub(Gx)
Z of (4.2) is

injective. We conclude from (4.5) that it suffices to prove for any subgroup
H ⊆ Gx the equality of degrees of self-maps of the closed orientable manifold
((TxM)c)H = ((TxM)H)c

deg
(

((dxΞ)
c)H
)

= deg
(

((id−TxΦ−ε)
c)H
)

. (6.7)

It suffices to treat the case H = {1} and dim(M) ≥ 1 — the other cases are
completely analogous or follow directly from the definitions. Since (6.7) is of
local nature, we may assume M = Rn and x = 0. In the sequel we use the
standard identification TRn = Rn × Rn. Then the vector field Ξ becomes a
smooth map Ξ: Rn → Rn with Ξ(0) = 0 and d0Ξ becomes the differential T0Ξ.
Let Φ be the flow associated to Ξ. Choose ε ≥ 0 and an open neighborhood
U ⊆ Rn of 0 such that Φ is defined on U × [−ε, 0]. By Taylor’s theorem we can
find a smooth map η : U × [−ε, 0]→ Rn such that for t ∈ [−ε, 0] and u ∈ U ,

φt(u) = u+ t · Ξ(u) + t2 · ηt(u) .
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This implies
T0φt = id+t · (T0Ξ + t · T0ηt) .

Since [−ε, 0] is compact, we can find a constant C independent of t such that the
operator norm of T0ηt satisfies ‖T0ηt‖ < C for t ∈ [−ε, 0]. The differential T0Ξ is
an isomorphism by assumption. Hence T0Ξ+ t ·T0ηt is invertible for t ∈ [−D, 0]
if we put D := min{ε, C−1 · ||(T0Ξ)

−1||−1}. Hence we get for t ∈ [−D, 0] that
id−T0Φt is invertible and

det(id−T0Φt)

|det(id−T0Φt)|
=

det(T0Ξ + t · T0ηt)

|det(T0Ξ + t · T0ηt)|
=

det(T0Ξ)

|det(T0Ξ)|
.

Hence (6.7) follows if we take ε > 0 small enough. This finishes the proof that
Theorem 6.6 follows from Theorem 0.2.

Remark 6.8 Let M be a proper cocompact G-manifold without boundary. If
M possesses a nowhere-vanishing equivariant vector field, then χG(M) = 0 by
the Theorem 6.6. The converse is true if M satisfies the weak gap hypothesis
that dim(M>Gx(x)) ≤ dim(MGx(x)) − 2 holds for each x ∈ Gx. The proof is
done by induction over the orbit bundles and the induction step is reduced to the
non-equivariant case. The weak gap condition ensures thatMGx(x)−M>Gx(x)
is connected for x ∈ M . It is satisfied if all isotropy groups of M have odd
order. For finite groups G more information about this question can be found
in [12, Remark 2.5 (iii) on page 32].

Example 6.9 Let D be the infinite dihedral group D = Z o Z/2 = Z/2 ∗ Z/2.
We use the presentation D = 〈s, t | s2 = 1, s−1ts = t−1〉 in the sequel. The
subgroups H0 = 〈t〉 and H1 = 〈ts〉 have order two and {{1}, H0, H1} is a
complete system of representatives for the conjugacy classes of finite subgroups
of D. The infinite dihedral group D acts on R by s · r = −r and t · r = r+1 for
r ∈ R. The interval [0, 1/2] is a fundamental domain for the D-action. There is
a D-CW -structure on R with {n | n ∈ Z}

∐

{n+ 1/2 | n ∈ Z} as zero-skeleton.
Let xi : D/Hi → R be the D-map sending 1Hi to 0 for i = 0 and to 1/2 for
i = 1. Let y : D → R be the D-map sending 1 to 0. Then R has two equivariant
0-cells, which have x0 and x1 as their characteristic maps, and one equivariant
1-cell of orbit type D/{1}.

We get IsΠ0(D;R) = {[x0], [x1], [y]}. Recall that U
D(R) is the free Z-module

with basis IsΠ0(D;R). Hence we write

UD(R) = Z〈[x0]〉 ⊕ Z〈[x1]〉 ⊕ Z〈[y]〉.

We conclude from (6.2)

χD(R) = [x0] + [x1]− [y].

This is consistent with the original Definition 6.1, since

χ(WDHi\(RHi(xi),R>Hi(xi))) = χ({pt.}) = 1;

χ(WD{1}\(R{1}(y),R>{1}(y)) = χ([0, 1/2], {0, 1/2}) = −1.
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The character map (5.1) is given by

χD(R) =







1 0 0
0 1 0

1/2 1/2 1







: UD(R) = Z〈[x0]〉 ⊕ Z〈[x1]〉 ⊕ Z〈[y]〉

→ Z〈[x0]〉 ⊕ Z〈[x1]〉 ⊕ Z〈[y]〉

since the D-set mor(y, xi) is D/Hi and the sets mor(xi, y) and mor(xi, xj) for
i 6= j are empty. The character map sends χD(R) to the various orbifold Euler
characteristics which therefore must be

χQWDHi(RHi(xi)) = 1;

χQD(R) = 0.

One easily checks that this is consistent with the Definition 6.1 of the orbifold
Euler characteristics.

Let Ξ be a vector field on R. Under the standard identification TR = R×R
this is the same as a function Ξ: R→ R. The vector field Ξ is transverse to the
zero-section if and only if the function Ξ satisfies Ξ(z) = 0 ⇒ Ξ′(z) 6= 0. The
vector field Ξ is D-equivariant if and only if Ξ(−z) = −Ξ(z) and Ξ(z) = Ξ(z+1)
holds for all z ∈ R. Let Ξ be a D-equivariant vector field transverse to the zero-
section. For example, we can take Ξ(z) = sin(2πz).

We conclude Ξ(0) = 0 from Ξ(−z) = −Ξ(z) and Ξ(1/2) = 0 from Ξ(1−z) =
−Ξ(z). Let z0 = 0 < z1 < z2 < . . . < zr = 1/2 be the points z ∈ [0, 1/2] for
which Ξ(z) = 0. (The example of sin(2πz) shows the minimum value of r is 1.)

For i ∈ {0, 1, . . . , r} put δi =
Ξ′(zi)
|Ξ′(zi)|

. Since Ξ is different from zero on (zi, zi+1),

we have δi+1 = −δi for i ∈ {0, 1, . . . , r− 1}. Let dziΞ: TziR→ TziR be the map
associated to Ξ at zi (see (6.4)); this is simply multiplication by Ξ′(zi) under
the standard identification TziR = R. The degree of the map (dziΞ)

c induced
on Rc = S1 is δi. For i = 0, r the isotropy group Dzi = Z/2 acts on R by − id.
Hence the degree deg

(

(dziΞ)
Dzi )c

)

is by definition 1 since dim(RDzi ) = 0. We
conclude from (4.5) for i = 0, r

DegDzi (dziΞ) = [H/H] +
−1 + δi

2
· [H/{1}] ∈ A(Dzi)

and for i ∈ {1, 2, . . . , r − 1}

DegDzi (dziΞ) = δi · [{1}] ∈ A({1}).
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Hence we get for the equivariant index

iD(Ξ) = [x0] +
−1 + δ0

2
· [y] + [x1] +

−1 + δr
2

· [y] +
r−1
∑

i=1

δi · [y]

= [x0] + [x1] +

(

−1 +
δ0
2

+
δr
2

+

r−1
∑

i=1

δi

)

· [y]

= [x0] + [x1]− [y] + δ0 ·

(

1

2
+

(−1)r

2
+
r−1
∑

i=1

(−1)i

)

· [y0]

= [x0] + [x1]− [y] + δ0 · 0 · [y0]

= [x0] + [x1]− [y].

This is consistent with Theorem 6.6.

7. Constructing equivariant manifolds with

given component structure and universal

equivariant Euler characteristic

In this section we discuss the problem of whether there exists a proper
smooth G-manifold M with prescribed sets π0(M

H) for H ⊆ G, and whether
χG(M) can realize a given element in UG.

Let Or(G;Fin) be the orbit category for the family of finite subgroups,
i.e., objects are homogeneous spaces G/H for finite subgroups H ⊆ G and mor-
phisms are G-maps. A contravariant Or(G;Fin)-set S is a contravariant functor
from Or(G;Fin) to the category of sets. Given a G-spaceX, define a contravari-
ant Or(G;Fin)-set π0(X) by sending G/H to π0(X

H) = π0(mapG(G/H,X)).
Next we investigate under which conditions a contravariant Or(G;Fin)-set S
arises from a finite proper G-CW -complex.
Lemma 7.1 For a contravariant Or(G;Fin)-set S : Or(G;Fin) → Sets the

following assertions are equivalent:

(a) There are only finitely many elements (H) ∈ consub(H) with S(G/H) 6=
∅. For any finite subgroup H ⊆ G the set WH\S(G/H) is finite and the

isotropy group WHs of each element s ∈ S(G/H) is finitely generated;

(b) There is a proper finite G-CW -complex X such that there exists a natural

equivalence T : π0(X)
∼=
−→ S.

Proof : (b) ⇒ (a) Since X is finite, there are finitely many elements (K1),
(K2), . . ., (Km) in {(K) ∈ consub(G) | |K| <∞} such that for each equivariant
cell G/H ×Dn there is i ∈ {1, 2, . . . ,m} with (H) = (Ki). Hence any subgroup
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H ⊆ G with XH 6= ∅ is conjugate to a subgroup of one of the Ki’s. Since a finite
group has only finitely many subgroups, the set {(H) ∈ consub(G) | XH 6= ∅}
is finite.

Since X is finite and proper and WH\(G/KH) is finite for each finite group
H ⊆ G and subgroup K ⊆ G, the WH-CW -complex XH is finite proper for
each finite subgroup H ⊆ G. Hence the quotient space WH\XH is a finite
CW -complex and has only finitely many components. Since WH\π0(X

H) ∼=
π0(WH\XH), the set WH\π0(XH) is finite.

Consider a finite subgroup H ⊆ G and a component C ∈ π0(X
H). Let

WHC be the isotropy group C. Then C is a connected proper finite WHC -CW -
complex. The long exact homotopy sequence of the fibration

C → EWHC ×WHC
C → BWHC

shows that WHC is a quotient of π1(EWHC ×WHC
C). Since for any finite sub-

groupK ⊆WHC theWHC-space EWHC×WHC
WHC/K is homotopy equivalent

to BK and hence to a CW -complex of finite type (a CW -complex for which
each skeleton is finite), C is built out of finitely many cells G/K ×Di, K ⊆ G
finite, and EWHC ×WHC

WHC/K has the homotopy type of CW -complex of
finite type. This implies that π1(EWHC ×WHC

C) is finitely generated. Hence
WHC is finitely generated.

(a)⇒ (b) Choose an ordering (H1), (H2), . . . , (Hr) on the set {(H) ∈ consub(G) |
S(G/H) 6= ∅} such that Hi is subconjugate to Hj only if i ≥ j holds. Define

X0 :=

s
∐

i=1

∐

WHi\S(G/Hi)

G/Hi.

Define a transformation φ0 : π0(X0) → S as follows. Fix an object G/K ∈
Or(G;Fin). Then π0(X0) evaluated at this object G/K is given by

s
∐

i=1

∐

WHi\S(G/H)

mapG(G/K,G/Hi)

since π0(G/H
K
i ) = mapG(G/K,G/Hi). Now require that φ0(G/K) sends

a G-map σ ∈ mapG(G/K,G/Hi) belonging to the summand for WHi · s ∈
WHi\S(G/Hi) to S(σ)(s). One easily checks that φ0(G/H) : π0(X

H)→ S(G/H)
is surjective for all H ⊆ G.

In the next step we attach equivariant one-cells to X0 to get a G-CW -
complex X together with a transformation φ : π0(X) → S, such that the com-
position of φ with the transformation π0(X0)→ π0(X) induced by the inclusion
is φ0, and φ(G/H) is bijective for all H ⊆ G. We do this by constructing by in-
duction a sequence of proper cocompactG-CW -complexesX0 ⊆ X1 ⊆ . . . ⊆ Xr,
together with transformations φi : π0(Xi)→ S such that the composition of φi
with the transformation π0(Xi−1) → π0(Xi) induced by the inclusion is φi−1,
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φi(G/Hj) is bijective for all j ≤ i, and Xi is obtained from Xi−1 by attach-
ing finitely many equivariant cells of the type G/Hi × D

1. Then we can take
X = Xr and φ = φr.

The induction beginning is X0 together with φ0. The induction step from
i − 1 to i is done as follows. Consider WHi · s ∈ WHi\S(G/Hi). Let (WHi)s
be the isotropy group of s under the WHi-action on S(G/Hi). The preimage of
s under φi−1(G/Hi) : π0(X

Hi
i−1) → S(G/Hi) consists of finitely many (WHi)s-

orbits since WHi\π0(X
Hi
i−1) is finite by the implication (b)⇒ (a) which we have

already proved. Let u(s)1, u(s)2, . . . , u(s)v be a system of generators of (WHi)s
which contains the unit element 1 ∈ (WHi)s. Fix elements C(s)1, C(s)2, . . .,
C(s)n(s) in φ

−1
i−1(G/Hi)(s) such that

(WHi)s\φi−1(G/Hi)
−1(s) = {(WHi)s · C(s)i | i = 1, 2 . . . , n(s)}

and (WHi)s·C(s)j = (WHi)s·C(s)k implies j = k. Now attach for eachWHi·s ∈
WHi\S(G/Hi), each generator u(s)i, each C(s)j an equivariant cell G/Hi×D

1

to Xi−1 such that {1Hi} ×D1 connects C1(s) and u(s)i · Cj(s). The resulting
G-CW -complex is the desired G-CW -complex Xi, one easily constructs the
desired transformation φi out of φi−1.

Notice that for a finite group G the statement (a) in Lemma 7.1 is equivalent
to the statement that S(G/H) is finite for all subgroups H ⊆ G. If we take as
Or(G;Fin)-set the functor S which sends G/{1} to {∗} and G/H for H 6= {1}
to ∅, then Lemma 7.1 boils down to the statement that there exists a connected
finite free G-CW -complex X if and only if G is finitely generated.

Now given a contravariant Or(G;Fin)-set S, we define UG(S) to be the
free abelian group on

∐

(H)∈consub(G)WH\S(G/H). If S satisfies the equivalent

conditions of Lemma 7.1, then clearly this is naturally isomorphic to UG(X),
with X as in part (b) of Lemma 7.1.

Next we prove that is X is a finite proper G-CW -complex, then any element
u ∈ UG(X) can be realized from χG of a manifold. More precisely, there is a
G-map f : M → X with M a G-manifold, such that UG(f) is an isomorphism
sending χG(M) to u. We are grateful to Tammo tom Dieck for pointing out to
us the use of the multiplicative induction in the proof of the next result.

Lemma 7.2 Let X be a finite proper G-CW -complex and u ∈ UG(X). Then

there is a proper cocompact G-manifold M without boundary together with a

G-map f : M → X with the following properties:

For any x ∈M the Gx-representation TxM is a multiple of the regular Gx-
representation R[Gx] for Gx the isotropy group of x ∈ X. The dimensions of

the components C ∈ π0(M) are all equal. The components of MH are orientable

manifolds for each H ⊆ G. The induced map π0(f
H) : π0(M

H) → π0(X
H) is

bijective for each finite subgroup H ⊆ G. The induced map

UG(f) : UG(M)
∼=
−→ UG(X)

is bijective and sends χG(M) to u.
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Proof : In the first step we want to reduce the claim to the case, where X is
a finite proper 1-dimensional G-CW -complex such that for any x : G/H → X
there is a zero cell G/H which meets XH .

If the G-map f : X → Y of proper G-CW -complexes induces bijections

π0(f
H) : π0(X

H)
∼=
−→ π0(Y

H) for all finite subgroups H ⊆ G, then the induced
map UG(f) : UG(X)→ UG(Y ) is bijective by (3.3). In particular the inclusion
of the 1-skeleton i1 : X1 → X induces a bijection UG(i1).

Since X1 is finite and proper, WH\π0(X
H) is finite for all finite subgroups

H ⊆ G and the set {(H) ∈ consub(G) | XH 6= ∅} is finite (see Lemma 7.1).
We conclude from (3.3) that Isπ0(G,X1) is finite. Fix for any [x : G/H → X1]
a representative x : G/H → X whose image lies in X0. This is possible by
the equivariant cellular approximation theorem. Define a finite proper G-CW -
complex Y by the G-pushout diagram

∐

[x : G/H→X]∈
Isπ0(G,X)

G/H × {0}

∐

[x : G/H→X]∈
Isπ0(G,X)

x

−−−−−−−−−−−−−→ X1

i2





y





y
i3

∐

[x : G/H→X]∈
Isπ0(G,X)

G/H × [0, 1] −−−−→ Y

where i2 is the inclusion. Since i2 is a G-homotopy equivalence, i3 is a G-
homotopy equivalence. Let i−13 : Y → X1 be a G-homotopy inverse. Then
UG(i1 ◦ i

−1
3 ) : UG(Y ) → UG(X) is a bijection and Y is a finite proper G-CW -

complex such that for each G-map y : G/H → Y there is a zero cell G/H
which meets Y H(y), namely G/H × {1} ⊆ G/H × [0, 1] for the corresponding
[x] ∈ IsΠ0(G,X) in the pushout diagram above. Hence we can assume without
loss of generality X = Y in the sequel.

Fix a number n such for any H ⊆ G with XH 6= ∅ the order |H| divides
n. Let G/H1, G/H2, . . ., G/Hr be the equivariant zero-cells of X. Let Ni be
a 4n/|Hi|-dimensional closed oriented manifold. Let

∏

Hi
Ni be the closed Hi-

manifold with the Hi-action coming from permuting the factors. This is called
the multiplicative induction or coinduction of Ni. One easily checks that for

K ⊆ Hi the K-fixed point sets of
∏

Hi
Ni is diffeomorphic to

∏|Hi/K|
k=1 Ni and

hence a closed connected orientable manifold which is non-empty. Moreover,
the (Hi)x-representation Tx

(
∏

Hi
Ni
)

is a multiple of the regular real (Hi)x-
representation for all x ∈

∏

Hi
Ni. The manifolds Ni will be specified later.

Given an orthogonal H-representation V of a finite group H, we denote by DV
and SV the unit disk and the unit sphere and by int(DV ) = DV − SV the
interior of DV . Define the 4n-dimensional proper cocompact G-manifold M0 to
be

M0 =
r
∐

i=1

G×Hi

(

∏

Hi

Ni

)

.

Let f0 : M0 → X be the map which is on G×Hi

(
∏

Hi
Ni
)

given by the canonical
projection onto the cell G/Hi = G×Hi

{∗}.
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Fix a G-pushout describing, how X = X1 is obtained from X0 by attaching
equivariant one-cells

∐s
j=1G/Kj × S

0 q
−−−−→ X0





y





y

∐s
j=1G/Kj ×D

1 −−−−→
Q

X

Consider a G-map σ : G/K → G/H for finite subgroups H,K ⊆ G. Suppose
that |H| and |K| divide n. Choose g ∈ G such that g−1Kg ⊆ H and σ sends g′K
to g′gH. Let cg : K → H be the injective group homomorphism g′ 7→ g−1g′g.
The K-representations R[K]4n/|K| and c∗gR[H]4n/|H|, which is obtained from

the H-representation R[H]4n/|H| by restriction with cg, are isomorphic. Choose
an isometric cg-equivariant linear isomorphism

φ : R[K]4n/|K| → R[H]4n/|H|.

Choose a small number ε > 0 and an element w ∈ R[H]4n/|H| such that ||w|| = 1,
the H-isotropy group of w is g−1Kg and the distance of two distinct points in
the H-orbit through w is larger than 3ε. The following map is a G-embedding

ψ : G×K DR[K]4n/|K| → G×H R[H]4n/|H|, (g′, v) 7→ (g′g, ε · φ(v) + w)

such that the following diagram with the canonical projections as vertical arrows
commutes:

G×K DR[K]4n/|K|
ψ

−−−−→ G×H R[H]4n/|H|

pr





y





y

pr

G/K −−−−→
σ

G/H

Using the construction above with appropriate choices of w and ε we can find a
G-embedding

Ψ:

s
∐

j=1

G×Kj

(

DR[Kj ]
4n/|Kj | × S0

)

→M0

such that the following diagram commutes:
∐s
j=1G×Kj

(

DR[Kj ]
4n/|K| × S0

) Ψ
−−−−→ M0

pr





y





y

f0

∐s
j=1G/Kj × S

0 −−−−→
q

X0

where pr is the obvious projection. LetM ′
0 be the proper cocompact G-manifold

with boundary

M ′
0 = M0 −Ψ





s
∐

j=1

G×Kj

(

int
(

DR[Kj ]
4n/|Kj |

)

× S0
)



 .
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Define a smooth G-manifold M by the following pushout

∐s
j=1G×Kj

(

SR[Kj ]
4n/|Kj | × S0

) Ψ|
−−−−→ M ′

0




y





y

∐s
j=1G×Kj

(

SR[Kj ]
4n/|Kj | ×D1

)

−−−−→
Ψ|

M

where Ψ| denotes the restriction of Ψ. The map f0 : M0 → X0 defines a
map f ′0 : M

′
0 → X0 by restriction. Since (SR[Kj ]

4n/|K|)L for each L ⊆ Kj

and
(
∏

Hi
Ni
)L

for each L ⊆ Hi are non-empty and connected, the maps f ′0
and the projections pr :

∐s
j=1G ×Kj

(

SR[Kj ]
4n/|K| × S0

)

→
∐s
j=1G/Kj ×

S0 and pr:
∐s
j=1G ×Kj

(

SR[Kj ]
4n/|K| ×D1

)

→
∐s
j=1G/Kj × D

1 induce on
the L-fixed point set 1-connected maps for each L ⊆ G. Hence the G-map
f : M → X, which is induced by these three maps and the pushout prop-
erty, induces a 1-connected map on the L-fixed point sets for each L ⊆ G.
In particular π0(f

L) : π0(M
L) → π0(X

L) is bijective for each L ⊆ G and
the map UG(f) : UG(M) → UG(X) is bijective by (3.4). Obviously the Gx-
representation TxM for any point x ∈ M is a multiple of the regular Gx-
representation R[Gx].

The following diagram commutes

UG(M0)
UG(i0)
←−−−−

∼=
UG(M ′

0)
UG(i4)
−−−−→ UG(M)

UG(f0)





y

∼= UG(f ′0)





y

∼= UG(f)





y

∼=

UG(X0)
id

−−−−→
∼=

UG(X0)
UG(i5)
−−−−→ UG(X)

where i0, i4 and i5 denote the inclusions.
Next we compute UG(f)(χG(M)). We get by the sum formula for the uni-

versal equivariant Euler characteristic [7, Theorem 5.4 on page 100]

UG(f)(χG(M))

= UG(i5 ◦ f0)
(

χG(M0)
)

− UG(i5 ◦ f0 ◦Ψ)



χG





s
∐

j=1

G×Kj

((

DR[Kj ]
4n/|Kj |

)

× S0
)









+ UG(i5 ◦ f0 ◦Ψ ◦ i6)



χG





s
∐

j=1

G×Kj

((

SR[Kj ]
4n/|Kj |

)

× S0
)









− UG(i5 ◦ f
′
0 ◦Ψ|)



χG





s
∐

j=1

G×Kj

(

SR[Kj ]
4n/|Kj | × S0

)









+ UG(f ◦Ψ|)



χG





s
∐

j=1

G×Kj

(

SR[Kj ]
4n/|Kj | ×D1

)







 ,
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where i6 is the inclusion. Since (SR[Kj ]
4n/|Kj |)L is an odd-dimensional sphere

and hence has vanishing (non-equivariant) Euler characteristic for each L ⊆ Kj ,
the element χKj

(

SR[Kj ]
4n/|Kj |

)

in UKj ({∗}) = A(Kj) is sent to zero under the

injective map χ
Kj

0 : A(Kj)→
∏

(L)∈consub(Kj)
Z. This implies

χKj

(

SR[Kj ]
4n/|Kj |

)

= 0

and hence

χG





s
∐

j=1

G×Kj

(

SR[Kj ]
4n/|Kj | × S0

)



 = 0.

The space DR[Kj ]
4n/|Kj | is Kj-homotopy equivalent to {∗}. Hence

UG(i5 ◦ f0 ◦Ψ)



χG





s
∐

j=1

G×Kj

(

DR[Kj ]
4n/|Kj | × S0

)









= UG(i5 ◦ f0 ◦Ψ ◦ i7)



χG





s
∐

j=1

G×Kj
S0









= 2 ·
s
∑

j=1

UG(xj)(χ
G(G/Kj)),

where i7 is the inclusion and x1j : G/Kj → X is the restriction of the charac-

teristic map of the one cell G/Kj × D1 to G/Kj × {1/2}. If x0i : G/Hi → X
is the characteristic map of the 0-cell G/Hi and αi : Hi → G the inclusion, we
conclude

UG(f)(χG(M)) =
r
∑

i=1

UG(x0i ) ◦ (αi)∗

(

χHi

(

∏

Hi

Ni

))

− 2 ·
s
∑

j=1

UG(xj)(χ
G(G/Kj)). (7.3)

The element χHi
(
∏

Hi
Ni
)

∈ A(Hi) is sent under the injective character map

chHi
0 : A(Hi)→

∏

(K) consub(Hi)

Z, [S] 7→ |SK |

to (χ(Ni)
|H/K| | (K) ∈ consub(Hi)}. This implies

χHi

(

∏

Hi

Ni

)

= χ(Ni) · [Hi/Hi]

+
∑

(K)∈consub(Hi),
K 6=Hi

λ(K)(χ(Ni)) · [Hi/K] (7.4)
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for appropriate functions λ(K) : Z→ Z. We can order the equivariant zero-cells
G/Hi of X0 such that Hi is subconjugate to Hj only if i ≥ j holds. We conclude
from (7.4) that for an appropriate map µ, the composition

r
⊕

i=1

Z
µ
−→

r
⊕

i=1

Z = UG(X0)
UG(i8)
−−−−→ UG(X1)

sends {χ(Ni) | i = 1, 2 . . . , r} to
∑r
i=1 U

G(x0i ) ◦ (αi)∗
(

χHi
(
∏

Hi
Ni
))

, where
i8 : X0 → X is the inclusion and µ is given by

µ(a1, a2, . . . , ar) =





r
∑

j=1

µ1,j(aj),

r
∑

j=1

µ2,j(aj), . . . ,

r
∑

j=1

µr,j(aj),





for (not necessarily linear) maps µi,j : Z → Z for which µi,j = 0 for i > j and
µi,i = id. The map UG(i8) is surjective and the map µ bijective. Since for any
integer k and any positive integer l there is a closed connected 4l-dimensional
manifold N with χ(N) = k, we can find appropriate Ni with the right Euler
characteristics χ(Ni) such that for a given element u ∈ UG(X)

r
∑

i=1

UG(x0i ) ◦ (αi)∗

(

χHi

(

∏

Hi

Ni

))

= u + 2 ·
s
∑

j=1

UG(xj)(χ
G(G/Kj)).

(7.5)

We conclude from (7.3) and (7.5) that

UG(f)(χG(M)) = u.

This finishes the proof of Lemma 7.2.

Putting Lemmas 7.1 and 7.2 together gives the following result on the real-
ization problem:

Theorem 7.6 Let S be a contravariant Or(G;Fin)-set, and suppose that there
are only finitely many elements (H) ∈ consub(H) with S(G/H) 6= ∅. Also

assume that for any finite subgroup H ⊆ G, the set WH\S(G/H) is finite, and
that the isotropy group WHs of each element s ∈ S(G/H) is finitely generated.

Let u ∈ UG(S). Then there is a proper cocompact G-manifold M (without

boundary) and there is a natural equivalence T : π0(M)
∼=
−→ S sending χG(M)

to u.
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