
The elementary diagram of a trivial, weakly
minimal structure is near model complete

Michael C. Laskowski∗

Department of Mathematics
University of Maryland

August 24, 2008

Abstract

We prove that if M is any model of a trivial, weakly minimal the-
ory, then the elementary diagram T (M) eliminates quantifiers down
to Boolean combinations of certain existential formulas.

1 Introduction

There has been a growing body of research in the area of ‘automatic quanti-
fier elimination’ where one places strong hypotheses on a theory T and proves
that the elementary diagram T (M) of any model of the theory has bounded
quantifier depth (see [1, 2, 4]). For example, in [1], Dolich, Raichev, and the
author proved that T (M) is model complete whenever T is uncountably cat-
egorical, trivial, and of Morley rank 1. In this paper we relax the hypotheses
on the theory somewhat and obtain a slightly weaker result.

Throughout the paper we assume that we are given an L-theory T that is
complete, weakly minimal, and trivial. See e.g., [5] for the definitions of these
notions. Taken together, these hypotheses imply that the notion of forking
is remarkably well behaved, and in fact is determined by algebraic closure.
This remark is made explicit in Fact 2.1. As well, we fix an arbitrary model
M of T and consider the elementary diagram of M in the language L(M),
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which is the language L with constant symbols for each element of M added.
We also fix a very large, very saturated ‘monster’ C elementarily extending
M and work inside this model.

Any weakly minimal theory is superstable. Also, any ω-stable theory
of Morley rank 1 is weakly minimal, but there are trivial, weakly minimal
theories with continuum many 1-types over the empty set. An example is
the theory of countably many independent unary predicates.

In Section 2 we define the class A of quantifier free, mutually algebraic
formulas ϕ(z̄). It is immediate from the definition that if x̄ˆȳ is a partition
of z̄ with lg(x̄), lg(ȳ) ≥ 1, then for any fixed ȳ there are only finitely many
x̄ for which ϕ(x̄, ȳ) holds. We define the wider class E of formulas of the
form ∃x̄ϕ(x̄, ȳ), where ϕ(z̄) ∈ A and x̄ˆȳ form a partition of z̄. With Theo-
rem 4.2 we prove that every L(M)-formula is T (M)-equivalent to a Boolean
combination of formulas in E.

Most of the uses of stability in this paper are very soft, mostly relying on
the definability of types. This is primarily due to Fact 2.1, demonstrating
that forking is easily understood in our context. We make heavy use of
Fact 2.2, stating that trivial, weakly minimal theories do not have the finite
cover property, i.e., have nfcp.

For basic facts about stable theories the reader is referred to any of a num-
ber of texts, including [5]. The reader is cautioned, however, that since we are
interested in the complexity of definitions, we most definitely cannot make
the ‘usual assumptions’ of stability theory. In particular, it would completely
destroy the context to assume that every definable set were quantifier-free
definable, and we most definitely are not permitted to pass to Ceq.

We close the introduction with an example. It shows that Theorem 4.2
cannot be improved to conclude model completeness. Additionally, it shows
that even though forking in our context is essentially a binary relation, the
notion of mutual algebraicity, which is introduced in the next section, need
not be. Similar examples exist in which R is n-ary for any n ≥ 2.

Example 1.1 A trivial, ω-stable, Morley rank 1, 2-dimensional theory T for
which T (M) is not model complete for any model M of T .

Let L consist of a single ternary relation symbol R. The theory T asserts
that R is antireflexive and symmetric. That is, if R(a, b, c) holds then a, b, c
are distinct and R holds of any permutation of them. So R describes a
collection of ‘triangles.’ The theory T also asserts that every element is in
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at most one triangle, there are infinitely many elements that are in some
triangle, and infinitely many elements that are ‘singletons’ i.e., not in any
triangles.

For any model M of T , T (M) is not model complete. To see this, choose
any N1 � M such that N1 \M contains at least one singleton a and choose
N2 ⊇ N1, N2 � M , such that in N2, a is part of a triangle. Then N1 6� N2,
so T (M) is not model complete.

2 Mutually algebraic formulas

We begin by stating two facts that will be used throughout the paper. The
first characterizes forking in our context. Since T is weakly minimal and
trivial, hence superstable of finite U -rank, T is perfectly trivial in the sense
of Poizat, i.e., for all ā, B1 ⊆ B, and C1 ⊆ C, if tp(ā/B) does not fork over
B1 and tp(ā/C) does not fork over C1, then tp(ā/BC) does not fork over
B1C1. A proof of this is given in [3]. Another proof is given in 2.5.8 and
4.2.7 of [5]. This result makes the following Fact straightforward.

Fact 2.1 If T is weakly minimal and trivial, then for any set B containing
a model M and any tuple ā disjoint from M , the type tp(ā/B) does not fork
over M if and only if ā ∩ acl(B) = ∅.

Proof. As noted above, T is perfectly trivial. It follows from this and
forking symmetry that tp(ā/B) does not fork over M if and only if tp(a/B)
does not fork over M for every singleton a ∈ ā. But weak minimality implies
that for any singleton a 6∈M , tp(a/B) forks over M if and only if a ∈ acl(B).

The following fact has more elementary proofs, but this one was chosen
for brevity.

Fact 2.2 If T is weakly minimal and trivial, then T does not have the finite
cover property.

Proof. We first show that T is nonmultidimensional, i.e., that every
nonalgebraic type is nonorthogonal to a type over the empty set (see e.g.,
[5]). Fix a tuple ā and a set B such that p = tp(ā/B) is nonalgebraic.
Choose a model M of T such that tp(Bā/M) does not fork over the empty
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set and let c̄ ⊆ ā be the subsequence of elements that are not in acl(MB).
Then c̄ is nonempty and tp(c̄/BM) does not fork over M by Fact 2.1. By
transitivity of nonforking tp(c̄/B) does not fork over the empty set and is
nonorthogonal to p. Thus, T is nonmultidimensional, hence T has the nfcp.
This last implication follows from Shelah’s characterization of the nfcp in
stable theories and, working in Ceq, Remark 8.2.13 of [5]. This argument is
one place where it is helpful to pass to Ceq, but it is not necessary to do so.

It follows from the nfcp that for any partitioned formula ϕ(x̄, ȳ) there is
an integer N so that for any b̄, if ϕ(x̄, b̄) has at least N solutions, then it has
infinitely many. Because of this, the expression ∃<∞x̄ϕ(x̄, ȳ) is first order.

For a fixed tuple z̄ of variable symbols, a proper partition z̄ = x̄ˆȳ satisfies
lg(x̄), lg(ȳ) ≥ 1, x̄ ∪ ȳ = z̄, and x̄ ∩ ȳ = ∅. We do not require x̄ to be an
initial segment of z̄, but we will write it as if it were to simplify the notation.

Definition 2.3 An L(M)-formula ϕ(z̄) is algebraic if ∃<∞z̄ϕ(z̄). It simpli-
fies our notation to call inconsistent formulas algebraic. A formula ϕ(z̄) is
mutually algebraic if ∀ȳ∃<∞x̄ϕ(x̄, ȳ) for all proper partitions z̄ = x̄ˆȳ. We
call a type algebraic (mutually algebraic) if it contains an algebraic (mutually
algebraic) formula. Let

• A = {all quantifier-free, mutually algebraic L(M)-formulas};

• E = {all L(M)-formulas of the form ∃x̄θ(x̄, ȳ), where θ ∈ A} (we allow
lg(x̄) = 0 so A ⊆ E);

• A∗ = {all L(M)-formulas T (M)-equivalent to a Boolean combination
of formulas from A}; and

• E∗ = {all L(M)-formulas T (M)-equivalent to a Boolean combination
of formulas from E}.

The reader is cautioned that these notions depend on the set of free
variables displayed. In particular, the notion of mutual algebraicity is not
preserved under the addition of dummy variables. Note that every formula
θ(z) with lg(z) = 1 is mutually algebraic.

The notion of mutual algebraicity was introduced in [1]. The equivalence
of the definition given here with the one offered there (at least for trivial,
weakly minimal theories) follows from Lemma 3.3 below.
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We enumerate some closure properties of these classes. None of these
properties depend on our assumptions about the theory T (M).

Lemma 2.4 1. Every algebraic formula is mutually algebraic;

2. A∗ and E∗ are closed under Boolean combinations;

3. If ϕ(x, ȳ) ∈ A and m ∈M , then ϕ(m, ȳ) is algebraic, hence in A;

4. If α(x, ȳ) ∈ E and m ∈M , then α(m, ȳ) ∈ E;

5. If ϕ(x̄) ∈ L(M) is quantifier free and ϕ(x̄) ` ψ(x̄) for some ψ(x̄) ∈ A,
then ϕ(x̄) ∈ A;

6. If ϕ(ȳ), ψ(z̄) ∈ A and ȳ ∩ z̄ 6= ∅ then (ϕ ∧ ψ)(ȳ, z̄) ∈ A;

7. If α(ȳ), β(z̄) ∈ E and ȳ ∩ z̄ 6= ∅ then (α ∧ β)(ȳ, z̄) ∈ E;

8. If α(x̄, ȳ) ∈ E and r ∈ ω then ∃≥rx̄α(x̄, ȳ) ∈ E;

9. If α(x̄, ȳ) ∈ E and r ∈ ω, then ∃=rx̄α(x̄, ȳ) and ∃<rx̄α(x̄, ȳ) ∈ E∗.

Proof. The proofs of (1)–(5) are immediate. For (6), suppose ϕ(ȳ) and
ψ(z̄) are both mutually algebraic and choose a variable symbol x ∈ ȳ ∩ z̄.
We first claim that ē ⊆ acl(Me) for any ē realizing ϕ ∧ ψ and any e ∈ ē. As
notation, for a tuple ē realizing ϕ ∧ ψ, let ex denote the ‘x-coordinate’ of ē,
ēȳ denote the subsequence ē|ȳ, and ēz̄ denote ē|z̄. Fix any ē realizing ϕ ∧ ψ
and choose any e ∈ ē. By symmetry we may assume that e ∈ ēȳ. Since ϕ(ȳ)
is mutually algebraic, ēȳ ⊆ acl(Me). In particular, ex ∈ acl(Me). Also, since
ψ(z̄) is mutually algebraic, ēz̄ ⊆ acl(Mex), so ē ⊆ acl(Me) as claimed. It
follows immediately that ∃<∞ū(ϕ ∧ ψ)(ū, v̄) for any proper partition ūˆv̄ of
ȳˆz̄.

(7) follows immediately from (6) provided we choose disjoint bound vari-
ables for the formulas α and β. As for (8), if α is ∃ūϕ with ϕ ∈ A, then
∃≥rx̄α(x̄, ȳ) is equivalent to

∃x̄0∃ū0∃x̄1∃ū1 . . . ∃x̄r−1∃ūr−1

(∧
i<r

ϕ(ūi, x̄i, ȳ) ∧
∧
i<j<r

x̄i 6= x̄j

)
That this formula is in E follows from (7) and (5). (9) follows immediately
from (8) as these formulas are Boolean combinations of ∃≤sx̄α(x̄, ȳ) for var-
ious choices of s.
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3 Partitions

Throughout this section T is a trivial, weakly minimal L-theory and M is
any model of T .

This section is devoted to showing that any L(M)-formula can be ‘decom-
posed’ as a Boolean combination of mutually algebraic pieces. In Section 4
it will be used to show that any quantifier-free L(M)-formula is in A∗, but
the results in this section hold for an arbitrary L(M)-formula.

Fix an L(M)-formula θ(z̄) and a proper partition z̄ = x̄ˆȳ. A θ, x̄-formula
is any Boolean combination of formulas of the form θ(x̄,m), where m ∈
M lg(ȳ). A θ, x̄-type is an ultrafilter on the Boolean algebra of θ, x̄-formulas,
and Sθ,x̄(M) denotes the Stone space of all θ, x̄-types. By stability, for any
p ∈ Sθ,x̄(M) the set {m ∈ M lg(ȳ) : θ(x̄,m) ∈ p} is relatively definable by an
L(M)-formula, which we denote by dpx̄θ(x̄, ȳ).

The first Lemma, although very simple, plays a key role in the compact-
ness argument used in proving Proposition 3.4.

Lemma 3.1 If ϕ(x̄) is mutually algebraic and {c̄i : i ∈ ω} is a set of distinct
realizations of ϕ, then there is an infinite I ⊆ ω such that {c̄i : i ∈ I} are
pairwise disjoint.

Proof. By hypothesis ϕ is not algebraic. Since ϕ is mutually algebraic,
{i ∈ ω : c̄i ∩

⋃
j∈F c̄j 6= ∅} is finite for every finite F ⊆ ω. It follows that any

finite set of pairwise disjoint tuples is not maximal, so an infinite, pairwise
disjoint subset exists.

Definition 3.2 For a formula θ(z̄) and a proper partition z̄ = x̄ˆȳ, a θ, x̄-
formula γ(x̄) determines θ(x̄, ȳ) generically if γ(x̄) is mutually algebraic and
for any ȳ, either ∃<∞x̄(γ(x̄) ∧ θ(x̄, ȳ)) or ∃<∞x̄(γ(x̄) ∧ ¬θ(x̄, ȳ)).

Lemma 3.3 If γ(x̄) determines θ(x̄, ȳ) generically, then

dpx̄θ(x̄, ȳ)↔ dqx̄θ(x̄, ȳ)

for all nonalgebraic p, q ∈ Sθ,x̄(M) extending γ.

Proof. It suffices to show that dpx̄θ(x̄, ȳ) ↔ ∃∞x̄(γ(x̄) ∧ θ(x̄, ȳ)) for
any nonalgebraic p ∈ Sθ,x̄(M) extending γ. To see this, fix such a p. First
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choose d̄ such that dpx̄θ(x̄, d̄). Since p is nonalgebraic there are infinitely
many tuples c̄ realizing the nonforking extension of p to Md̄. Each of these
tuples realizes γ(x̄) ∧ θ(x̄, d̄). Next, choose d̄ such that ¬dpx̄θ(x̄, d̄) holds.
Then dpx̄¬θ(x̄, d̄) holds, so as above, there are infinitely many realizations of
γ(x̄) ∧ ¬θ(x̄, d̄). Thus ∃<∞x̄(γ(x̄) ∧ θ(x̄, d̄)).

Proposition 3.4 For any formula θ(z̄), any proper partition z̄ = x̄ˆȳ, and
any mutually algebraic but not algebraic p ∈ Sθ,x̄(M), there is γ(x̄) ∈ p
determining θ generically.

Proof. Fix a mutually algebraic p(x̄) ∈ Sθ,x̄(M). We first argue that
dpx̄θ(x̄, ȳ) implies ∃<∞x̄(γ0(x̄) ∧ ¬θ(x̄, ȳ)) for some formula γ0 ∈ p. If there
were no such γ0, then by compactness there would be distinct tuples {c̄i : i ∈
ω}, each realizing p(x̄), and d̄ in C such that ¬θ(c̄i, d̄) holds for each i, but
dpx̄θ(x̄, d̄). By applying Lemma 3.1 and reindexing, we could additionally
assume that the tuples {c̄i : i ∈ ω} are pairwise disjoint. But then, another
application of compactness would assert the existence of a tuple c̄∗ realizing p
such that ¬θ(c̄∗, d̄) holds, but c̄∗∩ acl(Md̄) = ∅. By Fact 2.1 tp(c̄∗/Md̄) does
not fork over M , contradicting dpx̄θ(x̄, d̄). Thus, such a formula γ0 exists. By
increasing γ0 slightly we may assume that γ0 is mutually algebraic as well.
Arguing symmetrically, there is also a formula γ1 ∈ p such dpx̄¬θ(x̄, ȳ) implies
∃<∞x̄(γ1(x̄)∧ θ(x̄, ȳ)). Then the formula γ0 ∧ γ1 determines θ generically.

Definition 3.5 Fix a tuple z̄ of variable symbols. A partition P of z̄ is a set
{x̄i : i < r} of nonempty subsequences of z̄ such that each variable symbol
z ∈ z̄ occurs in exactly one x̄i. We define a partial order ≤ on the (finite)
set of partitions of z̄ by:

P′ ≤ P if and only if every x̄i ∈ P is the union of classes x̄′j ∈ P′.

In particular, the partition of length lg(z̄) is at the ‘bottom’ of the partial
order, while the the partition {z̄} of length 1 is at the ‘top.’

Definition 3.6 Fix an L(M)-formula θ(z̄). For any c̄ ∈ Clg(z̄) and any sub-
sequence x̄ of z̄, tpθ,x̄(c̄/M) denotes the θ, x̄-type {θ(x̄,m) : C |= θ(c̄x̄,m)},
where c̄x̄ denotes the subsequence of c̄ induced by x̄.

We let tpθ(c̄/M) = {tpθ,x̄(c̄/M) : all subsequences x̄ of z̄} and let Sθ(M) =

{tpθ(c̄/M) : c̄ ∈ Clg(z̄)}. For any p ∈ Sθ(M) and any subsequence x̄ of z̄,
p|x̄ = tpθ,x̄(c̄/M) for some (equivalently for every) c̄ realizing p.
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Definition 3.7 A type p(z̄) ∈ Sθ(M) is coordinatewise nonalgebraic if we
have ∃∞z∃ẑψ(z̄) (where z̄ = zˆẑ) for every ψ ∈ p and every variable symbol
z ∈ z̄. For P = {x̄i : i < r} any partition of z̄, a type p(z̄) ∈ Sθ(M) is
of species P if p is coordinatewise nonalgebraic and, for each i < r, x̄i is a
subsequence of z̄, the restriction p|x̄i is mutually algebraic, but p|ȳ is not
mutually algebraic for any x̄ ( ȳ ⊆ z̄.

Lemma 3.8 If c̄ ∩M = ∅, then tpθ(c̄/M) is coordinatewise nonalgebraic.

Proof. Let q = tp(c̄/M) ∈ S(M) denote the ‘full type’ of c̄ in the
language L(M). Choose a Morley sequence {c̄i : i ∈ ω} in q. Then c̄i∩ c̄j = ∅
for all i < j < ω.

Lemma 3.9 Every coordinatewise nonalgebraic p(z̄) ∈ Sθ(M) has a species,
i.e., p is of species P for some partition P of z̄.

Proof. Let {x̄i : i < r} be all subsequences of z̄ such that for each i, p|x̄i
is mutually algebraic, but p|ȳ is not mutually algebraic for any x̄i ( ȳ ⊆ z̄.
We argue that {x̄i : i < r} is a partition of z̄. First, since p is coordinatewise
nonalgebraic, p|〈z〉 is mutually algebraic for every variable symbol z ∈ z̄, so
every z is contained in some x̄i. Second, suppose that z ∈ x̄i ∩ x̄j. Choose
mutually algebraic ϕ(x̄i) ∈ p|x̄i and ψ(x̄j) ∈ p|x̄j. By Lemma 2.4(6) ϕ∧ψ is
mutually algebraic, so x̄i = x̄j by the maximality of the subsequences.

Definition 3.10 Fix a formula θ(z̄) and a partition P = {x̄i : i < r}. A P-
determining formula δ(z̄) has the form

∧
i<r γi(x̄i), where γi(x̄i) determines

θ generically.

Lemma 3.11 For any formula θ(z̄) and any partition P = {x̄i : i < r}, if δ
is a P-determining formula then θ(c̄)↔ θ(d̄) for all c̄, d̄ realizing δ such that
the types tpθ(c̄) and tpθ(d̄) are both of species P.

Proof. Suppose that δ(z̄) =
∧
i<r γi(x̄i), where each γi(x̄i) determines θ

generically. If γi(x̄i) is algebraic for any i < r then the Lemma is vacuously
true, so assume that each γi(x̄i) is nonalgebraic. For each i < r choose a
nonalgebraic type qi ∈ Sθ,x̄i

(M) extending γi(x̄i). We will show that θ(c̄)
holds if and only if the sentence dq0x̄0 . . . dqr−1x̄r−1θ ∈ T (M) for every c̄
realizing δ with tpθ(c̄/M) of species P.
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By symmetry assume that the sentence dq0x̄0 . . . dqr−1x̄r−1θ ∈ T (M). Fix
any realization c̄ of δ for which tpθ(c̄/M) is of species P. We construct
a sequence 〈c̄i : i ≤ r〉 of tuples of length lg(z̄) as follows: Let c̄0 = c̄.
Given c̄i for i < r, choose c̄∗i (of length lg(x̄i)) realizing qi(x̄i) such that
tp(c̄∗i /Mc̄i) does not fork over M and let c̄i+1 be the sequence obtained from
c̄i by inserting c̄∗i in place of the ‘x̄ith coordinates’ c̄ii of c̄i.

Then c̄ r realizes the complete type q0× . . .×qr−1, so θ(c̄ r) holds. As well,
by applying Lemma 3.3 for each i < r we have that θ(c̄i) ↔ θ(c̄i+1) holds.
Thus, θ(c̄) holds as required.

Definition 3.12 A set X ⊆ Cn is definable off M if there is a formula ψ(z̄)
with lg(z̄) = n and X \Mn = ψ(C) \Mn. Two formulas θ(z̄) and ψ(z̄) are
equivalent off M if θ(C) \Mn = ψ(C) \Mn.

Proposition 3.13 Fix a formula θ(z̄) with lg(z̄) = n. For every partition P

of z̄ we have:

1. There is a finite set {δj(z̄) : j < n(P)} of P-determining formulas such
that every p ∈ Sθ(M) of species P contains some δj; and

2. The set {c̄ ∈ Cn : tpθ(c̄/M) is of species P} is definable off M by a
Boolean combination of P′-determining formulas for partitions P′ ≤ P.

Proof. We argue by induction on the partial ordering ≤. Fix a partition
P = {x̄i : i < r} and assume that (1) and (2) both hold for all partitions P′ <
P. For each P′ < P let ψP′(z̄) be a Boolean combination of P′′-determining
formulas for partitions P′′ ≤ P′ defining {c̄ ∈ Cn : tpθ(c̄/M) is of species P′}
off M . As notation, for any tuple c̄ such that tpθ(c̄/M) is of species P, we
let c̄i denote the subsequence corresponding to x̄i. In particular, c̄i realizes
p|x̄i.

To show that (1) holds for P, we use Lemma 3.4 for each p ∈ Sθ(M) of
species P and each i < r to choose γp,i(x̄i) determining θ generically. For
each p ∈ Sθ(M) let δp(z̄) =

∧
i<r γp,i(x̄i). If there were no such finite set as

in (1), then by compactness there would be a tuple c̄ such that

• c̄ ∩M = ∅;

• c̄i ∩ acl(Mc̄j) = ∅ for all i < j < r;

• tpθ(c̄) is not of species P′ for any P′ < P, and
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• ¬δp(c̄) for each p ∈ Sθ(M) of species P.

Let q = tpθ(c̄/M). The first condition, together with Lemmas 3.8 and 3.9,
imply that q is coordinatewise nonalgebraic and has a species. The second
condition, together with Fact 2.1, implies that {c̄i : i < r} is independent
over M , so the species of q is ≤ P. The third condition implies that the
species of q cannot be < P, so the species of q must be equal to P. But then
δq(c̄) holds, which contradicts the fourth condition. Thus (1) holds for P.

As for (2), it is easily checked that

ψP(z̄) :=
∨

j<n(P)

δP
j (z̄) ∧

∧
P′<P

¬ψP′(z̄)

defines the set {c̄ ∈ Cn : tpθ(c̄/M) is of species P} off M .

Corollary 3.14 For any formula θ(z̄) there is a formula θ∗(z̄), which is a
Boolean combination of mutually algebraic θ, x̄-formulas, that is equivalent
to θ off M .

Proof. For each partition P of z̄, choose a finite set {δP,j(z̄) : j < n(P)}
and a formula ψP(z̄) as in Proposition 3.13. For each P and j < n(P)
Lemma 3.11 implies that off M , the truth value of θ is invariant on ψP∧ δP,j.
For each P, let G(P) = {j < n(P) : (ψP ∧ δP,j) → θ off M}. Then off M ,

θ(z̄) is equivalent to
∨

P

(
ψP ∧

∨
j∈G(P) δP,j

)
.

4 Quantifier elimination

Throughout this section T is a trivial, weakly minimal L-theory and M is
any model of T .

Proposition 4.1 Every quantifier-free L(M)-formula θ(z̄) is in A∗.

Proof. We argue by induction on lg(z̄). For lg(z̄) ≤ 1 every quantifier
free θ(z) ∈ A. Now fix a quantifier-free θ(z̄) with lg(z̄) ≥ 2 and assume the
result holds for all quantifier-free L(M)-formulas with fewer free variables.
By Corollary 3.14 there is θ∗(z̄) ∈ A∗ that is equivalent to θ(z̄) off M . Write
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z̄ = xˆȳ with lg(x) = 1. By compactness there is a finite set F ⊆ M such
that

θ(x, ȳ)↔
∨
m∈F

(x = m ∧ θ(m, ȳ)) ∨
∧
m∈F

(x 6= m ∧ θ∗(x, ȳ))

By our inductive hypothesis the formula on the right hand side is in A∗.

Theorem 4.2 Every L(M)-formula is T (M)-equivalent to a Boolean com-
bination of formulas from E, i.e., E∗ = L(M).

Proof. We argue by induction on the complexity of formulas. By Propo-
sition 4.1 E∗ contains every quantifier-free T (M)-formula and E∗ is obviously
closed under Boolean combinations. Thus, to show that E∗ = L(M) it suffices
to show that

∃xα(x, ȳ) ∈ E∗ whenever α(x, ȳ) ∈ E∗. (1)

By writing α in Disjunctive Normal Form with respect to its subformulas in
E and noting that disjunction commutes with existential quantification, it
suffices to prove (1) when α(x, ȳ) has the form∧

i<k

βi(x, ȳi) ∧
∧
j<m

¬γj(x, ȳj)

where each βi and γj are from E and ȳi and ȳj are subsequences of ȳ. As
well, we may assume that x occurs in every βi and γj. Since the variable
x occurs in every βi, Lemma 2.4(7) implies that

∧
i<k βi(x, ȳi) ∈ E Thus we

may assume that k ≤ 1. We first take care of two easy cases.
Case 1. k = 0, i.e., α(x, ȳ) =

∧
j<m ¬γj(x, ȳj).

In this case, since γj(C, ȳj) is finite for any choice of ȳ, ∃xα(x, ȳ) always
holds.

Thus, we may assume that there is precisely one β, i.e., that α(x, ȳ)
has the form β(x, ȳ∗) ∧

∧
j<m ¬γj(x, ȳj), where β and each γj are in E and

ȳ∗, ȳj ⊆ ȳ.
Case 2. ȳ∗ = ∅.
If β(x) is algebraic then ∃xα(x, ȳ) is equivalent to

∨
m∈β(C) α(m, ȳ). On

the other hand, if β(x) is nonalgebraic then ∃xα(x, ȳ) always holds by the
same argument as in Case 1.

Finally, we are left with the general case where ȳ∗ 6= ∅. By replacing
each γj by the formula β ∧ γj (which is also in E by Lemma 2.4(7)) we
may additionally assume that γj(C, ȳj) ⊆ β(C, ȳ∗) for any choice of ȳ. Since
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β(x, ȳ∗) is mutually algebraic, the set α(C, ȳ) is finite for any choice of ȳ. In
fact, since T has nfcp, there is an integer r∗ such that α(C, ȳ) has size less
than r∗ for any choice of ȳ. Since γj(C, ȳj) ⊆ β(C, ȳ∗) we have that

∃xα(x, ȳ)↔
∨
r<r∗

(
∃=rxβ(x, ȳ∗) ∧ ∃<rx

∨
j<m

γj(x, ȳj)

)
The formula ∃=rxβ(x, ȳ∗) ∈ E∗ by Lemma 2.4(9), so the result will follow
once we show that ∃<rx

∨
j<m γj(x, ȳj) ∈ E∗. To see this, note that for any

sequence of integers 〈rS : S ⊆ m〉, Lemmas 2.4(7) and 2.4(9) assert that each
of the formulas ∃=rS

∧
j∈S γj(x, ȳj) is in E∗.

We recall a classical fact, which is essentially a fact about Venn diagrams,
and is easily proved by induction on m.

Fact 4.3 If U is finite and {Ai : i < m} are subsets of U , then the cardinal-
ity of any Boolean combination of the subsets {Ai} is computable from the
sequence 〈rS : S ⊆ m〉, where rS is the cardinality of

⋂
i∈S Ai.

Thus, the formula ∃<rx
∨
j<m γj(x, ȳj) is T (M)-equivalent to a Boolean com-

bination of formulas of the form ∃=rSx
∧
j∈S γj(x, ȳj), each of which is in E∗

as noted above. So ∃xα(x, ȳ) ∈ E∗ and we finish.
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