A Vaught's conjecture toolbox

Chris Laskowski University of Maryland

 2^{nd} Vaught's conjecture conference UC-Berkeley 1 June, 2015

Fix T, a complete theory in a countable language. Call T small if $S_n(\emptyset)$ is countable for each n.

Fix T, a complete theory in a countable language. Call T small if $S_n(\emptyset)$ is countable for each n.

A dichotomy:

Fix T, a complete theory in a countable language. Call T small if $S_n(\emptyset)$ is countable for each n.

A dichotomy:

- If T is not small, then there is a perfect set of complete types, hence $I(T,\aleph_0)=2^{\aleph_0}$ [in fact, a perfect set of pairwise non-isomorphic models].
- If T is small, then T has a countable, saturated model and a prime model, which is also the unique countable atomic model.

$L_{\omega_1,\omega}$

 $L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.

$L_{\omega_1,\omega}$

 $L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems fail! Ex: $(\mathbb{R}, +, \cdot, 0, 1)$.

$L_{\omega_1,\omega}$

 $L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems fail! Ex: $(\mathbb{R}, +, \cdot, 0, 1)$.

Upward LS is DOOMED

 $L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems fail! Ex: $(\mathbb{R}, +, \cdot, 0, 1)$.

Upward LS is **DOOMED**

However... DLS can be recovered by restricting to reasonable countable fragments.

The precise definition of a fragment is not important, only that: For all countable $\Gamma \subseteq L_{\omega_1,\omega}$ there is a reasonable countable Δ satisfying $\Gamma \subseteq \Delta \subseteq L_{\omega_1,\omega}$.

The precise definition of a fragment is not important, only that: For all countable $\Gamma \subseteq L_{\omega_1,\omega}$ there is a reasonable countable Δ satisfying $\Gamma \subseteq \Delta \subseteq L_{\omega_1,\omega}$.

• If Δ is a reasonable countable fragment, then for any L-structure M, there is a countable $M' \preceq_{\Delta} M$.

Moreover...

Moreover...

Definition (Keisler)

Let Δ be any reasonable countable fragment of $L_{\omega_1,\omega}$.

- A set T ⊆ Δ of sentences is consistent if there is a model M ⊨ T;
- A consistent set $T \subseteq \Delta$ is Δ -complete if T decides ψ for every Δ -sentence ψ .
- A complete Δ -n-type $p(\overline{x})$ with respect to T is a maximal consistent (w.r.t. T) set of Δ -formulas with at most $(x_1 \ldots, x_n)$ free.
- A Δ -complete theory T is small if $S_n(T, \Delta)$ is countable for all $n \geq 1$.

Theorem (Keisler)

Let Δ be any reasonable countable fragment of $L_{\omega_1,\omega}$ and let T be Δ -complete.

- If T is not small, then there is a perfect set contained in S_n(T, Δ) for some n [hence a perfect set of pairwise non-isomorphic models];
- If T is small, then there is a unique (up to isomorphism)
 Δ-prime model, which is also the unique countable, Δ-atomic model.

Definition (Morley)

An $L_{\omega_1,\omega}$ -sentence Φ is scattered if $S_n(\Phi,\Delta)$ is countable for every (reasonable) countable fragment Δ .

Definition (Morley)

An $L_{\omega_1,\omega}$ -sentence Φ is scattered if $S_n(\Phi,\Delta)$ is countable for every (reasonable) countable fragment Δ .

Scatteredness does not depend on our choice of 'reasonable'.

Definition (Morley)

An $L_{\omega_1,\omega}$ -sentence Φ is scattered if $S_n(\Phi,\Delta)$ is countable for every (reasonable) countable fragment Δ .

Scatteredness does not depend on our choice of 'reasonable'.

Proposition

TFAE for a sentence Φ of $L_{\omega_1,\omega}$:

- Φ is scattered;
- Mod(Φ) does not contain a perfect set of pairwise non-isomorphic models.

Polish space of *L*-structures

Fix a (countable) vocabulary L with at least one binary relation or function symbol.

$$X_L = \{ \text{all } L\text{-structures } M \text{ with universe } \omega \}$$

Basic open sets
$$U_{\varphi(\overline{m})} = \{ M \in X_L : M \models \varphi(\overline{m}) \}.$$

Polish space of *L*-structures

Fix a (countable) vocabulary L with at least one binary relation or function symbol.

$$X_L = \{ \text{all } L\text{-structures } M \text{ with universe } \omega \}$$

Basic open sets $U_{\varphi(\overline{m})} = \{M \in X_L : M \models \varphi(\overline{m})\}.$

Then:

- X_L is a standard Borel space;
- For any $\Phi \in L_{\omega_1,\omega}$, $Mod(\Phi)$ is a Borel subset of X_L ;
- The isomorphism relation \cong_{Φ} is a Σ_1^1 -subset of $X_L \times X_L$ $(M \cong N \text{ iff } \exists f(\dots)).$

Polish space of *L*-structures

Fix a (countable) vocabulary L with at least one binary relation or function symbol.

$$X_L = \{ \text{all } L\text{-structures } M \text{ with universe } \omega \}$$

Basic open sets $U_{\varphi(\overline{m})} = \{ M \in X_L : M \models \varphi(\overline{m}) \}.$

Then:

- X_L is a standard Borel space;
- For any $\Phi \in L_{\omega_1,\omega}$, $Mod(\Phi)$ is a Borel subset of X_L ;
- The isomorphism relation \cong_{Φ} is a Σ_1^1 -subset of $X_L \times X_L$ $(M \cong N \text{ iff } \exists f(\dots)).$

Whether \cong_{Φ} is Borel or not will be an important distinction!

Isomorphisms of countable structures

For M, N countable, $M \cong N$ iff there is a back-and-forth system of finite partial functions.

Isomorphisms of countable structures

For M, N countable, $M \cong N$ iff there is a back-and-forth system of finite partial functions.

Fix a countable M. A potential back-and-forth system \mathbf{F} is a set of finite, partial functions $f: \overline{a} \to \overline{b}$ satisfying:

- F is closed under restrictions;
- If $f: \overline{a} \to \overline{b}$ is in **F**, then $qftp(\overline{a}) = qftp(\overline{b})$; and
- If $\sigma \in Aut(M)$, then each restriction $\sigma|_{\overline{a}} \in \mathbf{F}$.

Examples: All $f : \overline{a} \to \overline{b}$ with:

- $qftp(\overline{a}) = qftp(\overline{b})$ (i.e., no additional restrictions); OR
- The first-order types $tp(\overline{a}) = tp(\overline{b})$; OR
- For any reasonable fragment Δ , $\operatorname{tp}_{\Delta}(\overline{a}) = \operatorname{tp}_{\Delta}(\overline{b})$.

Fix M and a potential back-and-forth system ${\bf F}$. We define a sequence of equivalence relations $\sim_{\alpha} (\alpha < \omega_1)$ that measure how close ${\bf F}$ is to being a back-and-forth system.

Fix M and a potential back-and-forth system ${\bf F}$. We define a sequence of equivalence relations $\sim_{\alpha} (\alpha < \omega_1)$ that measure how close ${\bf F}$ is to being a back-and-forth system.

- $(M, \overline{a}) \sim_0 (M, \overline{b})$ iff $f : \overline{a} \mapsto \overline{b} \in \mathbf{F}$;
- For λ limit, $(M, \overline{a}) \sim_{\lambda} (M, \overline{b})$ iff $(M, \overline{a}) \sim_{\alpha} (M, \overline{b})$ for all $\alpha < \lambda$;
- $(M, \overline{a}) \sim_{\alpha+1} (N, \overline{b})$ iff
 - For all $c \in M$ there is $d \in M$ such that $(M, \overline{a}c) \sim_{\alpha} (M, \overline{b}d)$; AND
 - ② For all $d \in M$ there is $c \in M$ such that $(M, \overline{a}c) \sim_{\alpha} (M, \overline{b}d)$.

Note: If $(M, \overline{a}) \sim_{\alpha+\gamma} (M, \overline{b})$ then $(M, \overline{a}) \sim_{\alpha} (M, \overline{b})$.

Note: If $(M, \overline{a}) \sim_{\alpha+\gamma} (M, \overline{b})$ then $(M, \overline{a}) \sim_{\alpha} (M, \overline{b})$.

Proposition

TFAE for any $M, \overline{a}, \overline{b}$ and F:

- $\{\alpha < \omega_1 : (M, \overline{a}) \sim_{\alpha} (M, \overline{b})\}$ is uncountable;
- 2 For all $\alpha < \omega_1$, $(M, \overline{a}) \sim_{\alpha} (M, \overline{b})$;
- **1** There is $\sigma \in Aut(M)$ satisfying $\sigma(\overline{a}) = \overline{b}$.

Note: If $(M, \overline{a}) \sim_{\alpha+\gamma} (M, \overline{b})$ then $(M, \overline{a}) \sim_{\alpha} (M, \overline{b})$.

Proposition

TFAE for any $M, \overline{a}, \overline{b}$ and F:

- $\{\alpha < \omega_1 : (M, \overline{a}) \sim_{\alpha} (M, \overline{b})\}$ is uncountable;
- **2** For all $\alpha < \omega_1$, $(M, \overline{a}) \sim_{\alpha} (M, \overline{b})$;
- **1** There is $\sigma \in Aut(M)$ satisfying $\sigma(\overline{a}) = \overline{b}$.

Thus: For every M and \mathbf{F} , there is a least $\alpha^* = \alpha^*(M, \mathbf{F}) < \omega_1$ such that for all $\overline{a}, \overline{b}$ from M,

 $(M, \overline{a}) \sim_{\alpha^*} (M, \overline{b})$ iff there is $\sigma \in Aut(M)$ with $\sigma(\overline{a}) = \overline{b}$.

Note: If $(M, \overline{a}) \sim_{\alpha+\gamma} (M, \overline{b})$ then $(M, \overline{a}) \sim_{\alpha} (M, \overline{b})$.

Proposition

TFAE for any $M, \overline{a}, \overline{b}$ and F:

- $\{\alpha < \omega_1 : (M, \overline{a}) \sim_{\alpha} (M, \overline{b})\}$ is uncountable;
- 2 For all $\alpha < \omega_1$, $(M, \overline{a}) \sim_{\alpha} (M, b)$;
- **3** There is $\sigma \in Aut(M)$ satisfying $\sigma(\overline{a}) = \overline{b}$.

Thus: For every M and F, there is a least $\alpha^* = \alpha^*(M, F) < \omega_1$ such that for all \overline{a} , \overline{b} from M,

$$(M, \overline{a}) \sim_{\alpha^*} (M, \overline{b})$$
 iff there is $\sigma \in Aut(M)$ with $\sigma(\overline{a}) = \overline{b}$.

When **F** consists of *qftp*-preserving partial maps,

$$\alpha^*(M, \mathbf{F}) := SH(M)$$
, the Scott height of M .

Now suppose $\Phi \in L_{\omega_1,\omega}$ and **F** is any of the above.

Put: $\alpha^*(\Phi, \mathbf{F}) := \sup\{\alpha^*(M, \mathbf{F}) : M \models \Phi\}$. We say Φ has bounded Scott heights if $\alpha^*(\Phi, \mathbf{F}) < \omega_1$ for some/every \mathbf{F} .

Now suppose $\Phi \in L_{\omega_1,\omega}$ and **F** is any of the above.

Put: $\alpha^*(\Phi, \mathbf{F}) := \sup\{\alpha^*(M, \mathbf{F}) : M \models \Phi\}$. We say Φ has bounded Scott heights if $\alpha^*(\Phi, \mathbf{F}) < \omega_1$ for some/every \mathbf{F} .

Proposition

 Φ has bounded Scott heights if and only if \cong_{Φ} is Borel in $X_L\times X_L.$

Now suppose $\Phi \in L_{\omega_1,\omega}$ and **F** is any of the above.

Put: $\alpha^*(\Phi, \mathbf{F}) := \sup\{\alpha^*(M, \mathbf{F}) : M \models \Phi\}$. We say Φ has bounded Scott heights if $\alpha^*(\Phi, \mathbf{F}) < \omega_1$ for some/every \mathbf{F} .

Proposition

 Φ has bounded Scott heights if and only if \cong_{Φ} is Borel in $X_L \times X_L$.

Theorem (Morley)

Let $\Phi \in L_{\omega_1,\omega}$ be scattered. Then:

- $I(\Phi, \aleph_0) \leq \aleph_1$ always; and
- $I(\Phi, \aleph_0)$ is countable if and only if \cong_{Φ} is Borel.

Discussion: What happened to first-order *T*??

Discussion: What happened to first-order T??

How can we 'see' Mod(T) in X_L ? Where does the compactness theorem fit in with all of this?

Discussion: What happened to first-order *T*??

How can we 'see' Mod(T) in X_L ? Where does the compactness theorem fit in with all of this?

Empirical fact: There are relatively few (known!) complete, first order T so that \cong_T is not Borel (without being Borel complete).

Discussion: What happened to first-order T??

How can we 'see' Mod(T) in X_L ? Where does the compactness theorem fit in with all of this?

Empirical fact: There are relatively few (known!) complete, first order T so that \cong_T is not Borel (without being Borel complete).

T = Th(Binary splitting, refining eq. relations) has \cong_T non-Borel.

If **F** is the potential back-and-forth system of complete types (i.e., $tp(\overline{a}) = tp(\overline{b})$) then a model M is homogeneous if and only if $\alpha^*(M, \mathbf{F}) = 0$.

If **F** is the potential back-and-forth system of complete types (i.e., $tp(\bar{a}) = tp(\bar{b})$) then a model M is homogeneous if and only if $\alpha^*(M, \mathbf{F}) = 0$.

Indications of little we know:

If **F** is the potential back-and-forth system of complete types (i.e., $tp(\bar{a}) = tp(\bar{b})$) then a model M is homogeneous if and only if $\alpha^*(M, \mathbf{F}) = 0$.

Indications of little we know:

Benda's conjecture (1965): If $1 < I(T, \aleph_0) < \aleph_0$, must T have a countable, universal, non-saturated model?

If **F** is the potential back-and-forth system of complete types (i.e., $tp(\overline{a}) = tp(\overline{b})$) then a model M is homogeneous if and only if $\alpha^*(M, \mathbf{F}) = 0$.

Indications of little we know:

Benda's conjecture (1965): If $1 < I(T, \aleph_0) < \aleph_0$, must T have a countable, universal, non-saturated model?

Open (1989): If T is small and every countable universal model is saturated, must every countable weakly saturated (realize all n-types over \emptyset) model be saturated?

Success stories: Restrict to classes $\mathscr C$ of complete, first order theories T and prove that any $T \in \mathscr C$ satisfies Vaught's conjecture.

Success stories: Restrict to classes $\mathscr C$ of complete, first order theories T and prove that any $T \in \mathscr C$ satisfies Vaught's conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0 -categorical or $I(T,\aleph_0)=2^{\aleph_0}$.

Success stories: Restrict to classes $\mathscr C$ of complete, first order theories $\mathcal T$ and prove that any $\mathcal T\in\mathscr C$ satisfies Vaught's conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0 -categorical or $I(T,\aleph_0)=2^{\aleph_0}$.

Laura Mayer proved that any complete o-minimal theory has either finitely many or else continuum many countable models.

Success stories: Restrict to classes $\mathscr C$ of complete, first order theories $\mathcal T$ and prove that any $\mathcal T \in \mathscr C$ satisfies Vaught's conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0 -categorical or $I(T,\aleph_0)=2^{\aleph_0}$.

Laura Mayer proved that any complete o-minimal theory has either finitely many or else continuum many countable models.

Shelah/Harrington/Makkai proved Vaught's conjecture for ω -stable theories.

Success stories: Restrict to classes $\mathscr C$ of complete, first order theories $\mathcal T$ and prove that any $\mathcal T\in\mathscr C$ satisfies Vaught's conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0 -categorical or $I(T,\aleph_0)=2^{\aleph_0}$.

Laura Mayer proved that any complete o-minimal theory has either finitely many or else continuum many countable models.

Shelah/Harrington/Makkai proved Vaught's conjecture for ω -stable theories.

In December, 1986 Harrington stated that "Vaught's conjecture for superstable theories is the major open problem in stability theory." Newelski and Buechler have made progress on this.

