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1. Introduction

The present paper is a direct continuation of [2], where it is shown that any strongly
minimal trivial theory is model complete after naming constants for a model. In this
paper we show that this result may be generalized to any uncountably categorical,
trivial theory of Morley Rank 1. Specifically we show:

Theorem 1. If T is a trivial uncountably categorical theory of Morley Rank 1 then
T (M0), the theory obtained from T by naming constants for a model, is model com-
plete.

We use this theorem to derive the same corollaries for the theories covered by the
theorem as were derived for the strongly minimal case in [2]. We also note that the
theorem is in some senses optimal. Specifically we can easily construct trivial Morley
Rank 1 theories which are not categorical and for which the conclusion of the theorem
fails. Also Marker in [3] constructs trivial totally categorical theories of Morley Rank
2 which are not model complete after naming any set of constants.
Throughout the ensuing sections we rely heavily on the exposition presented in [2],
so some familiarity with this paper will help the reader follow the present work. We
will use basic concepts from stability theory without comment, see [1] for background
material in the subject. Since we are generally concerned with the situation where
we have models M ⊆ N and are attempting to prove that M � N we do not have
the luxury of working in a universal domain C and assuming that all models are
elementary substructures of this structure. This entails that some of our notation
and terminology differs somewhat from most references in stability theory, namely
we must be very careful to specify the ambient model for some of the notions. We
establish the following two notational conventions to fix the meaning of some basic
stability theoretic concepts in our context. In the ensuing we assume T is a stable
theory.

Notation 1. For M0 � M models of T and a, b from M we write a |⌣M0

b in M to

mean that tpM(a/M0b) does not fork over M0. We note that in this context a |⌣M0

b
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in M if and only if for any formula φ(x, b) ∈ tpM(a/M0b) there is c ∈ M0 such that
M |= φ(c, b).

The reader is cautioned that when M0 � M , M0 � N , M ⊆ N and a, b are from M
a |⌣M0

b in M does not necessarily imply that a |⌣M0

b in N .

Notation 2. If M0 is any model of T , p ∈ S(M0) is any type, and φ(x, y) is any
M0-definable formula, then dpxφ(x, y) is the definition of the φ-part of p, namely of

the set {b ⊆M0 : φ(x, b) ∈ p}.

It follows by results from stability theory that dpxφ(x, y) is equivalent to a positive
boolean combination of instances φ(c, y) of φ(x, y) for c in M0. We also readily see
that for any M such that M0 � M , any a, b in M such that a |= p and a |⌣M0

b in

M , and any formula φ(x, y) with parameters from M0, M |= φ(a, b) if and only if
M |= dpxφ(x, b). For details on this see [4].

2. Canonical Amalgamation of Trivial Rank 1 Structures

This preliminary section establishes an amalgamation result for trivial theories of
Morley Rank 1 which will be essential in the proof of the main technical Proposition
proved in the next section.

We make the following assumptions: T is a complete trivial theory of Morley Rank 1
in a language L and M0 is a model of T .

Lemma 1. Suppose M0 � M1, M0 � M2, and M2 ∩ M1 = M0. Then there is a
unique L-structure N with universe M1 ∪M2 such that M1 � N and M2 � N .

Proof: We first show that we may assume there is a large highly saturated C |= T
so that M1 ≺ C and M2 ≺ C. Pick C to be any large saturated model of T (M0),
we may assume without loss of generality that M1 ≺ C. Next note that since M0

is algebraically closed in C, if a ⊂ M1 \M0 then tpC(a/M0) is non-algebraic. Hence
there is an L(M0)-elementary embedding of M2 into C so that g ↾ M0 = Id and
g(M2) ∩M1 = M0. By replacing M2 by g(M2) we may asusme that M2 ≺ C. Also
since we have that M1 ∩M2 = M0 by triviality we must have that M1 |⌣M0

M2 in C.

Claim 1. The set M1 ∪M2 is the universe of a substructure of C.

Proof: Let t(x, y) be any L(M0)-term. Suppose that a ⊂ M1, b ⊂ M2 \M0, and
c ∈ C such that C |= c = t(a, b). Then C |= c ∈ acl(M0ab). If C |= c ∈ acl(M0a) then
c ∈ M1 since M1 � C. If C |= c /∈ acl(M0a) then by triviality C |= c ∈ acl(b) and so
c ∈M2 since M2 � C. Hence M1 ∪M2 is a substructure of C.

Let N ⊂ C denote the substructure in Claim 1.

Note that for each φ(x, y) ∈ L(M0) quantifier free, a ⊂ M1, and b ⊂ M2 \ M0,
N |= φ(a, b) if and only if dpxφ(x, y) ∈ tpM2

(b/M0), where p = tpM1
(a/M0).
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Claim 2. N |= T (M0), M1 � N , and M2 � N .

Proof: All three of these facts will follow from the assertion that N � C. For this
choose φ(z, x, y) ∈ L(M0), a ⊂M1, and b ⊂M2 \M0. Assume that C |= ∃zφ(z, a, b).
If C |= φ(z, a, b) is algebraic then N |= ∃zφ(z, a, b) exactly as in Claim 1. Otherwise
φ(C, a, b) is infinite, in particular we may find c′ |⌣M0

ab realizing φ(z, a, b). Thus

since M0 � C and types not forking over M0 are finitely satisfiable in M0 there is
c ∈M0 such that C |= φ(c, a, b). Hence we have that N � C.

Finally we need to establish the uniqueness statement. Suppose that N ′ has universe
M1 ∪M2, M1 � N ′, and M2 � N ′. By the above observation it suffices to show that
if a ⊂ M1, b ⊂ M2 \M0, and φ(x, y) ∈ L(M0) quantifier free then N ′ |= φ(a, b) if
and only if dpxφ(x, y) ∈ tpM2

(b/M0) where p = tpM1
(a/M0). Hence we may choose

an elementary embedding f of N into C and verify this condition for the image of N
under f . For simplicity we assume that N ′ � C. Fix a quantifier free L(M0)-formula
φ(x, y), a ⊂ M1, b ⊂ M2 \ M1. Let p = tpM1

(a/M0) and q = tpM2
(b/M0). Now

suppose that C |= φ(a, b). Once again note that we must have that M1 |⌣M0

M2 in

C and hence that C |= dpxφ(x, b). Since M2 � N ′ � C we get that M2 |= dpxφ(x, b),

i.e. dpxφ(x, y) ∈ tpM2
(b/M0). This yields that N |= φ(a, b). Hence we get that the

identity map on M1 ∪M2 is an isomorphism between N and N ′. �

Definition 1. For models M1,M2 as above we will refer to the model N obtained
from the Lemma as the canonical expansion of M1 and M2, and we will simply denote
it by M1M2.

Lemma 2. If M,N |= T (M0), M ⊆ N , q ∈ S(M0), a ⊂ M , and R ∈ L(M0) is
quantifier free then: if dqyR(x, y) ∈ tpM(a/M0) then dqyR(x, y) ∈ tpN(a/M0).

Proof: Notice that without loss of generality we may assume that a ⊂ M \ M0.
Because of our assumptions on T and the saturation of M0 we may find M1 � M0

such that M1 contains any parameters from M0 appearing in R, q is the non-forking
extension of q′ = q ↾ M1, and such that 〈M0, c〉c∈M1

is a saturated L(M1)-structure.

Choose b
∗
∈ M0 realizing q′. Suppose that M |= dqyR(a, y), then M |= dq′yR(a, y)

and hence M |= R(a, b
∗
) since we have that a |⌣M1

b
∗

in M . Since M ⊆ N and R is

quantifier free N |= R(a, b
∗
). Notice that since M0 � N we get that tpN(b∗/M1) = q′

and a |⌣M1

b
∗

in N . These two fact yield that N |= dq′yR(a, y) and thus N |=

dqyR(a, y). �

Corollary 1. Suppose that M1, N1,M2 are all models of T (M0). Furthermore suppose
that M1 ⊆ N1 and N1 ∩M2 = M0. Then the canonical expansion of M1 and M2 is a
substructure of the canonical expansion of N1 and M2.
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Proof: Choose R(x, y) ∈ L(M0) quantifier free, a ⊂ M1, and b ⊂ M2 \ M0. Let
q = tpM2

(b/M0) = tpM1M2
(b/M0) = tpN1M2

(b/M0). Note these equalities follow
immediately from Lemma 1. Suppose that M1M2 |= R(a, b), then dqyR(x, y) ∈
tpM1M2

(a/M0). Since M1 � M1M2, we have that dqyR(x, y) ∈ tpM1
(a/M0). By the

previous Lemma we get that dqyR(x, y) ∈ tpN1
(a/M0). Since N1 � N1M2 we must

have that dqyR(x, y) ∈ tpN1M2
(a/M0). Hence N1M2 |= R(a, b). �

Corollary 2. Suppose M1 ⊆ N1, M2 ⊆ N2, and N1 ∩ N2 = M1 ∩M2 = M0. Then
M1M2 is a substructure of N1N2.

Proof: Apply the previous corollary twice, first to establish that M1M2 ⊆ N1M2,
and secondly to get that N1M2 ⊆ N1N2. This gives the desired result. �

We finish with some examples to show that our assumptions in this section are nec-
essary.

First of all notice that Lemma 1 fails if the theory is not trivial. In particular
Th(Q,+), which is strongly minimal and locally modular, witnesses this. Secondly
the Morley Rank 1 assumption is necessary. Consider the theory T in a language
L consisting of a single unary predicate U and a unary function f where M |= T
if and only if U(M) is infinite and co-infinite and f defines a bijection between the
unordered pairs in U(M) and the singletons in ¬U(M). One readily sees that this
theory is trivial, uncountably categorical, and of Morley Rank 2 but that Lemma 1
fails for it. Finally it is reasonable to assume that Lemma 1 should hold with M0

replaced by acl(∅), but the following example demonstrates that we need the pair M1

and M2 in Lemma 1 to be disjoint over a model.

Example 1. We begin with a theory T ′ in a language L′ consisting of two unary
functions f, g. We let T ′ by the theory of the structure with universe Z2 where

f(〈m,n〉) = 〈m+ 1, n〉 and g(〈m,n〉) = 〈m,n+ 1〉.

This theory is trivial and strongly minimal and notice that acl(∅) = ∅. Next in any
model of T ′ we have a definable equivalence relation Ex1x2, y1y2 on pairs given by:

(x1 = y1 ∧ x2 = y2) ∨ (f(x1) = x2 ∧ f(y1) = y2) ∨ (g(x1) = x2 ∧ g(y1) = y2).

Now let L = {E} and let T be the theory of the reduct of models of T ′ to E. Note
that T is strongly minimal and trivial and we have that acl(∅) = ∅. Finally notice
that if M and N are disjoint models of T (hence disjoint over acl(∅)) then there are
two distinct models with universe M ∪ N such that both M and N are elementary
substructures.
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3. Mutually Algebraic Sequences

This section is devoted to establishing the main technical tool we will need in order
to prove the main theorem. We begin with some assumptions.
In this section T is always a trivial uncountably categorical theory of Morley Rank
1, and M0 is an uncountable model of T . We fix models M ⊆ N of T (M0) such that
M is of strictly greater cardinality than M0.

We will need the following definitions.

Definition 2. A formula φ(x) is absolute if for any c ⊂ M , M |= φ(c) if and only if
N |= φ(c).

Definition 3. Let R(z) be any L(M0)-formula. Fix M |= T (M0) and c ∈ Mn. We
write M |= c is R mutually algebraic if:

(1) M |= R(c).
(2) For every partition z = x⌢y, if c = d

⌢
e then M |= ¬dpxR(x, e) for every

p ∈ S|x|(M0).

Remark 1. As an easy consequence of the definition of mutually algebraic we get
that for c 6⊆ M0, if M |= c is R mutually algebraic where c = c0...cn−1 and ci /∈ M0

then M |= c0, ci, c1..., cn−1 is R̃ mutually algebraic where:

R̃(x0, y, x1...xn−1) := R(x0...xn−1) ∧ y = xi.

Lemma 3. For fixed R there is a type ΓR(zw) with parameters from M0 such that
for any b ∈M the set of realizations of ΓR(zb) is the set:

{c ∈Mn : M |= c is R mutually algebraic and cn−1 = b}.

Proof: Simply let ΓR(zw) be the following set of formulas:

⋃

z=x⌢y

{¬dpxR(x, y) : p ∈ S|x|(M0)} ∪ {R(z) ∧ zn−1 = w}

�

Lemma 4. Suppose M |= T (M0), b ∈M \M0 and that R(z) is given.

(1) If c ∈ Mn, cn−1 = b, and M |= c is R mutually algebraic then c ⊆ acl(M0b) \
M0.

(2) {c ∈Mn : M |= c is R mutually algebraic and cn−1 = b } is finite.

Proof: 1) Let e be the subsequence of c consisting of those elements in acl(M0b). Let
d be such that c = d

⌢
e, note that without loss of generality we may assume that e is

a final segment. Note that for every di ∈ d we have that di /∈ acl(M0e). Hence since
T is assumed to be trivial of Morley Rank 1 we have that d |⌣M0

e in M . So, if d 6= ∅
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this contradicts that M |= c is R mutually algebraic. Which yields that c ⊆ acl(M0b).
But notice there is nothing special about b so in fact we get that c ⊆ acl(M0ci) for
all ci ∈ c. So if for some ci we have that ci ∈M0 then c ⊆M0 which contradicts that
b /∈M0. Hence c ⊆ acl(M0b) \M0.

2) The set

{c ∈Mn : M |= c is R mutually algebraic and cn−1 = b}

is type definable with parameters from M0b by Lemma 3, and is a subset of acl(M0b)
by part 1. Hence it is finite by compactness. �

We now need to make more assumptions about our theory. Fix an L(M0) formula,
φ(x, y) which is absolute between M and N and such that in any model of T (M0)
the set defined by ∃≤ryφ(x, y) is infinite and co-infinite. For notation let A(x) be the
set defined by ∃≤ryφ(x, y) and B(x) its complement.

Definition 4. For any M |= T (M0) and any σ ∈ 2n an n-tuple c ∈ Mn is of type σ
in M if for all i < n,M |= A(ci) if and only if σ(i) = 0.

Notation 3. For σ ∈ 2n we let σ(x0...xn−1) be the formula:
∧

σ(i)=0

A(xi) ∧
∧

σ(i)=1

B(xi).

Also for c ∈Mn we write σM(c) for the unique σ ∈ 2n such that M |= σ(c).

For convenience we also define:

Definition 5. ≤ denotes the “componentwise partial order” on 2n. Namely for
σ1, σ2 ∈ 2n, σ1 ≤ σ2 if and only if for all i < n, σ1(i) ≤ σ2(i).

Notice that if for some a ∈M , M |= ¬∃≤ryφ(a, y) then N |= ¬∃≤ryφ(a, y). Hence we
have:

Remark 2. If M ⊆ N are models of T (M0) and c ∈Mn then σM(c) ≤ σN(c).

Notation 4. For a formula R and σ ∈ 2n we will write M |= c is (R, σ) mutually
algebraic in place of M |= c is R ∧ σ mutually algebraic.

We are now in a position to prove one of our main lemmas.

Lemma 5. (Transfer) Suppose M,N |= T (M0), M ⊆ N , R is an absolute formula,
σ ∈ 2n, c ∈ Mn and M |= c is (R, σ) mutually algebraic. Then there is an absolute
L(M0) formula R∗ and σ∗ ∈ 2n such that N |= c is (R∗, σ∗) mutually algebraic.
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Proof: Fix N,M,R, σ, c. Let M1 �M0 be countable such that R and φ are formulas
in L(M1). First note that if c ⊆ M0 then the Lemma is immediate. So by Lemma 4
we may assume that c ⊆M \M0. For any proper partition z = x⌢y (i.e. lg(x) ≥ 1)
let c = d

⌢
e be the associated partition of c. Now choose ei for i < n in M0 such that

tp(ei/M1) = tp(e/M1) and such that the set {e0...en−1} is independent over M1. Note
this is possible since M0 is saturated and uncountable while M1 is countable. Let

R∗(z) = R(z) ∧
∧

z=x⌢y

( ∧

i<n

¬R(x, ei)
)
.

Since R is absolute so is R∗. Choose σ∗ such that N |= σ∗(c).

Claim. N |= c is (R∗, σ∗) mutually algebraic.

For the ensuing argument we assume that N is elementarily embedded in a large
saturated model C of T . Note of course that M need not be an elementary submodel
of C.

We first show that N |= R∗(c) ∧ σ∗(c). Since R is absolute we clearly have N |=
R(c) ∧ σ∗(c). Fix a partition z = x⌢y and i < n and suppose that by way of
contradiction N |= R(d, ei) (where c = d

⌢
e).

Let p = tpN(d/M1). So N |= dpxR(x, ei), since d ⊆ N \ M0 and ei ⊆ M0. But
tpN(ei/M1) = tpN(e/M1) so we also have that N |= dpxR(x, e).
Now let N ′ be an isomorphic copy of N over M0 elementarily embedded in C such
that N ′ |⌣M0

N in C and fix f an automorphism of C fixing M0 pointwise and taking

N to N ′. Let M ′ be the image of M under f . So we also have that M ′ is isomorphic
to M over M0. Also note that M ′ |⌣M0

M in C. Let N∗ = NN ′ and let M∗ = MM ′,

the canonical amalgamations. By Lemma 1 we have that N,N ′ � N∗ and that
M,M ′ �M∗ and by Corollary 2 we have that M∗ ⊆ N∗.
Let d

∗
= f(d). Since d ⊆ M we also have that d

∗
⊆ M ′. Also since f is an

isomorphism tpN∗(d
∗
/M1) = tpN ′(d

∗
/M1) = tpN(d/M1) = p. We also have that

N∗ |= dpxR(x, e) and hence that N∗ |= R(d
∗
, e). But since R is absolute we have that

M∗ |= R(d
∗
e). Also since T is trivial of Morley Rank 1 we have that M ′ |⌣M0

M1 in

M∗.
Let r(x) = tpM∗(d

∗
/M1). Thus M∗ |= drxR(x, e) and hence M |= drxR(x, e). Also

M |= σ(c) and so M |= σ ↾x (d). Since tpM(d/M1) = tpM ′(d
∗
/M1) we get that M ′ |=

σ ↾x (d
∗
) and hence that σ ↾x∈ r. Thus we have that M∗ |= drx[R(x, e) ∧ σ(x, e)].

But M is elementary in M∗ so the same holds of M and hence M |= dr|M0
x[R(x, e)∧

σ(x, e)]. But this contradicts that M |= c is (R, σ) mutually algebraic.

To finish suppose that z = x⌢y is a partition of z (so c = d
⌢
e). Assume for

contradiction thatN |= dpx[R
∗(x, e)∧σ∗(x, e)] for some p ∈ S|x|(M0). Choose N ′ � N

with a ∈ N ′ such that a |= p|N . In particular we have that N ′ |= R∗(a, e) and so
we have N ′ |= ¬R(a, ei) for all i < n while also N ′ |= R(a, e). But note that
since lg(a) < n and T has Morley Rank 1, tp(a/M1) has weight less than n. So
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for some i < n we must have that a |⌣M1

ei in N ′. Thus for this i we have that

tpN ′(ae/M1) = tpN ′(aei/M1) But R is a formula over M1 so we get a contradiction.
�

Remark 3. Notice that in the above Lemma there is nothing special about the
formula σ. In particular if we let φ(x) be any L(M0)-formula and for I ⊆ n set

φI(x) :=
∧

i∈I

φ(xi) ∧
∧

i/∈I

¬φ(xi).

The above Proof yields: Suppose M,N |= T (M0),M ⊆ N,R is an absolute formula
and φ is any L(M0)-formula. If M |= c is R ∧ φI mutually algebraic for some I ⊆ n
(where n = lg(c)) then there is an absolute L(M0) formula R∗ and I∗ ⊆ n such that
N |= c is R ∧ φI∗ mutually algebraic. In particular (setting φ(x) to be x = x in the
preceding statement) we get that if R is absolute and M |= c is R mutually algebraic
then for some R∗, N |= c is R∗ mutually algebraic.

Lemma 6. Suppose M ⊆ N are models of T (M0), R(z) is an absolute formula, and
c ∈Mn such that M |= σ(c) and N |= σ(c). Then M |= c is (R, σ) mutually algebraic
if and only if N |= c is (R, σ) is mutually algebraic.

Proof: This follows immediately from the fact that any formula which does not fork
over M0 is satisfiable in M0. �

With these Lemmas we may establish the main result of this section.

Proposition 1. Suppose that T is uncountably categorical. Furthermore suppose that
the theory T̂ obtained from our theory T (M0) by adding predicates for A and B is
model complete, then the definable sets A(x) and B(x) are absolute between M and
N .

Proof: To begin we establish the following:

Claim 1. (Existence) Let a ∈ M \M0 such that M |= A(a) also let p ∈ S1(M0) be
a non-algebraic type such that p(x) ⊢ B(x). Then there is a quantifier free L(M0)
formula R(z) and σ ∈ 2n and c ∈ (M \M0)

n such that:

(1) c0 = a.
(2) M |= c is (R, σ) mutually algebraic.
(3) cn−1 |= p.

Proof of Claim 1: By the uncountable categoricity of T we have that tpM(a/M0) 6⊥
p. So since T is of rank 1 there is an L(M0)-formula θ(u, v) such that θ(a, b) for some
b realizing p and such that M |= ∃=kuθ(u, b). We may choose θ so that k is as small
as possible and also without loss of generality we may assume that

∀u∀v(θ(u, v) → D0(u) ∧D1(v)).
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where D0 and D1 are L(M0) definable strongly minimal sets for which a, b are generic
respectively. We may also assume that

∀v(∃uθ(u, v) → ∃=kuθ(u, v)).

Note since T̂ is model complete we can find a quantifier free L(M0) formula R(uzv)
and σ ∈ 2n+2 (where n = lg(z)) such that

T̂ ⊢ ∀u∀v[θ(u, v) ↔ ∃z(R(uzv) ∧ σ(uzv))].

Choose R such that lg(z) = n is minimal.

Sub-Claim. If a′, b′ ∈M \M0 and M |= R(a′cb′) ∧ σ(a′cb′) then c ∩M0 = ∅.

Suppose not and without loss of generality assume that c0 ∈ M0. Consider the
formula ψ(u, v) = ∃z1...∃zn−1(R(uc0z1...zn−1v) ∧ σ(uc0z1...zn−1v)). By assumption

T̂ ⊢ ∀u∀v(ψ(u, v) → θ(u, v)). For any b realizing p we can find a′′ such that
tp(a′′/M0) = tp(a/M0) and M |= ψ(a, b). We also have that if b realizes p then
ψ(M, b) ⊆ θ(M, b). From these two facts and the minimality of k we must have that
for b realizing p that θ(M, b) = ψ(M, b). Since the set D1(M) is strongly minimal
and p is its generic type there are only finitely many elements m1...ml ∈ D1(M0) such
that ψ(M,mi) 6= θ(M,mi). For 1 ≤ i ≤ l let h1...hji

list θ(M,mi), note that for each
i this must be finite and a subset of M0. Now consider the following formula

ψ̃(u, v) = ∃z1...zn−1([(
l∧

i=1

v 6= mi) → R(uc0z1...zn−1v)]∧

[
l∧

i=1

(v = mi →

ji∨

r=1

u = hr)] ∧ σ(uc0z1...zn−1v)).

(If it is the case that for some mi the set θ(M,mi) is empty we replace the clause∨ji

r=1 u = hr in the above formula by u 6= u.)

Under our assumption we must have that M |= ∀u∀v(θ(u, v) ↔ ψ̃(u, v)), but this
violates the minimality of n, a contradiction which establishes the sub-claim.

Sub-Claim. If a′, b′ ∈M \M0 and M |= R(a′cb′)∧σ(a′cb′) then a′c ⊆ acl(M0b
′)\M0.

Suppose the sub-claim is false. The fact that a′c ∩M0 = ∅ is immediate from the
previous claim. By choice of θ we must have that a′ ∈ acl(M0b

′), so for the claim to
be false we must have that some ci ∈ c is such that ci /∈ acl(M0b

′). Fix such a ci. Let
X = {a′, c1...cn} ∩ acl(M0ci). By assumption and the above claim no element of X is
in M0. So by the exchange property and the triviality of T we must have that a′ /∈ X.
For notation set c = d

⌢
e, where d enumerates X, and e enumerates X’s complement

in c.
We get that d |⌣M0

a′b′e in M . Choose a countableM1 �M0 such that d |⌣M1

M0a
′b′e

in M , M1 contains any parameters from M0 appearing in R or σ.
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By the saturation of M0 there is d
∗
⊆ M0 such that tp(d

∗
/M1) = tp(d/M1). Hence

we get that tp(d
∗
a′b′e/M1) = tp(da′b′e/M1). But then we must have that M |=

θ(a′d
∗
eb′)∧ σ(a′d

∗
eb′), which violates the previous claim. Hence we have a contradic-

tion and our sub-claim is proved.

To establish the Claim, given a we may find b realizing p such that M |= θ(a, b). Next
choose d such that M |= R(adb)∧σ(adb). Then setting c = adb we obtain the desired
result for Claim 1. �

We may now finish the proof of Proposition 1.

We fix a ∈ M such that M |= A(a). Our goal is to show that N |= A(a). If a ∈ M0

the result is immediate so we may assume that a /∈ M0. Let p1, ..., pm list all the
non-algebraic elements of S1(M0) such that pi(x) ⊢ B(x). Now apply Claim 1 to a
and pi for each i. So we get Ri(z), σi, and ci for 1 ≤ i ≤ m such that M |= ci is
(Ri, σi) mutually algebraic and ci0 = a. By repeatedly applying Remark 1 we may
assume that lg(ci) = lg(cj) = n for all i, j. Let bi = cin−1, so bi |= pi. By Lemma 4 we
have that ci ⊆M \M0.

Claim. There is a finite set F of pairs (R, σ) where R is quantifier free and σ ∈ 2n

such that if c ∈Mn and for some i, M |= c is (R, σ) mutually algebraic with (R, σ) ∈
F and cn−1 = bi then N |= c is (R∗, σ∗) mutually algebraic for some (R∗, σ∗) ∈ F .

To establish the claim we inductively define an ascending sequence of finite sets Fk

for k ≥ −1 with the following properties:

(1) Fk ⊆ Fk+1.
(2) F−1 = ∅.
(3) F0 = {(Ri, σi) : 1 ≤ i ≤ m}.
(4) If c ⊂M is such that M |= c is (R, σ) mutually algebraic for some (R, σ) ∈ Fk

and cn−1 = bi for some i then N |= c is (R∗, σ∗) mutually algebraic for some
(R∗, σ∗) ∈ Fk+1.

(5) If (R∗, σ∗) ∈ Fk+1 \ Fk with k ≥ 0 then σ < σ∗ for some σ such that (R, σ) ∈
Fk \ Fk−1 for some R.

First we show that if we can construct the Fk as above we have the claim. But
this is trivial since condition (5) above guarantees that there must be a k∗ such that
if k ≥ k∗ then Fk = Fk∗ , since otherwise we would have to have arbitrarily long
increasing ≤ chains of elements of 2n. Hence we can set F = Fk∗ . To construct
the Fk we let F−1 and F0 be as required. Next given Fk for k ≥ 1 we show how
to obtain Fk+1. We tentatively define Fk+1 = Fk and determine if we need to add
more elements to satisfy condition (4). Let c be such that M |= c is (R, σ) mutually
algebraic and cn−1 = bi for some (R, σ) ∈ Fk (note there are only finitely many such
c’s). If (R, σ) ∈ Fk−1 then condition (4) is satisfied by the inductive hypothesis, so
we may assume that (R, σ) ∈ Fk \ Fk−1. If N |= σ(c) then by Lemma 6 we have
that N |= c is (R, σ) mutually algebraic and hence clause (4) above holds for this
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c without adding anything new to Fk+1. If on the other hand N |= σ∗(c) for some
σ∗ 6= σ then first of all notice that σ < σ∗ and by Lemma 5 we can find R∗ such
that N |= c is (R∗, σ∗) mutually algebraic. So add (R∗, σ∗) to Fk+1. Note that this
construction then satisfies the conditions (1)-(5) above. Hence we have the claim.

Let Gi(M) be the following set:

{c ∈Mn : for some (R, σ) ∈ F ,M |= c is (R, σ) mutually algebraic and cn−1 = bi}.

Note that by Lemma 4 Gi(M) is finite. Furthermore note that by Lemma 3 for any
i, Gi(M) is the set: ⋃

(R,σ)∈F

{c : M |= ΓR,σ(cbi)}.

In particular the cardinality of Gi(M) is property of the type of bi over M0. Since
each Gi(M) is finite after renumbering we may assume that for some m0 ≤ m we
have that Gi(M) is of largest possible size if and only if 1 ≤ i ≤ m0.

Claim. For 1 ≤ i ≤ m0 we have that Gi(M) = Gi(N).
For the claim note that by the properties of F we already have that Gi(M) ⊆ Gi(N).
So if Gi(M) 6= Gi(N) we must have that Gi(N) is of strictly larger size than Gi(M).
Since M |= Bbi we have that N |= Bbi and hence that tpN(bi/M0) = pj for some
1 ≤ j ≤ m. But Gi(N) =

⋃
(R,σ)∈F{c : N |= ΓR,σ(cbi)}, thus for any b ∈ M realizing

pj we must have that
∣∣∣
⋃

(R,σ)∈F{c : M |= ΓR,σ(cb)}
∣∣∣ = |Gi(N)| . But then in particular

we would have that |Gj(M)| > |Gi(M)|, contradicting the maximality of the size of
Gi(M).
As a consequence note we must that if 1 ≤ i ≤ m0 there is 1 ≤ j ≤ m0 such that
tpN(bi/M0) = tpM(bj/M0).

For notation let:

F∗ = {σ ∈ 2n : there is R such that (R, σ) ∈ F}.

Also for each σ ∈ F∗ let Gi
σ(M) be the set:

{c ∈ Gi(M) : M |= c is (R, σ) mutually algebraic for some R such that (R, σ) ∈ F}.

Note that Gi
σ(M) =

⋃
(R,σ)∈F{c : M |= ΓR,σ(cbi)}.

List F∗ as σ1...σl such that if σr ≤ σs then r ≤ s. After renumbering we may assume
that for some m1 ≤ m0 we have that Gi

σl
is of maximal size for 1 ≤ i ≤ m0 if and

only if i ≤ m1.

Claim. For 1 ≤ i ≤ m1 we have that Gi
σl

(M) = Gi
σl

(N).

For the claim first note that Gi
σl

(M) ⊆ Gi
σl

(N) since if c ∈ Gi
σl

(M) then c ∈ Gi(N)

and hence in Gi
τ for some τ but τ ≥ σl by Remark 2 and hence we must have

τ = σl. So if Gi
σl

(M) 6= Gi
σl

(N) then we must have that
∣∣Gi

σl
(M)

∣∣ <
∣∣Gi

σl
(N)

∣∣. Now
argue exactly as above to conclude that for some 1 ≤ j ≤ m0 we must have that∣∣Gj

σl
(M)

∣∣ =
∣∣Gi

σl
(N)

∣∣ >
∣∣Gi

σl
(M)

∣∣, a contradiction.
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Now we can renumber again to find m2 ≤ m1 such that Gi
σl−1

is of maximal size for
1 ≤ i ≤ m1 if and only if i ≤ m2. Similarly we can now also show that for 1 ≤ i ≤ m2

we have that Gi
σl−1

(M) = Gi
σl−1

(N).

We can repeat this argument to find m∗ ≤ m such that if 1 ≤ i ≤ m∗ then Gi
σ(M) =

Gi
σ(N) for all σ ∈ F∗.

Fix 1 ≤ i ≤ m∗. We have that ci ∈ Gi
σi(M) and hence that ci ∈ Gi

σi(N). In particular
we have that N |= A(a). �

4. Proof of the Main Theorem

We now have established all of the necessary tools we need in order to prove the main
theorem. At this point the proof closely follows that in [2].
In this section T is a trivial uncountably categorical theory of Morley Rank 1. We
fix M0 to be an uncountable (and hence saturated) model of T and aim to show
that T (M0) is model complete by showing that if N and M are models of T (M0) of
cardinality κ > |M0| with M ⊆ N then M � N . We let L∗ be the language L of T
expanded by constants for M0.

Note that as pointed out in [2] in order to show that for any model M0 of T that
T (M0) is model complete it suffices to show the result some specific model M0, hence
our assumption that M0 is uncountable does not limit the generality of our result.

We repeat the following definitions from [2] (which we include for simplicity of expo-
sition):

Definition 6. An L∗ formula φ(x, y) is an (n,m)-formula if lg(x) = n and lg(y) = m.
We identify the following families of statements:

• An,m, the statement that for all absolute (n,m)-formulas φ(x, y), the formula
∃<∞yφ(x, y) is absolute.

• Bn,m, the statement that for all absolute (n,m)-formulas φ(x, y) if b ∈ Mn

and N |= ∃<∞yφ(b, y) then φ(b,N) = φ(b,M).
• Cn,m, the statement that for all absolute (n,m)-formulas φ(x, y), the formula
∃yφ(x, y) is absolute.

We plan to show that same sequence of Lemmas interrelating these various statements
as in [2], and hence deduce model completeness. We begin with a simple special case.

Lemma 7. Suppose that the Morley Degree of T is m and that there are absolute
L∗-formulas φ1(x)...φm(x) such that for all i, M |= ∃∞xφi(x) and for all i 6= j,
M |= ¬∃x(φi(x) ∧ φj(x)). Then M � N .

Proof: In this special case we simply repeat the proof for the strongly minimal case
in [2]. �

We now proceed to reprove the main lemmas in [2] to obtain our desired result. We
consider first the following two lemmas.
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Lemma 8. For all n,m ∈ ω, Bn,m implies Cn,m.

Lemma 9. For all n,m ∈ ω, Bn,m implies An,m+1.

The proof of both these lemmas mirror the analogous lemmas in [2] with only minimal
changes.
The proof of the following Lemma also closely mirrors that of its analogue in [2] but
we include an outline pointing out the relevant changes.

Lemma 10. For all n,m,Bn,m+1 and An+1,m imply Bn+1,m.

Proof: As in [2] we may assume that n ≥ 1. Choose φ(x, y, z), b, b2, c
∗ as in the

strongly minimal case. Choose e1...en ∈ (M \ acl(M0b))
n independent realizing all

the generic types p ∈ S1(M0). (We can do this due to cardinality assumptions and
the uncountable categoricity.)

We first deal with an easy case:

Case 1 N |= ∃∞zφ(b, ei, z) for all i.

In this case we can proceed exactly as in the analogous case in [2].
Case 2 For some i, N |= ∃<∞zφ(b, ei, z).

Fix ei such that we have N |= ∃<∞zφ(b, ei, z).
Working with this ei in place of the e∗ in the strongly minimal case we can follow
the proof in [2] to get formulas δi

j for 1 ≤ j ≤ r(i) (the i superscript indicates the
dependence on i).
Note also that if N |= δi

j(b, b2, c
∗) for some j then as in the strongly minimal case we

are done.
Now fix m ≤ n such that for i ≤ m we have that N |= ∃<∞zφ(b, ei, z) and if i > m
N |= ∃∞zφ(b, ei, z).

So we may assume that N |= ¬δi
j(b, b2, c

∗) for all i ≤ m and all j.
Now let η(x, y, z) be the formula:

φ(x, y, z) ∧ ∃<∞zφ(x, y, z) ∧
∧

i≤m

∧

j<r(i)

¬δi
j(x, y, zj).

Then N |= η(b, b2, c
∗) and η is absolute as in the strongly minimal case.

We claim: N |= ∃<∞yzη(b, y, z). Set

F = {f ∈ N : N |= ∃zη(b, f, z)}.

As in [2] we show that F is finite. For convenience let Di for 1 ≤ i ≤ n be strongly
minimal pairwise disjoint sets such that ei is generic for Di. We must show that F∩Di

is finite for each i. For i ≤ m the finiteness of F ∩ Di is exactly as in the strongly
minimal case (replace e∗ with ei). So now suppose that i > m. As in [2] we would have
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to get that N |= ∃zη(b, ei, z). But in particular this means that N |= ∃<∞zφ(b, ei, z)
which contradicts that i > m.

So F is finite. Now we can finish exactly as in the strongly minimal case. �

All that is left to prove is the following Lemma, its proof requires Proposition 1 from
the previous section.

Lemma 11. For all m ∈ ω B1,m holds.

Proof: Notice that exactly as in [2], if for any theory T we can establish this lemma
then in conjunction with the previous Lemmas we may deduce that T (M0) is model
complete.
Let n be the Morley Degree of T . We also need to define a “quantifier free degree”
for the theory. Namely for any trivial, uncountably categorical theory T ′ of Morley
Rank 1 let nqf (T

′) be the maximal number of pairwise disjoint infinite quantifier free
L(M ′)-definable sets in a model of T (M ′), where M ′ is some model of T ′.
Our proof will be by induction on n− nqf (T ).

The case n− nqf (T ) = 0 is handled by Lemma 7.

For induction suppose we know the result (and hence also the model completeness
result) for n− nqf (T ) ≤ m and we are now in a situation where n− nqf (T ) = m+ 1.
Fix an absolute L(M0)-formula φ(x, y). Choose r ∈ N such that M |= ∃≤ryφ(y, a).
Let A(x) be the set defined by ∃≤ryφ(y, x) and B(x) its complement. Suppose that
M |= A(a) for some a ∈ M , to establish the Lemma it suffices to show show that
N |= A(a). The case where A(M) is finite or co-finite is immediate, so without
loss of generality we may assume that A(M) is infinite and co-infinite. If we can
find quantifier free L(M0)-definable subsets Y1...Yl of M such that the symmetric
difference of A(M) and Y1 ∪ ... ∪ Yr is finite then we are done, hence we may assume

that this is never the case. Let T̂ be the theory obtained from T (M0) by adding
predicates for A and B.

Claim. nqf (T ) < nqf (T̂ ).

Proof: Let X1...Xnqf (T ) be pairwise disjoint infinite quantifier free L(M0)-definable
subsets of M . Our claim is immediate if for for some 1 ≤ i ≤ nqf (T ) we have that
Xi ∩ A and Xi \ A is infinite. So we may assume that this is never the case, i.e. for
all 1 ≤ i ≤ nqf (T ) either Xi ∩ A is finite or Xi \ A is finite. After renumbering we
may assume that there is 1 ≤ l ≤ nqf (T ) + 1 such that Xi ∩ A is finite if and only if
i < l. Our Claim is also immediate if A \ (Xl+1 ∪ ... ∪Xnqf (T )) is infinite. But if this
is not the case then the symmetric difference of A and Xl+1 ∪ ... ∪ Xnqf (T ) is finite,
contradicting one of our initial assumptions.

By induction we have that T̂ is model complete. But then by Proposition 1 we get
our desired result. �
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Proof of Theorem 1: As noted above the main theorem follows immediately from
the preceding Lemmas exactly as in [2]. �

Exactly as in the strongly minimal case our Theorem has the following corollary.

Corollary 3. If T is trivial, uncountably categorical, and the Morley Rank of T is 1
then:

(1) T is Σ3 axiomatizable.
(2) If L is a computable language and T has a computable model M then T is

decidable in ∅′′.

Finally notice that Theorem 1 does not generalize to any trivial uncountably cat-
egorical theory, even if we assume that theory is also ω-categorical. This fact is
demonstrated by examples constructed by Marker in [3] which are trivial, totally
categorical, and not Σ3 axiomatizable.
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