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Abstract

Let T be a complete, first-order theory in a finite or countable
language having infinite models. Let I(T, k) be the number of iso-
morphism types of models of T of cardinality x. We denote by u
(respectively fi) the number of cardinals (respectively infinite cardi-
nals) less than or equal to &.
Theorem I(T, k), as a function of K > Ny, is the minimum of 2 and
one of the following functions:

1. 2%
2. the constant function 1;
{ " /~c| — (g —1)"/~ac| [ <w; forsomel<n<wand

w

A~

I ft > w; some group G < Sym(n)
4. the constant function Jo;

5. Jg+1(p) for some infinite, countable ordinal d;

6. Zle I'(7) where d is an integer greater than 0 (the depth of T');

(i) is either Jg_;_1 (") or Jg_s (1D + a(d))

where o(i) is either 1,8 or J;, and «(i) is 0 or Jg; the first
possibility for I'(¢) can occur only when d — ¢ > 0.
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The cases (2), (3) of functions taking a finite value were dealt
with by Morley and Lachlan. Shelah showed (1) holds unless a cer-
tain structure theory (superstability and extensions) is valid. He also
characterized (4) and (5), and showed that in all other cases, for large
values of k, the spectrum is given by J5_1(u<7) for a certain o, the
“special number of dimensions”.

The present paper shows, using descriptive set theoretic methods,
that the continuum hypothesis holds for the special number of dimen-
sions. Shelah’s superstability technology is then used to complete the
classification of the all possible uncountable spectra.

1 Introduction

A theory is a set of sentences - finite statements built from the function and
relation symbols of a fixed language by the use of the Boolean connectives
(“and”, “not”, etc.) and quantifiers (“there exists” and “for all”). The
usual axioms for rings, groups and real closed fields are examples of theories.
Associated to any theory is its class of models. A model of a theory is an
algebraic structure that satisfies each of the sentences of the theory. For
a theory T" and a cardinal s, I(T, k) denotes the number of isomorphism
classes of models of T of size k. The uncountable spectrum of a theory T
is the map k — I(T, k), where k ranges over all uncountable cardinals. As
examples, any theory of algebraically closed fields of fixed characteristic has
I(T, k) = 1 for all uncountable x, while any completion of Peano Arithmetic
has I(T, k) = 2~.

With Theorem 6.1 we enumerate the possible uncountable spectra of com-
plete theories in a countable language. Examples of theories possessing each
of these spectra are given in [7].

Starting in 1970, Shelah placed the uncountable spectrum problem at
the center stage of model theory. His goal was to develop a taxonomy of
complete theories in a fixed countable language. Shelah’s thesis was that the
equivalence relation of ‘having the same uncountable spectrum’ induces a
partition of the space of complete theories that is natural and useful for other
applications. Over a span of twenty years he realized much of this research
program. In addition to the results mentioned in the abstract, he showed that
the uncountable spectrum (7', k) is non-decreasing for all complete theories
T and that the divisions between spectra reflect structural properties. Shelah



found a number of dividing lines among complete theories. The definitions of
these dividing lines do not mention uncountable objects, but collectively they
form an important distinction between the associated classes of uncountable
models. On one hand, he showed that if a theory is on the ‘non-structure’ side
of at least one of these lines then models of the theory embed a certain amount
of set theory; as a consequence their spectrum is maximal (i.e., I(T, k) = 2"
for all uncountable k). This is viewed as a negative feature, ruling out the
possibility of a reasonable structure theorem for the class of models of the
theory.

On the other hand, for models of theories that are on the ‘structure’ side
of each of these lines, one can associate a system of combinatorial geometries.
The isomorphism type of a model of such a theory is determined by local
information (i.e., behavior of countable substructures) together with a system
of numerical invariants (i.e., dimensions for the corresponding geometries). It
follows that the uncountable spectrum of such a theory cannot be maximal.
Thus, the uncountable spectrum of a complete theory in a countable language
is not maximal if and only if every model of the theory is determined up to
isomorphism by a well-founded, independent tree of countable substructures.

Our work is entirely contained in the stability theoretic universe created
by Shelah. We offer three new dividing lines on the space of complete theories
in a (fixed) countable language (see Definitions 3.2 and 5.23) and show that
these divisions, when combined with those offered by Shelah, are sufficient to
characterize the uncountable spectra of all such theories. These new divisions
partition the space of complete theories into Borel subsets (with respect to the
natural topology on the space). The first two of these divisions measure how
far the theory is from being totally transcendental, while the third division
makes a much finer distinction between two spectra.

A still finer analysis in terms of geometric stability theory is possible. We
mention for instance that any model of a complete theory whose uncountable
spectrum is min{2% 3y (|a + w| + Jy)} for some finite d > 1 interprets an
infinite group. This connection turns out not to be needed for the present
results, and will be presented elsewhere.

The main technical result of the paper is the proof of Theorem 3.3, which
asserts that the embeddability of certain countable configurations of elements
into some model of the theory gives strong lower bounds on the uncountable
spectrum of the theory. The proof of this theorem uses techniques from
descriptive set theory along with much of the technology developed to analyze
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superstable theories.

We remark that the computation of I(T,y) is still open. To wit, it re-
mains unknown whether any countable, first-order theory T has (7T, Ry) = Ny,
even when the continuum hypothesis fails. Following our work this instance
is the only remaining open question regarding the possible values of (T, k).

2 Background

Work on the spectrum problem is quite old. Morley’s categoricity theorem
[14], which asserts that if I(7), k) = 1 for some uncountable cardinal x, then
I(T, k) = 1 for all uncountable  is perhaps the most familiar computation
of a spectrum. However, some work on the spectrum problem predates this.
If T has an infinite model, then for every infinite cardinal x the inequality
1 < I(T,k) < 2% follows easily from the Lowenheim-Skolem theorem. Im-
proving on this, Ehrenfeucht [4] discovered the notion of what is now called
an unstable theory and showed that I(T, k) > 2 for certain uncountable x
whenever T' is unstable.

One cannot overemphasize the impact that Shelah has had on the the un-
countable spectrum problem. Much of the creation of the subfield of stability
theory is singlehandedly due to him and was motivated by this problem. The
survey of definitions and theorems of his that follow establish the framework
for this paper and indicate why it is sufficient for us to work in the very
restrictive setting of classifiable theories of finite depth.

Call a complete theory 7" with an infinite model classifiable if it is super-
stable, has prime models over pairs, and does not have the dimensional order
property. The following two theorems of Shelah indicate that the this notion
is a very robust dividing line among the space of complete theories.

Theorem 2.1 If a countable theory T is not classifiable then I(T, k) = 2"
for all Kk > V.

Proof. If T is not superstable then the spectrum of 7" is computed in VIII 3.4
of [18]; this is the only place where this spectrum is computed for all uncount-
able cardinals k. Hodges [9] contains a very readable proof of this for regular
cardinals. Shelah’s computation of the spectrum of a superstable theory with
the dimensional order property is given in X 2.5 of [18]. More detailed proofs
are given in Section 3 of Chapter XVI of Baldwin [1] and Theorem 2.3 of
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Harrington-Makkai [5]. Under the assumptions that 7" is countable, super-
stable, and does not have the dimensional order property, the property of
prime models over pairs is equivalent to 7" not having the omitting types or-
der property (OTOP). That the omitting types order property implies that
T has maximal spectrum was proved by Shelah in Chapter 12, Section 4 of
[18]. Another exposition of this fact is given in [6]. ]

In order to state the structural consequences of classifiability we state
three definitions.

Definition 2.2 1. M is an na-substructure of N, M C,, N, if M C N
and for every formula ¢(x,y), tuple a from M and finite subset F' of
M, if N contains a solution to ¢(z,a) not in M then M contains a
solution to ¢(x,a) that is not algebraic over F'.

2. An w-tree (I, <) is a partial order that is order-isomorphic to a non-
empty, downward closed subtree of <“J for some index set J, ordered
by initial segment. The root of I is denoted by () and for n # (), n~
denotes the (unique) predecessor of 7 in the tree.

3. An independent tree of models of T is a collection {M, : n € I} of
models of T" indexed by an w-tree I which is independent with respect
to the order on I.

4. A normal tree of models of T' is a collection {M, : n € I} of models of
T indexed by an w-tree I satisfying:

o 1 <v <7 implies M,/M, L M,;
o foralln eI, {M, :n=v"}is independent over M,.
5. A tree decomposition of N is a normal tree of models {M,, : n € I} with

the properties that, for every n € I, M, is countable, M, C,, N and if
n < v implies M, C,, M, and wt(M,/M,) = 1.

Theorem 2.3 1. Any normal tree of models is an independent tree of
models.

2. If T is classifiable then there is a prime model over any independent
tree of models of T'.



3. Every model N of a classifiable theory is prime and minimal over any
maximal tree decomposition contained in N .

Proofs. The proof of (1) is an exercise in tree manipulations and orthogo-
nality. Details can be found in Chapter 12 of [18] or Section 3 of Harrington-
Makkai [5].

The proof of (2) only relies on 7" having prime models over pairs. Its
proof can be found in Chapter 12 of [18] or in [6].

The proof of (3) is more substantial. In [18] Shelah proves that any
model of a classifiable theory has a number of tree decompositions of vari-
ous sorts. However, the fact that a model of a classifiable theory admits a
decomposition using countable, na-submodels is the content of Theorem C
of Shelah-Buechler [19]. ]

The two parts of Theorem 2.3 provide us with a method of producing
upper bounds on spectra. Namely, /(7 ) is bounded above by the number
of labelled w-trees of size k. Since the components of the tree decompositions
are countable, we may assume that the set of labels has size at most 2%, In
Section 5 we obtain better upper bounds in a number of cases by adding
more structural information which decrease the set of labels. However, at
this point, there are still too many w-trees of size xk to obtain a reasonable
upper bound on I(7, k). A further reduction is available by employing the
following additional definitions and theorems of Shelah.

Definition 2.4 An w-tree (I, <) is well-founded if it does not have an infinite
branch. The depth of a node n of a well-founded tree [ is defined inductively
by

dpr(n) = sup{dpr(v) +1:n <v}
and the depth of I, dp(I) is equal to dp;({)). A theory T is deep if some
model of T" has tree decomposition indexed by a non-well-founded tree. A
(classifiable) theory T' is shallow if it is not deep. The depth dp(T) of a

shallow theory T' is the supremum of the depths of decomposition trees of
models of T'.

We remark that this definition of the depth of a theory differs slightly from
the one given in [18]. The following theorem of Shelah is a consequence of
Theorems X 5.1, X 4.7, and X 6.1 of [18]. Other proofs appear in Harrington-
Makkai [5] and Baldwin [1].



Theorem 2.5 1. If T is classifiable and deep then I(T,k) = 2" for all
K > No.

2. If T is shallow then dp(T) < wy and, if w < dp(T') < wq, then
](T, Na) = min{QN“,Jdp(T)HUOz + W|)}

As a consequence of these results, we are justified in making the following
assumption:

All theories in the rest of this paper are countable, classifiable and

of finite depth d.

For such theories, one obtains the naive upper bound of
I(T,R,) < Jyoa(Jo + w|*™)

by induction on d, simply by counting the number of labelled trees in the
manner described above.

In general, obtaining lower bounds on spectra is a challenging enterprise.
The difficulty is due to the fact that the tree decomposition of a model given
in Theorem 2.3 is typically not canonical. The method of quasi-isomorphisms
introduced by Shelah and streamlined by Harrington-Makkai and Baldwin-
Harrington (see e.g., Section 3 of [5], Section 3 of [3], or Theorem XVII.4.7
of [1]) can be employed to show that if two models have ‘sufficiently dis-
parate’ decomposition trees, then one can conclude that the models are non-
isomorphic. From this, one obtains a (rather weak) general lower bound on
the spectrum of a classifiable theory of finite depth d > 1, namely

I(T,R,) > min{2%, Jy_o(|o + w|l*Th}.

A proof of this lower bound is given in Theorem 5.10(a) of [16].

Accompanying Shelah’s ‘top-down’ analysis of the spectrum problem is
work of Lachlan, Saffe, and Baldwin who computed the spectra of theories
satisfying much more stringent constraints.

In [11] and [12], Lachlan classifies the spectra of all w-categorical, w-
stable theories. We use this classification verbatim at the end of Section 5.
With [16], Saffe computes the uncountable spectra of all w-stable theories.
A more detailed account of the analysis of this case is given by Baldwin in
[1]. Aside from a few specific facts, we do not make use of this analysis here.
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The history of this paper is modestly complicated. Shelah knew the value
of I(T,N,) for large values of a (reported in Chapter XIII of [18]) modulo a
certain continuum hypothesis-like question known as the SND (special num-
ber of dimensions) problem. In 1990, Hrushovski solved the SND problem;
he also announced a calculation of the uncountable spectra. This calculation
included a gap related to the behavior of non-trivial types but nonetheless
a framework for the complete computation was introduced. The project lay
fallow for several years before being taken up by the current authors; their
initial work was reported in [7]. Hart and Laskowski recast the superstruc-
ture of the argument in a way to avoid the earlier gap and the work was
completed while the three authors were in residence at MSRI.

We assume that the reader is familiar with stability theory. All of the
necessary background can be found in the union of the texts by Baldwin [1]
and Pillay [15]. Our notation is consistent with these texts. In Sections 3-6
we assume that we have a fixed, classifiable theory in a countable language
of some finite depth. (The sufficiency of this assumption is explained in
Section 2.) We work in 7. In particular, every type over an algebraically
closed set is stationary. As well, throughout the paper we denote finite tuples
of elements by singletons. As usual in the study of stable theories, we assume
that we are working within the context of a large, saturated model C of T
All sets are assumed to be subsets of C, and all models are assumed to be
elementary submodels of C. In particular, the notation M C N implies
M < N.

3 More dividing lines

In this section we provide a local analysis of a classifiable theory of finite
depth d. In particular, we ask how far away the theory is from being totally
transcendental. Towards this end, we make the following definitions.

Definition 3.1 1. For any n < dp(T), a chain of length n, M, is a
sequence My C ... C M,_; of n countable models of T', where M, ,/M;
has weight 1 and M;,,/M; L M; ; for i > 0.

2. A chain M is an na-chain if, in addition, each M; C,, C.



3. For M a chain of length n, the set of relevant reqular types is the set
R(M) = {p € S(M,_1) : pis regular and p L M, _5}.
When n = 1, R(M) is simply the set of regular types over M.

4. A type p € R(M) is totally transcendental (t.t.) over M if there is a
strongly regular ¢ € R(M), ¢ £ p with a prime model M(q) over M,,_,
and any realization of q.

It is clear that the notion of a relevant type being t.t. depends only on
its non-orthogonality class. Our new dividing lines concern the presence or
absence of a relevant type that fails to be t.t. and whether there is a trivial
‘bad’ type.

Definition 3.2 A theory T is locally t.t. over M if every type in R(./\/l)
t.t. over M. We say T admits a trivial | failure (of being t.t.) over M if some
trivial type p € R(M) is not t.t. over M.

Our notation is consistent with standard usage, as any totally transcen-
dental theory is locally t.t. over any chain. The heart of the paper will
be devoted to showing that these conditions provide dividing lines for the
spectra. In particular, the proof of the lower bounds offered below follows
immediately from 3.23, 3.27, and 5.10.

Theorem 3.3 1. If T is not locally t.t. over some chain of length n then

min{2% J,} ifn=1
I(T,Rq) = { min{2% 3, 5(lo+w|?)} ifn>1

for all ordinals o > 0.
2. If T admits a trivial failure over some chain of length n then
I(T,R,) > min{2% 2,1 (|a + w|?)}

for all ordinals a > 0.



Complementing this theorem, in Subsection 3.4 we show that if T is
locally t.t. over M, then there is a strong structure theorem for the class of
weight-one models over M,,_; that are orthogonal to M,,_», especially when
the chain M has length equal to the depth of the theory.

The proof of Theorem 3.3 is broken into a number of steps. For the most
part, the two parts of the theorem are proved in parallel. In Subsection 3.1
we define the crucial notions of diverse and diffuse families of leaves. Then,
in the next two subsections we analyze the two ways in which a theory could
fail to be locally t.t. over a chain. For each of these, we will show that the
failure of being locally t.t. over some chain of length n implies the existence
of a diverse family of leaves of size continuum over some na-chain of length n.
In addition, if there is a trivial failure of being t.t., then the family of leaves
mentioned above will actually be diffuse. Then, in Section 4, we establish
some machinery to build many non-isomorphic models from the existence of a
diverse or diffuse family of leaves. Much of this is bookkeeping, but there are
two important ideas developed there. Foremost is the Unique Decomposition
Theorem (Theorem 4.1), which enables us to preserve non-isomorphism as
we step down a decomposition tree. The other idea which is used is the
fact that decomposition trees typically have many automorphisms. This fact
implies that models that are built using such trees as skeletons have desirable
homogeneity properties (see Definition 4.3). Finally, we complete the proof
of Theorem 3.3 in Section 5.

3.1 Diverse and diffuse families of leaves

We begin by introducing some convenient notation for prime models over
independent trees of models. First of all, suppose that N; and N, are two
submodels of our fixed saturated model which are independent over a com-
mon submodel Ny. By Ny &n, N2 we will mean a prime model over Ny U No;
this exists because we are assuming our theory has prime models over pairs.
For our purposes, the exact model that we fix will not matter because we
are only interested in its isomorphism type. In abstract algebraic terms, we
want to think of this as an “internal” direct sum.

Now suppose that M, is any model and My C M; for i = 1,2, not
necessarily independent over My. By M; @5, M we will mean the “external”
direct sum i.e., we choose M/ isomorphic to M; over M, and such that M]
is independent over M, over M, and form M @y, M in the internal sense
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defined above. We similarly define €,, F for a family of models, each of
which contains a fixed model M.

Suppose that M = (M, : ¢ € I) is an independent family of models with
respect to a tree ordering (I, <) such that if n < ¢ € I then M, C M,. We
say that a family of elementary maps (fc : ¢ € I) is compatible with M if
whenever ¢ € I then dom(f:) = M and if n < ¢ € I then f¢ [a,= fy-

Definition 3.4 If M is an na-chain of length n, then the set of leaves of
M, Leaves(ﬂ), is a set containing one representative up to isomorphism
over M of all chains N of length (n + 1) extending M. If M is an na-chain
of length n and Y C Leaves(M), then an (M,Y)-tree is an independent
tree of models M = (M, : ( € I) where I has height at most n + 1 together
with a distinguished copy of M and a family of elementary maps (f; : ¢ € I)
compatible with M such that f- maps M; onto Ny for some NeY. (In
particular, note that if lg(¢) < n then f; maps onto My).) An (M,Y)-
model is a model which is prime over an (M, Y)-tree; the copy of M in this

tree will be distinguished as a chain of submodels of this (M, Y )-model.

We make an important convention: Suppose N; and Ny are two (M, Y)-
models and we wish to form Ny @y, Ny for some k& < n. We declare that this
sum is an “external” sum as discussed above. If we wish to view this new
model as an (M, Y )-model, we need to determine which distinguished copy
of M will now be distinguished. Our convention will be that it will be the
one from the left most summand.

As notation, if Z is a set of M-leaves then

N*(Z)= @{N : N € Z where N(n) = N}.

We next isolate the two crucial properties of a set Y of leaves. In Section 5
we will show the effects on lower bound estimates for spectra given that there
are large families of leaves with these properties. Lemma 4.2 of Section 4 will
show that a diffuse family is diverse.

Definition 3.5 Let M be an na-chain of length n.

1. A set Y C Leaves(M) is diffuse if
N ®Mn71 V %V N/ G9]\477,71 V
for all distinct N, N’ € Y and any (M, Y )-model V.
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2. A set Y C Leaves(M) is diverse if
N(Zy) ®m,_, V # N (Z3) ®m,_, V

over V and M,_, for all distinct Z;, Zo C Y and any (M, Y )-model V.

If n =1 we omit the model V and the condition becomes: for distinct
21,45, CY,
N*(Zy) #m, N*(Z2)

The following lemma provides us with an easy way of producing a diffuse
family of leaves.

Lemma 3.6 Suppose that {p; : 1 € I} is a set of pairwise orthogonal types

in R(M), and that {N; : i € I} C Leaves(M) is a set of models such that N;
is dominated by a realization of p; over M,,_y. Then {Nj; :i € I} is diffuse.

Proof. In fact, for any model V' containing M,,_1, if N;®u, ,V =v N; O,
V then p; is not orthogonal to p; so i = j. [

We conclude this subsection by introducing the notion of a special type,
showing that they are present in every non-orthogonality class of R(M), and
proving two technical lemmas that will be used in Subsections 3.2 and 3.3 to
obtain diverse or diffuse families of leaves.

As notation for a regular strong type p, let [p] denote the collection of
strong types (over any base set) non-orthogonal to p. We let R>*([p]) =
min{R>*(q) : q € [p]}. It is easy to see that R*°([p]) is the smallest ordinal «
such that p is non-orthogonal to some formula 6 of R*-rank «, which is also
the smallest ordinal S such that p is foreign to some formula ¢ of R*-rank
(. The following lemma is general and holds for any superstable theory.

Lemma 3.7 Let M~ C M be models of a superstable theory and suppose
that a regular type p € S(M) is orthogonal to M~, but is non-orthogonal to
some 0(x,b), where R™(0(x,b)) = R>®([p]). Then o(p) is foreign to 6(x,b)
for any automorphism o € Auty-(C) satisfying o(M) ML b.

Proof. Suppose that 6(c,b) holds and let X be any set. We claim that
tp(c/Xb) L o(p). To see this, first note that o(p) L M~b, since we assumed
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o(p) L M~ and o(M) J, b. There are now two cases. If R®(c/Xb) =

R>([p]), then tp(c/XDb) does not fork over b, so o(p) L tp(c/Xb) by the note
above. On the other hand, if

R=(c/Xb) < R=([p]) = B>*(lo(p))),
then tp(c/Xb) L o(p) as well. ]
We now turn our attention back to a particular chain M of length n.

Definition 3.8 1. If p € R(M) then q is a tree conjugate of p if for some
k < n — 1 there is an automorphism o fixing M) pointwise such that
o(p) =qand o(M) L M,_1. (If n =1 then p does not have any tree

My,

conjugates.)

2. A typep € R(M) is special via p(z, €) if p(x, €) is p-simple, ¢(z, €) € p,
and the tree conjugates of p are foreign to ¢(x,e). A type p € R(M
is special if it is special via some formula.

As promised, we show that special types exist in every non-orthogonality
class of R(M). The proof of the following lemma is an adaptation of the
proof of Lemma 8.2.19 of [15], which in turn is adapted from arguments in
[18].

Lemma 3.9 Let a be any realization of a type p € R(M), where M is a
chain of length n. There is an o' € acl(M,_1a) ~ M,y such that p' =
tp(a’'/M,,—1) € R(M) is special.

Proof. Choose a formula (z,b) non-orthogonal to p with R>*(0(x,b)) =
R>([p]) and choose a (regular) type ¢ non-orthogonal to p containing 6(z, b).
Choose a set A O M, and a non-forking extension r € S(A) of ¢ such
that a \L A, r is stationary and there is a realization ¢ of r with a\Lc

Now choose a’ € Cb(stp(bc/Aa)) \ acl(A) Since tp(a/A) does not fork over
M, 1, d € acl(M,_1a) \ M,_1, hence p' = tp(a’/M,_1) is regular and non-
orthogonal to p. It remains to find an L(M,_;)-formula witnessing that
tp(a’/M,,—1) is special. Choose a Morley sequence I = (b,c, : n € w) in
stp(bc/Aa) with bycy = be. Since @/ € dcl(bé) for some initial segment of I,
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= f(b,¢) for some (-definable function f. Note that a | Ab. Choose a

Mn—l
finite Ay C A on which everything is based, and let w = tp(Ayb/M,_,) and
let ¢(x,e) be the L(M,_1)-formula

p(z,e) :==d,y Iz </\ 0(zi,yi)) Nz = f@:z)> :

For notation, assume that w is based on e. Clearly ¢(d’, €) holds and it follows
easily that ¢(x,e) is p’-simple. Hence if n = 1 we are done. So suppose that
n > 1 and ¢(a*,e) holds. Fix & < n — 1 and an automorphism o over
My, such that o(M,,_) ]\Ji M, _;. Choose A*b" realizing w|M,_,0(M,_;) and

k
choose ¢* such that a* = f(b,2*) and 6(c?,b?) holds for each 4. Since p’ is

not orthogonal to p, 6(z, b)) is non- orthogonal to p/ and has least R*>°-rank
among all formulas non-orthogonal to p’. Thus, as b} \L o(M,_1), it follows

from Lemma 3.7 that o(p') is foreign to 6(x,b}) for all i. Hence tp(a*/e) is
hereditarily orthogonal to o(p’). That is, the tree conjugates of p’ are foreign
to p(z,e). ]

The following lemma is simply a restatement of Lemma 3.9 together with
an application of the Open Mapping Theorem.

Lemma 3.10 Suppose that M is a chain of length n > 1 and p € R(M)
is special via . Further, suppose that a model N/M, 1 L M, o, and U
1s dominated over W by an independent set of conjugates of p. Then any
realization of ¢ in N @y, , U is contained in N @y, , W.

Proof. Suppose that a € N @)y, , U realizes . Then tp(a/NU) is isolated.
As the tree conjugates of p are foreign to ¢,
a | d
NW
for any d € U realizing a conjugate of p. Thus a | U, since U is dominated
NW

over W by an independent set of realizations of conjugates of p. Hence
tp(a/NW) is isolated, which implies that a € N @, _, W. ]

If, in addition, our special type is trivial then we can say more. The
lemma that follows is one of the main reasons why we are able to build a
diffuse family instead of a diverse family when the ‘offending’ type is trivial.

14



Lemma 3.11 Suppose that M is a chain of length n, N € Leaves(M),
p € R(M) is any trivial, special type via ¢ such that some realization of p
dominates N over M,_. Suppose further that M, C W C U, where U
1s dominated by W -independent realizations of non-forking extensions of tree
conjugates of p over W and regular types not orthogonal to p. Then if an

element a satisfies ¢, a € N @y, _, U, tp(a/M,_1) is reqular and a | U
Mn—l
then tp(a/NW) is isolated.

Proof. Note first that the assumptions imply that tp(a/M,_1) is not or-

thogonal to p. Since p is trivial and a | U, it follows that a forks with
Mnfl

N over M,,_y. Since p(a) holds, it follows that ¢tp(a/N) (and any extension

of this type) is orthogonal to p and all tree conjugates of p. It follows that

a L U. Since tp(a/NU) is isolated, it follows that tp(a/NW) is isolated. =
NW

3.2 The existence of prime models

Throughout this section we assume that there is some chain M of length

n together with a type r € R(M) for which there is no prime model over

M, _1c, where c is a realization of r. By choosing an extension M of M
which is minimal in a certain sense, we will construct a highly disparate
family Y = {N, : n € 2} of Leaves(M') and a family of types {sy(z,2)}
over M/, that will witness this disparity. Then, following the construction of
the family in Proposition 3.13, we argue in Corollary 3.23 that if the original
type was special, then this set of leaves is diverse. Further, if in addition the
type r is trivial, we show that this family is actually diffuse. We begin by

specifying what we mean by a free extension of a chain.

Definition 3.12 An na-chain M’ freely extends the chain M if both chains
have the same length (say n), My C M}, M]_, UM, C M/, and M/ , L M,
M; 1

forall 0 <7 < n.

It is readily checked that if » € R(M) is special, then for any free exten-
sion M of M, the non-forking extension of r to R(M') will be special as
well. The bulk of this subsection is devoted to the proof of Proposition 3.13.
In order to state the proposition precisely, we require some notation.
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Suppose that Y is a family of Leaves(M) that is indexed by “2. Fix
an (M,Y)-model V and a sequence n € “2. We can decompose V into two

pieces,
V=V, D Veo
Wy

where Wy, is the model prime over the tree truncated below level n,

Vo= @{Ni : N; conjugate to N, }
Wy

and
Vo n = @{Nl : N; not conjugate to N, }.
Wy

Proposition 3.13 Assume that M is a chain of length n and r € R(M) is
a type such that there is no prime model over M, _ic for ¢ a realization of r.
Then there is a free extension M of M and a family Y = {N, : n € “2} of
Leaves(M'), along with a family {sy(x,2) :m € “2} of types over M, _, such
that each N, realizes s,, yet for any (M, Y)-model V, V omits sy(x,c*) for
all ¢ € Vi o, where ¢ realizes r|M,,_,.

Proof. The lack of a prime model over M,,_;c implies the lack of a prime
model over acl(M,_1c). Look at all possible quadruples (ﬂ’, r’,0,1) where
M is a free extension of M, 7" is the non-forking extension of r to M/ _,, and
(fixing a realization ¢ of 7’ and letting C' = acl(M/ _,c)) 0(x) is a formula in
L(C) with no isolated extensions over C' and 1) is a formula in L(M/ _,) such
that every realization of 6(z) is ¢-internal. Among all such quadruples, fix
one for which R (7)) is minimal. To ease notation in what follows, we denote
M by M and ' by r. As well, fix a realization ¢ of r and let C' = acl(M,_1c).
We will construct the family of leaves and types simultaneously by build-
ing successively better finite approximations. We adopt the notation of forc-
ing (i.e., partial orders and filters meeting collections of dense sets). How-
ever, as we will only insist that our filters meet countably many dense sets, a
‘generic object’ will already be present in the ground model and each of these
constructions could just as easily be considered as a Henkin construction.
Our set of forcing conditions P is the set of finite functions p : <“2 —
L(C) such that p(n) F p(p) whenever p < n. (In what follows, we write
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py for p(n)). For p,q € P we say p < ¢ if and only if dom(p) 2 dom(q)
and p, - g, for all n € dom(q). If G C P is any filter and n € “2, let
py(G) ={0 € L(C) : p(u) - 6 for some p € G and some p < n}.

We first list a set of basic density conditions that we want our filter to
meet. Let p* € P have domain {()} and range {0(z)}.

1. For each ¢ € L(C) and each n € <¥2,
Dy =A{p€P:pn)k ¢orpn)t —p};

2. For each ¢(y, z) € L(C') and each n € <“2,

D3,y ={p € P :p, = ~32¢(y, 2) or p, - ¥ (y, u) for some variable u}.

It is easy to see that every basic condition is dense in P. As well, if G
is a filter meeting all of the conditions mentioned above (i.e., GN D # ()
for each D) then for each n € “2, p,(G) is a complete type over C' and if
b is a realization of p,(G) then N, = C Ub is a leaf of M Additionally, if
p* € G then tp(b,/C) will extend 6(x) where b, corresponds to z in b. In
what follows, we will take s,(z, 2) to be tp(byc/M,_1).

Before stating the crucial density conditions that will ensure that the
family of types satisfies the conclusion of the proposition, we pause to set
notation.

Definition 3.14 A finite approzimation F consists of a finite independent
tree N = (N, : ¢ € I) and a family of maps f = (f, : ( € I) compatible with
N such that f is an elementary isomorphism from B¢ to My if 1({) < n
and to C' if I({) = n. Let g, = f(_1 and let I™ = {i € I : (i) = n} and
- =1\I"

F also comes with a number m € w and an assignment p from nodes in
It to elements of 2. Forn € 2™, let I, = {i € I : p(i) = n}. We also have
a language associated with F7; this language is L(B) where B = (J. N; and
special variables 2 where i € I and z is a variable in the language L(C').

Suppose that p € P. We adopt the convention that for any n € 2<¢

p(n) = p(77) where 7} is the greatest element in the dom(p) less than or equal
to . In this way we may assume that 2™ C dom(p). Now suppose that o
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is any assignment of partial types over C' to the elements of 2. We define
F(0) using f as follows:

F(o) = {9 (0 (p())(x1, ..., 2})) i € I'}

where the free variables in o(p(i)) are x1, ...,z respectively. A particular
instance of this which will be used below is: fix £ = ({ : ¢ € 2™) where ¢ > (
and is maximal in dom(p). We define fx(p) = F (o) where o(¢) = p(().

We now introduce the critical set of density conditions. Each of these
conditions depends on a finite approximation F, n € 2™ where m is the
number from F, and formulas x(y, @) and ¢(x,y,u) where u is some finite
sequence of variables z° where ¢ € I and @, includes all the variables in @
except those for which i € I,,. Moreover, there will be at least one element
of I'" which is not labelled 7; let’s call one such element € and identify M
with (M., 1 i < n).

Density Condition 3.15 Let D = D(F,n,x, ) be the set of all p € P
such that, for every F = (( : ( € 2™) where ( > ¢ and is maximal in dom(p),
either

1. fe(p) F Jy(x(y,u1) A —=d(y)) for some & € r or

2. fe(p) F —323y(x(y, u1) A p(z,y,u)) or

3. fe(p) F 3x3y(x(y, w)A¢(z, y, w) A\—ps(x, y)) where in pg, the variable y
corresponds to ¢ and all other variables and parameters are suppressed.

We check that if G is a filter that contains p*, meets the basic conditions,
and intersects each of the sets D(F,n,x, ), then the sets of leaves Y =
{N, : n € “2} and types {s,(z,c) : n € “2} satisfy the conclusion of the
proposition.

Toward this end, fix an (M,Y)-tree, an n € “2 and suppose V (Vy »)
is prime over this tree (respectively over the leaves not conjugate to N,).
Further, suppose that ¢* € V,, ,, realizes r and b € V realizes s, (z, ¢*). Now
in fact ¢* and b are isolated over a finite part of the given (M, Y )-tree; c*
is isolated over this tree by a formula x(y) and b is isolated over ¢* and the
tree by a formula ¢(z, ¢*). We suppress the parameters from the tree to ease
notation.
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There is a number m such that if conjugates of N. and NN, appear in
the finite tree needed to isolate ¢* and b then if ¢ [,,= p [, then ( = pu
(there are only finitely many N,’s involved altogether). Now this finite tree
together with m, n [,,, x and ¢ lead naturally to a finite approximation
F and a density condition D = D(F,n [m, X, ) which meets the filter G.
Now from the conditions for D, clearly the first condition must have failed
since x(y) implies r. The second condition must also have failed because
o(x,y) A x(y) is consistent. But then the third condition would have told
us that p(z,c*) could not even isolate tp(b/M,_1c*) which contradicts the
choice of ¢. This final contradiction tells us that there is in fact no b € V
which realizes s, (z, ¢*).

Thus, to complete the proof, it suffices to show that each of these sets are
dense below p*. Before doing this, we pause to give a definition and prove
three lemmas that are of independent interest.

Definition 3.16 We say a type p € S(A) is d-isolated (definitionally iso-
lated) if for every ¢ there is a formula ¢ € p such that if for any ¢ € S(C)
which does not fork over A , if ¢ € ¢ then p|C and ¢ have the same -
definition.

Lemma 3.17 If T is countable and A is algebraically closed then the d-
isolated types in S(A) are dense.

Proof. Fix a consistent formula 6y(z) € L(A); we will construct a d-isolated
type containing 6y by induction. Enumerate all L-formulas as ¢;. Suppose
that by induction we have defined a consistent formula 6,, € L(A). Choose
0,11 to imply 6, with the least R(—, y,,No)-rank. Since A is algebraically
closed, we can assume that Mult(0,41,n,No) = 1. We claim that any
complete type p in S(A) which contains 6, for all n is d-isolated.

To see this, pick a formula ¢; ¢ = ¢, for some n. Let ¢ = 6,,1. Now
suppose that ¢ € S(C) contains ¢ and does not fork over A. Now

R(qv ®, NO) = R(q an P, NO) = R(wa @, NO)

where the first equality follows from the non-forking and the second by the
choice of 1. So the ¢-types of ¢ and p|C must be the same for otherwise we
would have a contradiction to the multiplicity of ¢ being 1. Hence p|C and
q have the same ¢-definition. ]
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Lemma 3.18 Ifay,...,a, are independent over A, tp(a;/A) is d-isolated for
alli with 0; € tp(a;/A), ¢(ai,...,a,) holds, and A is algebraically closed then
there are 0F € tp(a;/A) which imply 0; such that if by, ..., b, are independent
over A and 07 (b;) holds for every i then ¢(by,...,b,) holds.

Proof. We prove this by induction on n. The case n = 1 is clear so suppose
that n is greater than 1. Suppose that ¥ (y1,...,y,—1) is the ¢-definition of
tp(an/A). Since tp(a,/A) is stationary, ¢(as,...,a,—1) holds. Now suppose
that 0% (x) is a formula in tp(a,/A) which is stronger than 6,, and such that
any other type which contains 7 has the same ¢-definition as tp(a,,/A). Now
by induction there are 67,...,0"_; which hold for ay,...,a,_1 respectively
and such that if by,...,b,_1 are independent over A and 6;(b;) holds for all
i then 9(by,...,b,-1) holds. Now suppose that by, ...,b, are independent
over A and 65 (b;) holds for all i. By the choice of 8%, ¢ is the ¢-definition
for tp(b,/Aby, ... ,b,_1). By assumption, ¥ (by,...,b,_1) holds and b, is in-
dependent from by, ...,b,_1 over A so ¢(by,...,b,) holds. (]

Lemma 3.19 Suppose that ¢ € L(M) for some model M.

1. Suppose that every realization of p(z) is -internal. Then there is a
number k so that every realization of p(x) is in the definable closure of
k realizations of ¢ over M.

2. If every realization of p(x) is W-internal then c, the canonical parameter
of p is Y-internal.

Proof. Note that since we are working over a model, an element a is -
internal if and only if a is in the definable closure of M U (C). Thus, the
proof of the first fact is just compactness. To see the second, note that c is
fixed by any automorphism of C which fixes M and (C).

[

We now complete the proof of the Proposition 3.13 by showing that each
of the sets D = D(F,n, x, ¢) is dense below p*. The way that we will proceed
is to fix p < p* and E as in the definition of D and produce pg < p in P
so that Density Condition 3.15 is satisfied for the given FE. By repeating
this process now successively for all the finitely many possible E’s, we will
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produce a ¢ € D such that ¢ < p. So it suffices to concentrate on one
particular E.

By an F-potential extension of p we will mean a § = (g, : ¢ € 2™) such
that g is a d-isolated extension of ps together with a realization a of F(g).
We concentrate on three cases which correspond to the three conditions in
Density Condition 3.15.

Case one: Does there exist an F-potential extension of p, (¢, a) such that
Jy(x(y,a) A =6(y)) holds for some § € r? If so then by Lemma 3.18, for
every ¢ € 2™ we can find a; € g stronger than p(C) so that if we form pg
from p by strengthening pg(¢) to ag then fr(pg) = Jy(x(y, 1) A =d(y)) for
some 0 € 7.

Case two: Does there exist an F-potential extension of p, (¢, a) such that
=33y (x(y, a) AN¢(x,y,a)) holds? If so, as in the first case, we can use Lemma
3.18 to define pg < p such that fr(pg) F —3xIy(x(y, u1) A p(z,y,1)).

Case three: Does there exist an F-potential extension of p, (g, a) such
that 323y(x(y,a) A ¢(z,y,a) A =6(z,y)) holds for some 6 € ¢,)? If so then
using Lemma 3.18, we can define pg < p so that

fe(pe) F 3x3y(x(y, u1) A o(x,y,9) A =(pe)s(z, )

So we are left with the possibility that all three cases fail. That is, for any
choice of d-isolated ¢, and ¢ as above and any realization a of F'(g), x(y,a)
implies r(y), x(y,a) A ¢(x,y,a) is consistent and implies ¢, (z,y). We will
show that this is an impossibility.

Let M’ be any extension of M,,_; which contains C' and is d-isolated over
C'. Increase B; for i € I to models and extend the maps f; so that f; maps
onto M’. Let the prime model over  {B; : i € I~ or i & I,)} be called Nno 5.
For i € I, let N; be prime over Npo 5 together with B; and finally let V be
prime over Npo 7 together with all the N;’s.

Now under the the conditions we are working, we can find ¢* € Nno p
which realizes r (it is a witness for y with suitably chosen parameters).
Moreover, there are a; € N; for i € I, such that a; realizes v; = g;(p;) and
b € N such that (b, c*,a) holds where a is a sequence which contains all
the a;’s and we have suppressed all the parameters from Nno 5. By our
assumptions on ¢ we can find di,...,d, € N \ Nno ¢ all of which fork with
Nno n over B and all of which satisfy . Under these circumstances then
there is a formula S(x) € L(Nno ) which is satisfied by all the d;’s and for
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which R>*(8) < R*(1). We may assume that any realization of ¢(z, c*, a) is
[B-internal. We now wish to use 3 to get a contradiction to the minimality of
the rank of ¢. In order to get this contradiction we must produce the other
three parts of the quadruple mentioned at the beginning of the proof. To
produce the n-chain, we do the following: fix any ¢ € I,,. In order to form an
n-chain N, for j < n, choose N so that

1. N7 is prime over {B, : 1 # i [;41}, and

2. Ni C N

]+1§Nnonf0rallj<n.

It is easy to check that N7 is an n-chain and 3 is defined over N!_|: note
that N!_;, = Nno ,. Let r; = ¢;(r)|Nno . Of course, r; is realized in N; by
say ¢; and ¢; dominates NN; over Npg .

We now have three components of a quadruple which will contradict the
minimality of R*(¢)). We need to find a formula 7, € L(C;) where C; =
acl(N!_,c;) such that every realization of 7; is S-internal and 7; has no isolated
extension over C;. In fact, 7; will be realized by a quotient of a;.

From the finite approximation F, we have been given we have an inde-
pendent family of models N = (N, : p € I) together with a family of maps
{fu : p € I} compatible with N. If ¢ € I” then fu i Ny — M,y and more-
over, there are models M, for v € 2™ which are d-atomic over C' so that if

i € I then fi: N; = My;). We let g, = f ' and let C; = g;(C) for i € I

Definition 3.20 We say that b = (b; : i € ,)) is an n-sequence satisfying 7 €
L(C) if there is a p € S(C) which is d-isolated, contains 7 and f;(b;/C;) = p
for all ¢ € I, We denote this p as p.

At this point in the argument we know that we have a formula ¢(zx, ¢*, y)
and a formula p, € L(C), which implies a fixed formula 6(x() which has no
isolated extension over C, so that if we choose an n-sequence b which satisfies
p, with b; € N, for all 7 € I, then ¢(z, ¢*, b) is B-internal. Moreover, whenever
¢(b, ¢*,b) holds then f.(b/C.) as a type in the variable x is contained in pj.

Lemma 3.21 Under the above assumptions, there are formulas T and E in
L(O) together with a formula ' so that T implies p, and for any n-sequence b,
o(z,c*,b) and @(x,c*, V) are equivalent where b, = b;/E and V), is B-internal
foralli e I,.
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Proof. For this proof we define the notion of a quotient of an n-sequence.

Definition 3.22 A formula 7 € L(C) together with a sequence of equiva-
lence relations (E; : i € I,)) is called a quotient sequence if

1. 7 implies p, and

2. there is a formula ¢'(z, ¢*, ) so that for any n-sequence b which satisfies
T, o(x,c*,b) is equivalent to ¢'(x, c*, V') where b, = b;/ E;.

The f-number of a quotient sequence 7 together with (E; : i € I,,) is
the cardinality of the set of i € I, such that for every n-sequence b, b;/E; is
[f-internal; such an ¢ is said to be [-internal.

If we succeed in showing that there is a quotient sequence 7 and
(E; : 1 € I,) with a S-number of |I, | then the required formulas in the lemma
will be 7 and the conjunction of g;(£;) over all i € I,,.

Suppose |I,| = k and fix a quotient sequence 7 and (E; : ¢ € I,)) with
maximal S-number. If this number is & we are done so suppose it is less than
k. Let ¢ be the formula in the definition of quotient sequence. Fix an 7-
sequence b which satisfies 7 with b; € N;. Let 41, .., i be some enumeration

of I, such that ¢, corresponds to an index which is not [-internal. Let
rj =tp(Cy;) and g; = tp(b; /C;;) where by, = b;;/Ejj; note that b; € N;; and
so g; is d-isolated.

Define a sequence of formulas v; for j < k by induction: Take 1)y to be

/
V(@' (2,0, Y1, Wk, Zp—1, W1, - - -, 21, W1) >

90,('1.7 U, Y2, Wy Zk—1, Wk—1, - - -, 21, wl))

and

Vi1 = drywjdg, 2 (V).
Finally, let

E(y1, y2, wi) = dpvihp_1.

It is straightforward to show that E(yi,ys,ws) defines an equivalence
relation for any choice of wy. In fact, the canonical parameter of ' (x, ¢*, b, €)
is S-internal and since from it, together with b, C;, ... b;,_,C;, |, we can define
b,,/E over C;,, b; is f-internal. It is now clear that we can define the
necessary " for this instance of b and increase the S-number. We need to
uniformize this argument and to do that we now work on strengthening 7.
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Let x;; € g; be such that any type which contains y;, has the same
1;-definition as g;. This exists because g; is d-isolated. Now let 7;(w) for
i # i be the formula expressing the fact that w/FE; satisfies x;. We see that
fi(m:) € pp and so we let 7" be the conjunction of 7 with all the f;(r;)’s. It
is now fairly clear that if we choose any d, an n-sequence which satisfies 7/
then the argument in the paragraph after the definition of F goes through
and so we have found a quotient sequence with higher S-number. [

We now conclude the proof that D is dense. Consider the formula a(y) =
Jx7(z)Ay = x/E. o has no isolated extension over C' for suppose & is such an
isolated extension of a. Consider the formula I'(z,y) = 7(z)Aa(y)A\y = x/E.
This formula has no isolated extension over C' and in particular there are
certainly two n-sequences d and € which satisfy 3yI'(x, ) and disagree in the
xo-variable i.e. there is some 6(zg) € pg \ pe. But according to the previous
Lemma, ¢(z,c*,d) is equivalent to o(z,c*,d’). By independence and the
fact that @ isolates a complete type, ¢'(x,c*, d') is equivalent to ¢'(z, c*,&).
However the latter is equivalent to ¢(z, c*, €) which contradicts the fact that
d and é disagree in the x(-variable. From this contradiction, we conclude
that « in fact has no isolated extensions. Let o = g;(«) for some i € I,
By the Open Mapping Theorem, it is clear that o/ has no isolated extension
over acl(Ny, ,C;). Now by the previous Lemma, all realizations of o' are
p-internal and so this finally contradicts the minimality of R>(1)). ]

We now show that if a special type fails to have a prime model over
a chain, then the set of leaves constructed in Proposition 3.13 is diverse.
Further, if the type is trivial as well, then the set is diffuse.

Corollary 3.23 1. If there is a chain M of length n and a special type
r € R(M), with no prime model over M,_ic for a realization ¢ of
r, then there is a free extension M of M with o diverse family of

Leaves(M)) of size continuum.

2. If there is a chain M of length n and a trivial, special type r € R(M),
with no prime model over M, _,c for a realization c of r, then there is
a free extension M of M with a diffuse family of Leaves(ﬂ/) of size
continuum.

Proof. (1) Fix any special type r € R(M) such that there is no prime model
over M,,_;c for some realization ¢ of . Choose the free extension M of M
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and the family Y = {N, : n € “2} constructed in Proposition 3.13. We claim
that Y is diverse. Indeed, let Z;, Z5 be distinct subsets of “2. Without loss,
there is n € Z; N Zy. As s,(x,2) is realized in N,, it is surely realized in
N*(Zy) ®n,_, V for any (M,Y)-model V. However, it follows immediately
from Proposition 3.13 that s, is omitted in N*(Z;). So, if n = 1, there is
nothing more to prove. On the other hand, if n > 1, then since the tree
conjugates of r are foreign to some ¢ € r, Lemma 3.10 tells us that any
realization ¢* of r in N*(Zy) @y, , V' is contained in N*(Zy) @y, , W where
W is the truncation of V. But Proposition 3.13 tells us that s,(z,c*) is
omitted in N*(Zy) @yy,_, V for any such ¢*. Hence Y is diverse.

(2) Here, fix a trivial, special type r € R(M) such that there is no
prime model over M,_;c for some realization ¢ of r. Then as above, the
family Y = {N, : n € “2} constructed in Proposition 3.13 is diffuse. To
see this, choose 7 # v and some (M,Y)-model V. In order to show that
N, ®m, ., V Pv N, ©un,, V it suffices to show that sj(z,2) is omitted
in N, ®u,_, V where s7(z, z) is the non-forking extension of s, to V. By
way of contradiction, assume that d*c* realizes s; in N, @y, , V. Then, by
Lemma 3.11 ¢* would be in N, @y, , W where W is the truncation of V/,
but as before Proposition 3.13 says that s, (z, c*) is omitted in N, @y, _, V,
which yields our contradiction. [

3.3 The existence of strongly regular types

We begin by describing a general forcing construction that allows us to find
a large subset of any perfect set of types over any countable, algebraically
closed set in a stable theory in which no type in the set is isolated over any
independent set of realizations of the others.

Lemma 3.24 Assume that A C B, where A is countable and algebraically
closed, B realizes countably many complete types over A, and Q) C S(A) is
a perfect subset. Then there is a subset R C Q of size 2% such that for any
distinct r1,...,rn, s € R, if {c1,...,c,} is independent over A, does not fork
with B over A, and each c; realizes r;, then s is not isolated over Bey . . . cp,.

Proof. Call a formula 6(z) Q-perfect if {qg € Q : 0 € ¢} is perfect and let Q
be the set of Q)-perfect formulas. Let P denote the set of all finite functions
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p: <92 — Q such that p(u) - p(n) for all n < p in dom(p). As before, we
write p, for p(n) whenever n € dom(p). For p,q € P, we say p < ¢ if and
only if dom(p) O dom(gq) and p, + ¢, for all n € dom(q).

We describe two countable lists of dense subsets of P that we wish our
filter G to meet. The first list of dense sets will ensure that we build complete
types (hence elements of @) in the limit. For each § € Q and n € <¥2, let

Do, ={p€P:p,F0orp, -0}
Since p, is Q-perfect, each Dy, is dense in P.

Definition 3.25 Suppose that p € P with dom(p) C =™2 and 7y, ..., n; are
(not necessarily distinct) elements from 2. An L(A)-formula p(z1, ..., xy) is
decided positively by p at ny, ... ,mg if @(c1, ..., cx) holds for all A-independent
sets {c1,..., ¢} satisfying p,, € tp(c;/A) € @ for each 7. The formula ¢ is
decided by p at my,...,n if either ¢ or =y is decided positively by p at
n, .- Nk

Fact. For every L(A)-formula ¢(z1,...,zx), every p € P with dom(p) C
=m2 and every collection 7y, ..., n from ™2, there is ¢ < p that decides ¢ at
N, ..., m and satisfies dom(q) C =™2. In addition, ¢ may be chosen so that
qu = py for all p € ™2 distinct from 7y, ..., 7.

Proof. By induction on k. Assume that the L(A)-formula ¢(zo,...,z),
a condition p satisfying dom(p) C =™2 and 7, ..., from ™2 are given.
Choose a @Q-perfect formula 6 of least R(—, ¢, w)-rank subject to

0+ py, and Multa(0) = 1.

(Since A is algebraically closed and p,, is Q-perfect, such a 6 exists.) It
follows that
derQO = ds$090

for all ;s € Q with 0 € rN's. Let ¢(z1,...,xx) be the L(A)-formula d,zqp
for any such r and let p’ < p be such that dom(p’) C =2 and Py, = 0. Then,
by applying the inductive hypothesis to 1, we get ¢ < p’ such that ¢ decides
v at ny,...,ne. It follows that ¢ decides ¢ at ng, ..., . ]
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As notation, for every pair of L(A)-formulas 6(x,y1,...,yx, 2) and 0(x),
and every type r € S(A) realized in B, let

F&,rﬁ(yl, s 7yk:) = dTZ\V/l'((S(I', Y1y o3 Yk, Z) — Q(I‘)),
For every L(A)-formula 0 and every type r € S(A) realized in B, let

Ds, = {p € P : there is m such that dom(p) C =™2 and for
all my,...,n,, p from ™2 satisfying p # n; for each i, there is an
L(A)-formula 6 such that

- [F(gmg(cl, C. ,Ck) < 9(d>]

for all d realizing p,, and all A-independent {cy,..., ¢} satisfying
P € tp(c1/A) € Q for each i}.

Claim. Each Ds, is dense in P.

Proof. Choose p € P arbitrarily. Choose m such that dom(p) C =™2. It
suffices to handle each choice of 7y, ..., n, u € ™2 separately. So fix some
such 7y, ...,k p. Since @ is perfect, there is a formula 6 such that both
pu N6 and p, A =0 are Q-perfect. From the Fact above, there is p’ < p that
decides T'syg at 71, ..., 7m and satisfies dom(p’) € =2 and p), = p,.

There are two cases. In either case, put ¢, = p| for each i and put

Qv :pfy for all Y Q {7717 ce 777167/'1/}' Put

| puN—0 if T'5,9 is decided positively by p at ni, ..., 7%
U= pu N0 otherwise

Now ¢ < p and ¢ meets our requirement for n,...,ng, u. After repeating
this process for all sequences 1y, ...,k € ™2 with p # n; for each i we
obtain some ¢* < p with ¢* € D, [

Now fix any filter G such that G N D # () for each of the dense sets D
mentioned above. For each n € “2, let

pp(x) = {0 : py- - 0 for some p € G and some n* < n}.

It follows from the first collection of dense sets that each p, is a complete
type. Also, as each p, consists of Q-perfect formulas, each p, € Q). As any
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type trivially isolates itself, the second collection of dense sets ensures us
that p, # p, for all n # . Now suppose that 7y,...,n, 1 € “2 are distinct.
Pick {¢; : 1 <i < k} to be independent over A, non-forking with B over A,
where each ¢; realizes p,,. Suppose that d(x,cy,...,cx,b) isolates a type in
(). We claim that this type is not p,. To see this, let r = tp(b/A) and choose
m such that ny [ m,...,n [ m, u [ m are distinct. Pick p € GN Ds, and let
0 be the formula witnessing that p € Ds, for n; [ m,...,n [ m,p [ m. If 0
is in the type isolated by 0(z,c1, ..., ¢k, b) then s, g(cq, ..., ;) holds, hence
I's0 is decided positively by p at mi [ m,...,n, [ m. So pup, = —0. On the
other hand, if 6 is not in the type isolated by d(z, ¢y, ..., ¢k, b) then =I5, 4 is
decided positively by p at n; [ m,...,n [ m, so pum = 0. In either case the
type isolated by d(z,c1,. .., ¢y, b) is not p,. ]

Lemma 3.26 Suppose that we are giwen an na-chain M of length n, an
L(M,,_1)-formula ¢, and a perfect set Q C R(M) such that every q € @Q is
special via .

1. There is a diverse family Y C Leaves(M) of size continuum.

2. If, in addition, every q € @ 1is trivial, then there is a diffuse family

Y C Leaves(M) of size continuum.

Proof. (1) Suppose that M, ¢, and @ are given. Choose R C @ as in
Lemma 3.24, taking M,,_; for A and W for B. (Note that the isomorphism
type of W does not depend on the choice of Y.) We may assume that
for any r € R, there is a prime model N, over M, ;c for any realization
¢ of r, lest there would already be a diverse family of size continuum by
Corollary 3.23(1). We claim that Y = {N, : r € R} is diverse. To see
this, suppose 71,7, C R with s € Z; \ Zy. It suffices to show that s is
omitted in N*(Z3) @y, V for any (M,Y)-model V. When n = 1 this
follows immediately from Lemma 3.24, while if n > 1, then Lemma 3.10 tells
us that any potential realization of s must lie in N*(Zs) @uy, , Wy, which it
does not.

(2) Now suppose that the types are trivial as well. Arguing as above,
apply Lemma 3.24 to obtain a subset R C @ for M,,_; and W. Further, by
Corollary 3.23(2) we may assume that there is a prime model N, over any
realization of r. In this case, the family Y = {N, : r € R} will be diffuse. To
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see this, choose s # r and let s* be the non-forking extension of s to V', some
(M, Y)-model. We claim that s* is omitted in N, @y, , V. If it were realized
by an element a, then Lemma 3.11 would imply that a € N, @y, _, Wy, which
would contradict Lemma 3.24. [

Proposition 3.27 Fiz a chain M of length n.

1. If some free extension M of M has no diverse family of Leaves(ﬂl)

of size continuum, then for every p € R(M) there is a strongly reqular

q € R(M) non-orthogonal to p with a prime model over M,_yc for any
realization ¢ of q.

2. If some free extension M of M has no diffuse family of Leaves(ﬂ/)

of size continuum, then for every trivial p € R(M) there is a strongly

reqular ¢ € R(M) non-orthogonal to p with a prime model over M, _;c
for any realization c of q.

Proof. We first prove (2). Suppose that the na-chain M is a free extension
of M that has no diffuse family of Leaves(ﬂ/) of size continuum. Fix a

trivial type p in R(M). Choose a formula ¢ € L(M,_;) of least R*°-rank
among all special formulas non-orthogonal to p and let

X ={q € S(M,_1) : q trivial, weight-1, ¢ € ¢, and ¢ L M, _»}.

If n = 1 we delete this last condition. By Lemmas B.2 and B.5, X is a
non-empty Gy subset of S(M,,_1).

Claim. There are only countably many non-orthogonality classes rep-
resented in X.
Proof. If not, then since non-orthogonality is a Borel equivalence relation,
Lemma B.1(1) implies that X would contain a pairwise orthogonal family
{g; - i € 2%}. Let Z be the set of non-forking extensions of each ¢; to M/_;.
For each ¢, choose a regular type r; domination-equivalent to ¢;. Since M, _ is
an na-substructure of the universe, there is a regular type s; over M, _, non-
orthogonal to ¢;. Clearly, each s; € R(m/), so we have a pairwise orthogonal
family of regular types in R(m/) of size continuum, hence there is a diffuse
family of Leaves(M') by Lemma 3.6, which is a contradiction. ]
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Let {r; : i € j < w} be a maximal pairwise orthogonal subset of X in
which every r; L p and let

X,={q¢€X:qtp}

Since ¢ € X, if and only if ¢ € X and ¢ L r; for all ¢ < j, it follows from
Lemma B.4 that X, is a G subset of S(M,,_;) as well. Since ¢ was chosen to
be special of least R*°-rank, it follows from the proof of Proposition 8.3.5 of
[15] that every element of X, is regular as well. So, if X, were uncountable,
then again by Lemma B.1(1) it would contain a perfect subset. By taking
non-forking extension of each of these to M/ ,, we would obtain a perfect

subset of R(M’), where each element is special via . But this contradicts
Lemma 3.26(2). Thus, we may assume that X, is a non-empty, countable G
subset of S(M,_1). Hence, by Lemma B.1(2) there is an L(M,,_;)-formula
¥ ¢ isolating some ¢ € X,,. By Proposition D.15 of [13], this ¢ is a strongly
regular type via . As well, since ¢ is special, if there were no prime model
over M,_;c for a realization ¢ of ¢, then Corollary 3.23(2) would give us a
diffuse family of Leaves(M) of size continuum.

We now prove (1). Again, assume that M is a na-chain freely extending
M with no diverse subset of Leaves(/\_/l/) of size continuum. Fix a type
p in R(M). If p is trivial, then as we will see in Lemma 4.2 that every
diffuse family is diverse, we are done by (2). Thus, we may assume that p
is non-trivial. Hence, by Lemma 8.2.20 of [15], there is a type p' € R(M)
non-orthogonal to p and a formula 6 € p’ witnessing that p’ is special and, in
addition, the p-weight of # is 1, and p-weight is definable inside 6. Without

loss, assume that p = p’. Let
X ={qe S(M,_1):0€quw,q =1}

Since w,(#) = 1 and p-weight is definable inside 0, X is a closed subset of
S(M,—1). Now fix a ¢ € X. Since wy(q) = 1, ¢ £ p. As well, since ¢ is
p-simple, q is regular. Hence, if n > 1 then ¢ L M,,_5. That is,

X ={q € R(M) : g regular, 6 € ¢, and ¢ L p}

is closed, hence a Gs. The proof is now analogous to (1). If X were un-
countable, then by Lemma B.1(1) it would contain a perfect subset, so by
taking non-forking extensions to M/ _, there would be a diverse family of
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Leaves(/\/l/) of size continuum by Lemma 3.26. So, we may assume that
X is a non-empty, countable, G5 subset of S(M,_1) and hence there is an
L(M,,_1)-formula v F @ isolating some ¢ € X. Again by Proposition D.15
of [13], this ¢ is a strongly regular type via 9. As well, since ¢ is special, if
there were no prime model over M,,_;c for a realization ¢ of ¢, then Corol-

lary 3.23(1) would yield a diverse family of Leaves(M ) of size continuum.
|

3.4 Structure theorems for locally t.t. theories

In this subsection we analyze some of the positive consequences of a theory
being locally t.t. over an n-chain M.

The following three lemmas are true for any superstable theory. There
is nothing novel about their statements or proofs as they are central in the
analysis of models of a totally transcendental theory. They are given here
simply to indicate that the assumption of being totally transcendental can
be weakened to include our context.

Lemma 3.28 Suppose that p,q € S(M) where p is reqular and q is strongly
reqular. Then p and q are orthogonal if and only if they are almost orthogonal
over M.

Proof. Suppose that g is strongly regular via ¢ and that p £ ¢q. Choose
a finite e and realizations a of p|Me and b of g|Me respectively such that
a%eb. Choose a formula ¢(z;y, z) over M such that ¢(a;e,b) holds and

o(a;y, z) forks over M. Thus

Fzlp(ase, 2) A1p(2)]-
Since M is a model and a | e, there is ¢’ € M such that 3z[p(a;e, z) A(z)].

M

Let b’ be any witness to this formula. As b’ forks with a over M, tp(b'/M) L p,
hence tp(b'/M) = q since q is strongly regular via ¢. Thus p and ¢ are not
almost orthogonal over M. ]

Lemma 3.29 Suppose that p,q € S(M) are non-orthogonal, where p is reg-
ular and q s strongly reqular. Then any model containing a realization of p
contains a realization of q.
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Proof. Let a realize p and let N O Ma. Again suppose that ¢ is strongly
regular via . Since p and ¢ are not almost orthogonal over M, there is a
formula ¢(z,y) over M such that (a,y) forks over M and ¢(a,b) holds for
some b realizing ¢. So Jy[¢(a, y) A (y)] holds in the monster model, hence by
elementarity, N contains a witness b’ to ¢(a,y) A (y). As before, it follows
from the strong regularity of ¢ and the fact that ¢(a,y) forks over M that

tp(t//M) = q. [

Notation: Suppose that p € S(M). We adopt the notation M(p) for the
prime model over M and any realization of p, if this prime model exists.

Lemma 3.30 Suppose q € S(M) is strongly reqular and M (q) exists. Then
M(q) is atomic over M and any a € M(q) such that tp(a/M) is regular.

Proof. Suppose that M(q) is atomic over Mb, where b realizes g and that
q is strongly regular via 1 (y). Choose a € M(q) \ M arbitrarily such that
tp(a/M) is regular. It suffices to show that tp(b/Ma) is isolated. Let 6(z,b)
isolate tp(a/Mb). Since a ¢ M, it follows from the Open Mapping Theorem
that a forks with b over M, so let ¢(a,y) € tp(b/Ma) fork over M. Then the
formula
ala,y) = 0(a,y) N pla,y) Ad(y)

isolates tp(b/Ma). To see this, it is evident that «(a,b) holds. So sup-
pose that «a(a,c) holds for some element ¢. We will show that tp(b/Ma) =
tp(c/Ma). Since ¢(a,y) forks over M, tp(a/M) is regular and ¢ is strongly
regular via 1, it must be that tp(c¢/M) = ¢q. Hence, 0(z, c) isolates a complete
type over Mc. That is, tp(ab/M) = tp(ac/M), so tp(b/Ma) = tp(c/Ma) as
desired. ]

When we combine the three lemmas above with the existence of prime
models over independent trees of models, we obtain a reasonable structure
theory for the class of models of models extending a fixed chain. We illustrate
this by continuing our analogy with the analysis of totally transcendental
theories. The proofs of the following two corollaries follow immediately from
the lemmas above.

Corollary 3.31 If M is countable and p,q € S(M) are both strongly reg-
ular and are non-orthogonal, then if M(q) exists then M (p) exists as well.
Further, M(p) and M(q) are isomorphic over M.

32



Definition 3.32 [ is a strongly regular sequence over M if I is independent

over M and every a € I realizes a strongly regular type in R(M).

Corollary 3.33 If T is locally t.t. over a chain M of length n and I is
a strongly regular sequence over M, then there is a prime model N over
M, 1 UI. Further, if p and q are non-orthogonal, strongly reqular types from

R(M), then dim(p, N) = dim(g, N).

The following lemma will be used in conjunction with the previous corol-
lary to obtain good upper bounds.

Lemma 3.34 Suppose that M is a d-chain, where d is the depth of T. If
T s locally t.t. over M, then any model N O Mgy with N/My_1 L My o
(when d > 1) is prime over My_1 and any maximal strongly reqular sequence
over My_1.

Proof. Let I be any maximal strongly regular sequence over M inside
N and, from the previous corollary, let N’ C N be prime over My_; U I.
Suppose, by way of contradiction, that N # N. Choose a € N \ N’ such
that p = tp(a/N’) is regular. Since T has depth d, p is not orthogonal to
My_1, so choose a regular type g over M, 1 non-orthogonal to p. Since T
is locally t.t. over M, we may assume that ¢ is strongly regular. Let ¢’ be
the non-forking extension of ¢ to N'. It follows from Lemma 3.29 that ¢’ is
realized in N, but this contradicts the maximality of I. ]

We conclude this subsection by giving a general lemma that will be used
to aid our counting in some cases when the depth of the theory is small
(typically d = 1 or 2). As notation, note that any countable model M can be
viewed as a chain of length 1. In this case, we let R(M) be the set of regular
types over M and we say that T' is locally t.t. over M if it is locally t.t. over
the associated chain of length 1.

Lemma 3.35 Suppose that T is countable, superstable, and over any count-
able model M, and T is locally t.t. over M. If in addition, R(M) contains
only countably many non-orthogonality classes, then T is w-stable.

Proof. To show that T is w-stable, for every countable model M,, we will
find a countable model M, realizing every type over M,. So fix a countable
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model My. We construct M, to be a union of a chain of models M,,, where
M, is given and for each n, M, is chosen to be prime over M,, U [,,, where
I,, is a strongly regular sequence over M, where each non-orthogonality class
of R(M,,) has dimension Ry. (Such a sequence I, exists since 7" is locally t.t.
over M, and is countable since R(M,,) is.)

We claim that M, realizes every type over Mjy; in fact, it realizes every
type over M, for all n. If not, then choose p € S(M,) of least rank such
that p is omitted in M. Let a be a realization of p and let N O M,a be any
countable model that is dominated by a over M,. (For instance, N could be
taken to be [-isolated over M,a.) Let ¢ € S(M,) be any regular type realized
in N\ M,. Since T is locally t.t. over M, there is a strongly regular type
r € R(M,) non-orthogonal to ¢, which by Lemma 3.29 is also realized in N,
say by b. Since N is dominated by a over M,, a forks with b over M,,, so
R>(a/M,b) < R*(p). However, we can easily assume that b € M, and so
R>*(a/M,+1) < R*(p) and certainly tp(a/M, 1) is not realized in M,, which
is a contradiction. ]

4 Unique Decompositions and Iteration

Before we can state one of the key theorems of this section, we introduce a
very useful model U. Fix an na-chain M of length n and a set Y of leaves of
M. For every uncountable cardinal )\, we define an (M, Y)-model Uy which
can be thought of as a ‘A-saturated (M,Y)-model’ of size A + 2%. That
is, we take Uy to be prime over an (M,Y)-tree M = (M, : ¢ € I) with
ordering < on /. We demand that I be A-branching above every n € I with
lg(n) < nie {v:v- =n}is of size \. Moreover, if (f; : ¢ € I) is the
family of elementary maps compatible with M demonstrating that it is an
(M, Y)-tree then for every ¢ € I with lg(¢() = n and every N € Y, there
are A-many v € [ with v~ = ( such that f, maps onto N,. For brevity,
we denote Uy, by U. The importance of this (M, Y )-model is given by the
following theorem, whose proof follows from the main theorem of [§].

Theorem 4.1 [Unique Decomposition Theorem| If Q = @, {Fi : i € I}
and Q' = @y, {F; : i € I'} where each P;, P/ is an (M, Y)-model with weight

one over My and Q®y, V =2y Q' @y, V for some (M, Y )-model V then there
is a bijection f: 1 — I' such that P, &y, U =y P}(i) @, U foralliel.
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Proof. There is no loss in assuming that in fact N = Q@ V = Q' @,V so
in the terminology of [8] {P; : i € I} and {P/ : i € I'} are sets of independent
Mj-components of N. There is a bijection f : I — I’ so that for any i € I,
{P}U{F 1€ I't\{P},} is a set of independent Mj-components of N.
So if WeAﬁX i €I and l?t V= (D AF i€ I'P\{P;n}) S V then N =
P @&, V = Pj;y ®um, V. Now choose A large enough so that V' embeds into
Uy. By freely joining U, with N over V we obtain P,@n, Uy = Pj’c(i) D, Un.
As well, note that U Cf, U, in the notation of [8]. Thus, by Theorem 2.9 of
8], P, @, U =y Pj’c(i) @, U which is the conclusion of the Theorem. ]

Our first application of this theorem gives the promised implication be-
tween the two central notions of this section.

Lemma 4.2 IfY is diffuse then Y is diverse.

Proof. Assume that Y is not diverse, i.e., there are distinct Z;, Zo C Y with
N*(Z))®um,_,V = N*(Zy) D, ,V over M,,_; and V for some (M, Y)-model
V. Let V' be the (M, Y )-model formed by taking the prime model over M,,_;
and V. We can assume that N*(Z,) @y, , V' =y N*(Zy) @&, V' Since
Zy # Zsy it follows from the Unique Decomposition Theorem that there are
distinct N, N € Y such that N @y, , U =y N' @y, , U, which implies that
Y is not diffuse. ]

The following notion captures a notion of homogeneity that our models
will possess.

Definition 4.3 If W C @, a set H reflects QQ over W if W C H C () and
for every countable A C () there is an automorphism o of @) over W with
o(A) C H.

The utility of this notion is given by the lemma below, which will be used
in many different contexts in what follows.

Lemma 4.4 Suppose that F = {P; : i € 0} is a family of models, pairwise
non-isomorphic over VU W, where V' is countable, and there is a cardinal
A\ > |W| such that \* < @ and every P; has a reflecting subset over W of size
at most . Then there is a subfamily F' C F of size 0 such that P 2y P’
for distinct P, P' € F.
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Proof. Say ¢ ~ j if and only if P; =y P;. It suffices to show that every
~-class has size at most A™. So, by way of contradiction, assume that some
~-class C' C 6 has size greater than A®. Without loss, assume 0 € C. Let
H C P, be reflecting over W. For each i € C, let f; : B, — P; be an
isomorphism over W. By composing each f; by an automorphism over W if
needed, the fact that H is reflecting allows us to assume that f;(V) C H for
all 7 € C. Since |C| > A¥| there are distinct 4,7 € C such that f;(v) = f;(v)
for each v € V. Thus, fj_1 o fi : P, — P; is an isomorphism over V U W,
which is a contradiction. ]

The following definition is arranged to allow us us to ‘step down’ trees
and to achieve a lower bound on (7, R,,). The reader should observe that the
hypotheses on x, A imply that the existence of an iterable family of models
implies that each model has size greater than continuum.

Definition 4.5 A family F = {P; : i € 6} of (M, Y)-models is k-iterable if
there are cardinals x, A > N such that:

1. A% < g and AN < §;
2. each P; has size k and has a reflecting subset H; over M. of size \; and
3. P, ®n, U 2y P @y U for all distinet 4,5 € 0.

Lemma 4.6 If there is a k-iterable family of 8 models, each of size X,,, then
I(T,R,) > 0.

Proof. Let F be such a family. It follows immediately from the definition
that the models are pairwise non-isomorphic over M), and there is a cardinal
A satisfying A" < R, such that every P € F has a reflecting subset of size
A over M. Thus, I(T,R,) > 6 follows immediately from Lemma 4.4 (taking
W =0). ]

The intuition is that if a family is k-iterable, then we can use the lemma
below to ‘step down’ the tree k times, roughly exponentiating the number of
models at each step.

Lemma 4.7 If F = {P; : i € 0} is a k-iterable family of models each of size
N, such thatk >0, 0 <X,, and 0% < |a+w|?, then there is a (k—1)-iterable
family of |a + w|® models, each of size R,,.
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Proof. Fix a cardinal A > X, such that A" < X, and, for each i € § choose
a subset H; reflecting P; over My. By enlarging each H; slightly we may take
it to be the prime model over a subtree of a decomposition tree of P;.

We first claim that there is a subfamily F’' of F of size 6 such that
P&y, U2y P'dy,_, U for all distinet P, P’ € F'. For, if this were not the
case, there would be a set X C 6 of size 6 such that P;®y, U =y Pi®w, U
for all 4, j € X. It is easily checked that H] = H; @®y,_, U is of size at most
A - 2% and reflects P; @y, , U over U. So, by applying Lemma 4.4 to the
subfamily there would be ¢ # j such that P, @y, , U =yn, Py &y, U. If
we let V' be the prime model over M and U, we can arrange that

Py V =y PouV

But this would imply P; ®y, U =y P; @, U by the Unique Decomposition
Theorem which would contradict the k-iterability of F. Thus, by reindexing
we may assume that our original family F satisfies P;®y, U 2v Pj®wm, , U
for all distinct 7,7 € 6.

Let S be an independent (over Mj_;) family of X, copies of every P;
for every i € 6 and for each P € S choose a submodel Hp prime over a
subtree of a decomposition tree of P of size at most A. Let J denote the set
of all cardinal-valued functions f : § — X' such that f(0) = X,. For each
feJ, let Sy C S consist of f(i) copies of each P;, and let S} C Sy consist
of min{f(i),Ro} copies of each ;. Let Qy = P,, 5. Each @, has size
No. Let Ky =D,, {Hp:P € 5;}. Asany collection of automorphisms
of distinct components of Q)5 extends to an automorphism of () over Mj,_,
it follows that each K reflects Qs over Mj_;. As well, |[Kf| < 8-\ and it
follows from our cardinality assumptions that both A¥ and 6% are strictly
less than |a + wl.

Finally, suppose that Qf @©ar, , U = Qg @, U for some distinet f, g €
J. Then, by the Unique Decomposition Theorem there are distinct i,5 € 0
such that P, @y, , U =y Pj @, , U, which is contrary to our additional
hypothesis on F mentioned above. ]

By iterating Lemma 4.7 we obtain the following:

Lemma 4.8 If for some m > 1 there is an m-iterable family of 8 models,
each of size R, where 0% =0, then I(T,N,) > min{2% 3, | (la +w|?)}.
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Proof. Define a sequence of cardinals 8y < 6; < ... < 6,, by letting 6y = 6
and Oy = |a + w|9k'. Note that 0;:0 = @, for each k. There are now
two cases. First, if 6,,_1 < N,, then by applying Lemma 4.7 m times, one
gets a family of ,, = 3,,_1(Ja + w|’) O-iterable models over M,. Hence,
I(T,R,) > 3,1 (la+w|).

For the second case, assume that N, < 6,,_1. Choose k least such that
N, < 0 (k may be zero). By applying Lemma 4.7 k times, we obtain a
family G of ), (m — k)-iterable models, each of size R,. Now if 2% < 6, then
I(T,R,) = 2% by applying Lemma 4.6 to this family. However, if ), < 28,
then as RN < 9:0 =0, < 2% we can apply Lemma 4.7 one more time to a
subfamily of G of size N,. This produces an (m — k — 1)-iterable family of
size 2% hence I(T,R,) = 2% by Lemma 4.6. "

5 The counting

In this section, we combine the dichotomies from Section 2 with the ma-
chinery in Section 3 to obtain lower and upper bounds in many situations.
Our results will be strong enough to compute the uncountable spectra in all
cases. As noted in the introduction, we need only concern ourselves with
(countable) classifiable theories of finite depth. For notation, assume that
such a theory T has depth d. We recall the nomenclature of [7].

Definition 5.1 Suppose 1 < n <d.

e We say that TT(n) holds if, T is locally t.t. over every chain M of
length n.

e TF(n) holds if T admits a trivial failure over some chain of length n
(i.e., some trivial p € R(M) is not t.t. over M for some chain M of
length n.)

e NTF(n)holds (read: non-trivial failure) if there is a chain M of length

n and a non-trivial type p € R(M) that is not totally transcendental
over M.

e We write #RD(n) = 2% if there is some chain M of length n where
R(M) contains a family of continuum pairwise non-orthogonal types.
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e We write #RD(n) = Ny if there is some chain M of length n for which
R(M) contains infinitely many non-orthogonal types, yet there is no
chain N of length n with continuum many non-orthogonality classes

represented in R(N).

e We say #RD(n) is finite if only finitely many non-orthogonality classes
are represented in R(M) for every chain M of length n.

e We write #RD(n) = 1 if all types in R(M) are non-orthogonal for all
chains M of length n.

The notation #RD stands for the number of relevant dimensions. Since
for any n-chain M, S(M,_;) is a Polish space and the relation of non-
orthogonality is a Borel equivalence relation, the number of non-orthogonality
classes represented in R(M) is either countable or of size 2%; hence at least
one of the last four conditions hold for each n.

In the first subsection we use the machinery established earlier to obtain
a number of lower bounds. Then, in the subsections that follow, we put on
more and more conditions on our theory to obtain better and better upper
bounds.

5.1 Lower Bounds

The goal of this subsection is to obtain good lower bounds from instances of
‘non-structure’ of the theory. The first of these is due to Shelah and has been
known for some time. It will be used in two places, both where the depth of
the theory is quite low. For a proof, see either Theorem 1.20 of Chapter IX
of [18] or Theorem C of [2].

Lemma 5.2 IfT is superstable but not w-stable then I(T,R,) > min{2% 3}
for all a > 0.

The next result is the ‘General lower bound’ mentioned in the Intro-
duction. It is proved by the method of quasi-isomorphisms. (See either
Theorem 5.10(a) of [16] or the discussion on page 396 of [1] for a proof.)

Lemma 5.3 If T is classifiable of depth d > 1 then
I(T,R,) > min{2% 3y 5(Ja + w|l*tH)}

for all a > 0.
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For each of the next five lemmas and propositions, assume that M is an
na-chain of length n. We begin by considering the effect of a diffuse family
of leaves.

Lemma 5.4 If there is a diffuse family of Leaves(M) of size > o, then
for any ordinal o satisfying Ry, > 2% and p*0 < |a+w|*, there is an (n—1)-
iterable family of |o + w|* models, each of size X,,.

Proof. Let F = {P, : i € 2%} be diffuse. Let J be the set of all cardinal-
valued functions f : 2% — R such that f(0) = N,. It follows immediately
from the Unique Decomposition Theorem that the family G = {Q : f € J},

where '
Qs = @{Pi(f(l)) = 2&0}
Mn—l

satisfies Qy ©um, , U Zu Qg ®um,,_, U for distinct f,g € J. As well, the

substructure Hy = @,, {PY? :i € 2%}, where f(i) = min{/(i),Ro},
reflects Q¢ over M,,_; and has size continuum. [

The following lemma is routine.

Lemma 5.5 If there is a diverse family of Leaves(M) of size u > Vo, then
for any cardinal k > p there is a family of 2" pairwise non-isomorphic models
over M, _1, each of size k.

Proposition 5.6 If there is a diffuse family of Leaves(M) of size contin-
wum then I(T,R,) > min{2% 3, 1 (la + w[>°)} for all ordinals o > 0.

Proof. Fix a > 0. There are three cases. First, assume 2% = 2% The
existence of a diffuse family of size continuum clearly implies that the theory
T is not Ng-stable, hence I(T,R,) > 2% = 2% by Lemma 5.2. Second,
assume R, < 2% and 2% > 2% Then by Lemma 5.5 there is a family of
2% models over M,,_1, each of size R, that are pairwise non-isomorphic over
M,,_;. Our cardinal assumptions imply that RY < 2%« g0 [(T,R,) = 2%,

Finally, if 8, > 2% then by Lemma 5.4 there is an (n— 1)-iterable family
of |+ w|?"® models, each of size R,. If n = 1, then I(T,R,) > |a+w|>° by
Lemma 4.6. However, if n > 1, then by Lemma 4.8

I(T,R6) 2 3ma (Jot w7 ) = 3, a4 ™).

We now turn our attention to the existence of a diverse family of leaves.
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Lemma 5.7 If there is a diverse family of size yp > Ry and n > 1, then for
any R, > 2% there is an (n — 2)-iterable family of size min{2%* |a + w|*'},
where each model has size X,.

Proof. Choose a cardinal § < min{R,, 2} such that
lo + w|? = min{2% |a 4+ w*'}, 0 <R,, and O < |a+w|’.

(Such a 6 can be chosen from {2% 3, R,}.) It follows directly from the
diversity of the family of leaves that there is a collection F = {P; : i € 6}
of models over M,,_;, each of size at most W, that satisfies P, @y, , U ¢
P; ®u,,_, U for all distinct ¢, 5 € 6.

Let S be an independent (over M,,_5) family of W, copies of every P; for
every i € . Let J denote the set of all cardinal-valued functions f : 0 — N}
such that f(0) = N,. For each f € J, let Sy C S consist of f(i) copies
of each P;, and let S} C Sy consist of min{f(i),No} copies of each P;. Let
Qr = Dy, , S5 Each Qf has size ,. Let Ky = @), {P: P € S}}.
Again, as any collection of automorphisms of distinct components of @y
extends to an automorphism of @) over M,,_,, it follows that each K reflects
Qs over M,_5. Since |Ky| = 6 our hypotheses on 6 insure that this family
satisfies the cardinal hypotheses of iterability.

So, suppose that Qf @, , U =y Qg ©u,,_, U for some distinct f,g € J.
Then, by the Unique Decomposition Theorem there are distinct ¢, 57 € 6 such
that P, @y, , U =y Pj @, U, which is impossible. ]

Proposition 5.8 If there is a diverse family of Leaves(M) of size contin-
uum then

min{2% Ty} ifn=1

I(T,R,) > { min{2% 3, s(ja +w[??)} ifn>1

for all ordinals o > 0.

Proof. First, if X, < 2% then I(T,R,) = 2% by splitting into the same two
cases as in the proof of Proposition 5.6. As well, if R, > 2% and n = 1, then
Lemma 5.5 implies I(T,R,) > J,.

So assume R, > 2% and n > 1. Then by Lemma 5.7 there is an (n — 2)-
iterable family of min{2%, |a 4+ w|?} models, each of size N,. Thus, the
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proposition follows from Lemma 4.6 if n = 2, and from Lemma 4.8 if n > 2.
[ |

We finish this section by obtaining lower bounds that arise from having
suitably large collections of pairwise orthogonal types.

Proposition 5.9 If R(ﬂ_) contains an infinite family of pairwise orthogonal
types for some na-chain M of length n, then

[(T> NO!) > min{zNa>:n*1(|a + w’NO)}
for all ordinals a > 0.

Proof. First, we claim that I(T,R,) > 2% for all @ > 0. To see this we
split into cases: If T is not w-stable, this follows from Lemma 5.2. If T is
w-stable this can be verified by examining the spectra given by Saffe [16].

Next, fix an na-chain M of length n for which R(M) contains infinitely
many pairwise orthogonal types. By Lemma 3.6 there is a diffuse family of
Leaves(M) of size Xy. We split into two cases.

If o+ wl® > 2% then a > 2% hence N, > 2%. Thus, Lemma 5.4
provides us with a family of |« +w[™ (n—1)-iterable models over M, _1, each
of size N,. So, we obtain our lower bound via Lemma 4.6 or Lemma 4.8.

On the other hand, assume that |a+w[¥ = 2% If n = 1, then I(T,R,) >

2% as noted above, so we assume that n > 2. There are now three subcases.

o If X, > 2% then there is an (n — 2)-iterable family of size J3, where
each model has size N,. As before, the bound follows from Lemmas 4.6
and Lemma 4.8.

o If N, < 2% but 2% > 2% then the existence of a diverse family of size
Ny implies that there is a family F = {P; : i € R, } of countable models
over M,,_y such that P, @y, , U 2v P; ®u, , U for distinct ¢, 7 € N,.
Varying the dimensions of each of these yields a family of 2% models,
pairwise non-isomorphic over M,, s, each of of size N,. However, as
NN — 2% i this case, we obtain I(T,R,) = 2%,

e Finally, if 2% = 2% then I(T,X,) = 2% as in the first paragraph.  u
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Using the notation given at the beginning of this section, we can easily
summarize our lower bound results.

Theorem 5.10 Let T be a countable, classifiable theory of depth d > n.
1. If #RD(n) = 2% then I(T,R,) > min{2% 3, i (Ja + w|2°)} for all

ordinals o > 0.

2. If #RD(n) = ¥y then I(T,N,) > min{2% I, (Ja + w[*)} for all
ordinals o > 0.

3. If TF(n) holds then I(T,R,) > min{2% 3,_i(Ja + w|>"*)} for all or-
dinals o > 0.

4. If NTF(n) holds then

min{2% 3} ifn=1
[T, Ra) = { min{2% 3, (o + )} ifn> 1

for all ordinals a > 0.

Proof. (1) Choose a chain M of length n such that R(M) contains a
pairwise orthogonal family of types. By passing to a free extension of M, we
may assume that M is an na-chain. Thus, it follows from Lemma 3.6 that
there is a diffuse family of Leaves(M) of size continuum, so the lower bound
follows immediately from Proposition 5.6.

(2) If some chain M has an infinite family of pairwise orthogonal types
in R(M), then this property will be inherited by any na-chain that freely
extends M, so the result follows immediately from Proposition 5.9.

(3) Suppose that some chain M of length n supports a trivial type p €
R(M) that is not totally transcendental above M. By Lemma 3.9 we may
assume that p is special. Since p is not totally transcendental, it follows from
Corollary 3.23(2) and Proposition 3.27(2) that there is a free extension M’
of M with a diffuse family of Leaves(ﬂl) of size continuum. So the bound
follows from Proposition 5.6.

(4) This is analogous to (3). If p € R(M) is not totally transcendental
over M, then, again using Lemma 3.9, it follows from Corollary 3.23(1) and
Proposition 3.27(1) that there is a frec extension M of M with a diverse
family of Leaves(m/) of size continuum. Thus, the lower bound is given by
Proposition 5.8. [
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5.2 Upper bounds
In this short subsection we state some definitions and recall a very useful

theorem for obtaining upper bounds.

Definition 5.11 Suppose that M is an n-chain.

e An M-component is any model N such that M,,_; C,, N and wt(N/M,_;) =
1.

o We write #C%; for the number of M-components of size at most R,
up to isomorphism over M,,_; and

o write #C = sup{#C%; : M is a (d — n)-chain} unless n = 0 and
#(C%; is finite for all d-chains. In this case, put #C7 = 1.

Proposition 5.12 1. #C§ < 2% for all a.

2. If TT(d) holds then #C§ = #RD(d) unless the latter is finite in which
case #C§ = 1.

The second part of the above Proposition follows directly from the defi-
nition of T7T'(d) and Corollary 3.31.

The following theorem is proved by inductively counting the number of
components as we step down a decomposition tree.

Theorem 5.13 If T is a countable, classifiable theory with finite depth d
then
#C741 < o+ w7 4 2%

and
I(T> Na) < :d_i_1(|oz + w’#C;’ + 2N0)

Proof. By downward induction on ¢, using the fact that every model is
prime over a normal tree of countable, na-substructures. ]

As a Corollary, we obtain the naive upper bound given in the Introduc-
tion.
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Corollary 5.14 If T is countable, classifiable and has finite depth d then
I(T,Ry) < Jaa(la+ w?™)

Combining this upper bound with Theorem 5.10 yields the following spec-
trum:

Corollary 5.15 If TF(d) holds or #RD(d) = 2% then

I(T,R,) = min{2" 3y (la + w|*™)}.

In what follows, the assumptions of the given subsection are indicated
in the subsection heading. Under these assumptions, a general upper bound
will be derived and at the end of each subsection, we will indicate under what
conditions this upper bound is met.

5.3 TF(d) fails, #RD(d) <Xy and d > 1

The hypotheses imply that we have control of the trivial components at level
d. In order to get a better upper bound, we record a theorem of Shelah
that allows us to control the number of non-trivial components as well. The
following lemma is Lemma 4.5 of Chapter XIII of [18].

Lemma 5.16 Suppose that T' is countable and classifiable. If My Cy, M;
and tp(M;/My) has weight one and is non-trivial for i = 1,2 and tp(M; /M)
and tp(My/My) are not orthogonal then My = My over M.

Fix a (d — 1)-chain M and N, an M-component of size at most R,. We
wish to find a set of invariants which determines the isomorphism type of N
over My_s.

Choose My, C,, N so that M, ; is countable and properly contains
My_5. Now let I be a maximal My _;-independent collection of countable
models contained in N, where each is a weight one, na-extension of My ;.
Since T has depth d, N is prime over I. Since TF(d) fails, each N’ € [
for which tp(N'/My_1) is not orthogonal to a trivial regular type, is actually
determined, up to isomorphism over M, ; by this information alone (see
Corollary 3.33). However, we do not have such control over the non-trivial
types. In order to remedy this, we do the following.
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Choose Iy C I, |I] < 2% such that M’, the prime model over I is
an Ni-substructure of N. By Fact 5.16, the isomorphism types of the non-
trivial components are determined, up to isomorphism over M’, by their non-
orthogonality class. Since the non-trivial (and trivial) components present
in I are all based on My_;, there are |a + w|##P@ possibilities for the iso-
morphism type of N over M’. We did have to fix a countable model My,
over My_o and a model M’ of size at most 2%°. Clearly, there are at most J,
many possibilities for these choices, up to isomorphism over My .

In summary then, if TF(d) fails and d > 1, then #C¢ < |a+w|[#FP@ 0,
Thus, by Theorem 5.13, we have the following:

I(T,R,) < Jy_o(Jor + ol 043 oty — 3, (jo + w[FRP@ 4 T,),

Combining these upper bounds with the lower bounds of Theorem 5.10 yield
the following corollaries.

Corollary 5.17 1. If TF(d) fails, NTF(d) holds, #RD(d) = Xy, and
d > 1 then

I(T,R,) = min{2% 3y (| +w[* + 3p).}

2. If TF(d) fails, NTF(d) holds, #RD(d) is finite, and d > 1 then
I(T,R,) = min{2% 3, | (|a + w| +Tp).}

Proof. For both cases, note that I(T,R,) > min{2% 3;,,} since NTF(d)
holds. If #RD(d) = X, then the bound I(T,R,) > min{2% 3, ;(|a+w|*)}
follows from Theorem 5.10(2), Combining these lower bounds with the upper
bound mentioned above yields the spectrum in (1).

On the other hand, if #RD(d) is finite, then by combining the lower
bound of the preceding paragraph with the general lower bound (Lemma 5.3),
we match the upper bound mentioned above. [

Thus, except for the case when d = 1 which we handle in Subsection 5.8,
we have computed the spectra of all (classifiable of finite depth d) theories
for which TT(d) fails or #RD(d) = 2%.
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5.4 TT(d) holds and #RD(d) < N,

Since TT'(d) holds, the positive results from Subsection 3.4 come into play
and yield substantially better upper bounds. In particular, Proposition 5.12
implies #Cf = Vg if #RD(d) = Ny and 1 if #RD(d) is finite.

Corollary 5.18 IfTT(d) holds and #RD(d) = X, then
I(T,R,) = min{2% 3y (Ja + w[M)}.

Proof. Since #Cy = Ny, it follows from Theorem 5.13 that an upper bound
is
Jaa(fa +w +2%) = g (Ja +wl™).

However, the matching lower bound is immediate from Theorem 5.10(2). u

Suppose that #RD(d) is finite. Then Theorem 5.13 yields an upper
bound of
T (o + w] 4 2%).
Note that if d > 1 then we can obtain a matching lower bound if either

TT(d— 1) fails or #RD(d — 1) = 2%,

Corollary 5.19 IfTT(d) holds, #RD(d) is finite, d > 1, and either TT (d—
1) fails or #RD(d — 1) = 2%, then

I(T,R,) = min{2% 3y 1 (| + w]| + 2%0) 1.

Proof. If either TF(d—1) holds or #RD(d—1) = 2%, then the lower bound
follows immediately from Theorem 5.10. If NT'F(d—1) holds, then the lower
bound is obtained by combining the lower bound of Theorem 5.10(4) with
the general lower bound of Lemma 5.3. ]

5.5 Obtaining na-inclusion

Before continuing, we give a technical lemma and a construction that are
needed to establish the more fussy upper bounds.
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Lemma 5.20 Suppose that M is a chain of length n > 1 and TT(n) holds.
If M,,_1 C N such that tp(N/M,,_1) is orthogonal to M,,_o and every strongly
reqular type over M,_1 which is realized in N \ M,_1 has infinite dimension
m M,_q1 then M,,_1 C,, N.

Proof. Suppose that ¢(z,a) has a solution in N \ M,,_; where a € M,_;.
By relativizing the proof that some regular type is realized between any pair
of models of a superstable theory, there is an element d € dcl(o(N)) \ M, _1
such that ¢ = tp(d/M,_1) is regular. Since TT(n) holds, there is a strongly
regular type p € R(M) non-orthogonal to g. Without loss, we may assume
that p is based on @. So, by Lemma 3.29 there a realization ¢ of pin N\ M,,_;
that depends on d over M,,_;. Choose b € p(N)\ M,_; that depends on ¢
over M,,_; and choose € D @ from M,,_; such that b and ¢ are dependent over
é. Let the formula x(b,c, &) witness this dependence. Let I be an infinite
Morley sequence in the type of p|a inside M,,_;. Choose ¢’ € I so that ¢ and
e are independent over a. We have

Ix(z,c,€) A p(z,a)

which is also true when ¢’ replaces ¢. So pick ¥’ so that
XV, e) N p(b,a)

holds. Since ¥ and ¢ are dependent over €, b’ cannot be in the algebraic
closure of a and so we finish. [

We next describe a construction that will be used in the next subsections.

Construction 5.21 Fix an chain M of length (n—1) and an M-component
N. Suppose that n > 1, TT(n — 1) and T7T(n) hold and #RD(n) is finite.
Since TT(n — 1) holds, we can find a € N \ M,,_» such that tp(a/M,_2) is
strongly regular. Let Ny be contained in N and prime over M, »a; again,
Ny exists because we are assuming 77 (n—1). Let N be the chain of length
n obtained by concatenating Ny to M. We will define, by induction on i,
countable models N; C N, numbers n; and strongly regular types p! € R(N;)
for | < n; which are pairwise orthogonal.

So suppose that NN; has been defined. Let N; be the chain of length n ob-
tained by concatenating N; to M. Let n; be the number of non-orthogonality
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classes in R(N;) which are realized in N and which are orthogonal to p{ for
all j <iand ! < n;. Since TT'(n) holds, we can find strongly regular repre-
sentatives pj for [ < n; of these classes.

Now, for [ < ny;, let I} be a maximal Morley sequence in N for p! if
the dimension of this type in N is countable and otherwise, let I} be any
countable, infinite Morley sequence in N for pi. Let I’ be the concatenation
of the sequences I} and finally, let N;;; be prime over N;I*.

We next argue that this process must stop after finitely many steps. To
see this, notice that if not, then if N, = (J, Vi, N, together with all the
pi’s exemplifies that #RD(n) is not finite. What have we achieved? If N; is
the last element of this chain then by Lemma 5.20, N; C,,, N. To see this,
suppose that b € N\ N; such that ¢ = tp(b/N;) is strongly regular. Then for
some j and [, ¢ is not orthogonal to p{ and the dimension of this latter type
in NV, is infinite.

5.6 T7T(d) and TT(d — 1) hold, #RD(d) is finite, d > 1,
and #RD(d — 1) <N

Our first goal is to obtain an upper bound for theories satisfying these hy-
potheses. This is accomplished by analyzing Construction 5.21 in detail.

Fix a chain M of length d — 1 and an M-component N of size at most
N,. Pick a € N such that tp(a/M,_5) is strongly regular.

Let N’ be the model described in Construction 5.21. N’ C,,, N and so
by Lemma 3.34, N is prime over N’ and I, a strongly regular sequence over
N'. By the construction of N’ there are | + 1|#FP(@ possibilities for I up
to isomorphism over N’. Now the construction of N’ was accomplished in
finitely many steps. We see that at each step ¢, there were at most countably
many choices for I* and at the first stage, since #RD(d — 1) < Ry, countably
many choices for Ny so there are at most countably many choices for N'.

In summary, there are at most |a+w| many isomorphism types of N over
My s, ie., #CT < |a+ w|. Hence, under the assumptions of this subsection,
we get an upper bound of

Juo(|a + w|letel £ 2%) =3, (ja + w)|).

Note that this upper bound matches the general lower bound (Lemma 5.3)
whenever « is infinite. So, in the computation of the spectra that follow, we
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are only interested in computing I(7T,X,) when « is finite. We can dispense
with a number of cases at this point.

Corollary 5.22 Suppose that TT(d) and TT(d—1) hold, d > 1 and #RD(d)
1s finite. If any of the following three conditions hold

e d>1and #RD(d — 1) = Ny;
e d>2and TT(d — 2) fails; or
o d>2 and #RD(d—2) = 2%

then I(T,R,) = min{2% J;_;(Ja + w|)}.

Proof. All three cases follow immediately by combining lower bounds from
Theorem 5.10 with the general lower bound (Lemma 5.3) and matching the
upper bound mentioned above. [

To distinguish between the spectra 31 (Ja+w|) and Jg_o(|o + w|l*F1H},
we need one further dichotomy.

Definition 5.23 Suppose that T is a countable, classifiable theory with fi-
nite depth d > 1 and moreover, if both 7T7(d) and TT(d — 1) hold and
#RD(d) is finite. We say that T has the final property if for every chain M
of length d, there are only finitely many isomorphism types of models N over
My o of the form Pr(My_; U J), where J is a countable, strongly regular

sequence from RD(M).

We remark that in the case where T is w-stable (and satisfies the other
properties) 7" has the final property if and only if all types of depth d — 2 are
abnormal (of Type V') in the sense of Baldwin [1].

Corollary 5.24 Suppose thatd > 1, TT(d) and TT(d—1) hold, and #RD(d)
is finite. If T does not have the final property, then

I(T,R,) = min{2% 31 (Ja +w|)}.
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Proof. First, if T' is totally transcendental, then this is proved in Saffe [16]
or Baldwin [1], so we assume that T is not totally transcendental. Hence, by
Lemma 3.35, we may assume that d > 2. So, by the previous Corollary, we
may further assume that #RD(d — 1) is finite, T7T(d — 2) holds, and that
#RD(d — 2) < RNg. As well, if X, < 2% then we are done by Lemma 5.2,
so choose a such that R, > 2% . As noted above, we may assume « is finite
(else the upper bound already matches the general lower bound). We need
to show that there are at least

I(T,R,) > min{2% 3, ;).

It is easily checked that if the final property fails for some chain, then it
fails for some na-chain, so choose M an na-chain of length d for which the
final property fails. Then, by using Lemma 5.6 of Chapter XVIII of [1] one
obtains a family {P; : i € 2%} of countable models over My_» such that
P, ®um, s U2y Pj®u, , U for distinet 4, j. Then, arguing as in the last two
paragraphs of Lemma 5.7, we obtain a (d — 3)-iterable family of models of
size Jg, each of which is of size N,. Hence, we obtain our lower bound from
Lemmas 4.6 and 4.8. ]

5.7 The final case

The assumptions of this case are too many to put in the subsection heading.
We will assume that d > 2, TT(d), TT(d — 1) and T7(d — 2) hold, #RD(d)
and #RD(d — 1) are finite, #RD(d — 2) < ¥,, and assume that the final
property holds. The case when d = 2 is handled in the next subsection.

In order to compute the best general upper bound in this case, we will
compute #C9. Toward this end, fix a chain M of length d — 2 and an M-
component N of size at most X,. Now fix a € N such that tp(a/My_3) is
strongly regular and let Ny be the prime model over M, sa. Since we are
assuming that 77'(d — 2) holds and #RD(d — 2) < Ny, there are at most
countably many choices for Ny up to isomorphism over M, 3. Now by using
Construction 5.21, we can find My o C,, N and by using the argument from
the previous subsection, there are at most countably many choices for M, »
over Ny. Let M’ be the chain of length d — 1 formed by concatenating My o
to M. Now in order to understand N over M,_,, it suffices to understand
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the isomorphism types of M/—components inside N. Let N’ be the model
described in Construction 5.21, now working over M. Again, N' C,,, N
and N is prime over N’ and a strongly regular sequence I over N’. As
before, there are only |a + 1|##P(@) possibilities for I over N’. However, since
#RD(d — 1) is finite, there are only finitely many choices for the first model
in the construction of N’. In addition, since the final property holds, then
at each stage there are only finitely many choices for the i** model. And, as
we noted, the construction of N’ is accomplished in finitely many steps and
so by Konig’s Lemma, there are only finitely many choices for N’ in all.

In summary, there are at most |a+w| choices for My_5 and |a+ (| choices
for N over My_,. Hence, over My_s, there are at most | +w[l**!l many such
N up to isomorphism. We conclude then that

#Cg < |Oé _i_w“a—o—l\ + NO _ ‘Oé +w|\a+1|
and the upper bound in this case is
Jas(la+ w“a“’llam +2%) = Jys(|a + w|l*H).

As this agrees with the general lower bound, this is the spectrum in this case.

5.8 The case of d = 1 or 2

In this section we would like to take care of the case when d = 1 and finish
the previous subsection in the case when d = 2.

To improve the upper bounds in the case d = 1 we make several remarks.
If TF(1) fails and #RD(1) = 1 (this case was handled in subsection 5.3),
we actually obtain the upper bound Jy. This can be seen even in the proof
presented in that subsection. After fixing a model of size 2%, there is only
one dimension possible. Of course, the spectrum min{2% J,} is achieved
when 7' is unidimensional and not w-stable.

Next, we improve the upper bounds when T7(1) holds and #RD(1) is
finite. It follows directly from Lemma 3.35 that such theories are totally
transcendental, so we could quote Saffe [16]. However, we include a brief
discussion for completeness. The upper bound then, from subsection 5.3 is

o + wl.
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If #RD(1) is not 1 then in [11] and [12], Lachlan shows that this spectrum is
correct under these assumptions unless 7' is w-categorical. In those papers,
he shows that if 7" is w-categorical then for some number m and some G <
Sym(m),

(T, Ra) = [+ 1)"/G| = |(a)"/G]

Of course, the case when T7(1) holds and #RD(1) = 1 is when T is N;-
categorical and the upper bound is 1.

The case d = 2 only has to be distinguished in the previous subsection.
There we were assuming 77(d — 1) and #RD(d — 1) is finite so again T is
totally transcendental. To obtain an upper bound in this case, we look to
subsection 5.6 and so compute only #C7 which in this case (assuming the
final property) would be |« + (| for some finite number [. So the upper bound
becomes

|a + w||a+1|

which agrees with the general lower bound in this case.

6 The spectra

Collecting together all the spectra from Section 4 with the spectra mentioned
in the introduction, we obtain the following Theorem. This theorem was
announced in [7], where examples of theories with each of these spectra were
given.

Theorem 6.1 For any countable, complete theory T with an infinite model,
the uncountable spectrum W, — [(T,R,) (a > 0) is the minimum of the map
N, — 2% and one of the following maps:
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R .

é %dj:l(|a + wl) for some d, w < d < wy;
9. Dai(|a+w?™) for some d, 0 < d < w;
4. Jaa(Ja+wf+3)  for somed, 0 <d < wy
5. Jua(Ja+w|+3y), forsomed, 0<d<w;
6. g 1(|a+wl), for some d, 0 < d < w;
7. Jdia(Ja+w|+2%),  forsomed, 1 <d< w;
8. Ji(la+wl), for some d, 0 < d < w;
9. Jy_s(la + wlletth), for some d, 1 < d < w;
10. identically Jy;

11.

(a4 1)"/~g| — 0" /~al a<w; for some 1l <n <w and
|| a > w; some group G < Sym(n)
12. udentically 1.

A Appendix: On na-inclusions

In this first appendix we establish two facts about na-inclusions that are
used in the text. To simplify the proofs, we extend the definition of an na-
extension to arbitrary sets. (This more general definition is only used in this
Appendix.)

Definition A.1 If A C B then A C,,, B if whenever ¢(x) € L(A) such that
©(B) \ A is non-empty and F' C A is any finite set then p(A) \ acl(F) is
non-empty.

The following lemma follows immediately from a union of chains argu-
ment.

Lemma A.2 For any set B and any A C B, there is A’ C,,, B such that
AC A and |A') < |Al + |L].

Lemma A.3 If B is independent from C over A and A C,, B then C C,,
BC.
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Proof: Suppose that we fix ¢ € C' and b € B so that 6(b,c) holds and
b & acl(C). It suffices to find O’ € C (in fact we will find it in A) so that
0(b',c) holds and b & acl(c). Let p = stp(c/B). Then p is based on some
a € A and b satisfies d,yf(z,y) which is a formula almost over a. Choose
b € A\ acl(a) which satisfies the same formula. Then immediately (¥, c)
holds and b ¢ acl(c). ]

Lemma A.4 If M C,, A and A dominates B over M then M C,, B.

Proof. Suppose we fix m € M and b € B\ M so that §(b) holds for some
6 € L(M). Let ¢ = Cb(stp(b/A). ¢ € acl(A) \ M since b ¢ M. Moreover,
c € dcl(d) for a finite sequence of realizations of 6, d. Choose ¢ € M \ acl(m)
and d' € (M) so that ¢ € dcl(d'). Since ¢ & acl(m), one of these realizations

must also not be in acl(m). ]
Corollary A.5 If M, and My are independent over My, My C,, My, and
N = M1 @MO M2 then MQ gm N.

Definition A.6 If M C A then we say that A is na-extendible over M if
there is a model N, AC N and M C,,, N.

The following lemma is implicit in [19].

Lemma A.7 Suppose that M C A and A is na-extendible over M. For any
consistent formula p(x) € L(A), if ¥(z) € L(A) is a consistent formula of
least R*®-rank which implies p(x) then if 1¥(b) holds and M C,, Ab then Ab
is dominated by A over M.

B Appendix: G; subsets of Stone spaces

In this appendix we note two facts from descriptive set theory and then
establish that several subsets of the Stone space S(A) are G5 with respect to
the usual topology when A is algebraically closed. These results are used in
the proof of Proposition 3.27.

Lemma B.1 Let X be any Polish (i.e., separable, complete metric) space.
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1. Let E be a Borel equivalence relation on X. FEither E has countably
many classes or there is a perfect set of pairwise E-inequivalent ele-
ments of X.

2. Any non-empty subset of a countable, Gs subset of X has an isolated
point.

Proof of 2. Suppose A = (), ., U, is non-empty and countable, where
each U, is open in X. Since every subset of A is also a Gj, it suffices to show
that A has an isolated point. Let A denote the topological closure of A in
X. As A is Polish, it is a Baire space. However, every U, N A is dense in A

and
ﬂ(Unﬁfl)ﬂﬂfl\{a}Z@,

new a€A

so it follows that A \ {a} is not dense in A for some a € A. That is, this a
is isolated in A. ]

Fix A countable and algebraically closed. Then the space of types S(A)
(with the usual topology) is a Polish space.

Lemma B.2 {p € S(A) : p is trivial and wt(p) = 1} is a G5 subset of S(A).

Proof. We use the following characterization, which is implicit in Theo-
rem 1.8 of [3].

A type p is trivial of weight 1 if and only if

1. For all countable B O A, all weight 1 types g and r over B,
and all realizations (b,c) of ¢ ® r, if a realizes p|B, a L b,
B

and a | ¢, then a | be.
B B

2. p has weight at least 1, i.e., for all B D A, for all types ¢, r
over B, and all realizations (b, ¢) of ¢ ® r, if a realizes p|B
and a % b, then a | c.

B

3. pis not algebraic.
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Now, for all three of these conditions, a specific instance of its negation is
witnessed by a formula. Hence, a type p is not trivial, weight 1 if and only if it
is not contained in one of the "bad” formulas. At first glance, it appears like
there are continuum constraints, but since the language is countable there
really are only countably many. Hence the negation of our set is an F,, so
we finish. ]

Lemma B.3 Xp = {p: p determines a complete type over B} is a G5 subset
of S(A) for every countable B O A. Hence, {p : p L q} is Gs in S(A) for
every strong type q that is based on A.

Proof. The second sentence follows immediately from the first. Fix a count-
able B O A. For every L(B)-formula §(z) we say that the L(A)-formula
decides ¢ if

p(x) Ap(y) implies §(z) <> 6(y).
Let D(0) = {p : there is some ¢ € p that decides d}. Clearly, each set D(d)
is open. Thus, it suffices to show that p € Xp if and only if p € D(9) for all
d(z) € L(B). However, if p € Xp, then
p(z) Ap(y) implies tp(z/B) = tp(y/B),

so it follows by compactness that some ¢ € p decides § for every § € L(B).
Conversely, suppose p € D(0) for all § € L(B). Then, given a,b each
realizing p, d(a) <> §(b) for all 6 € L(B), hence tp(a/B) = tp(b/B). ]

Corollary B.4 {p: p is trivial, wt(p) = 1 and p L q} is a G5 for every such
q.

Proof. Recall that if p is trivial and wt(p) = 1, then p L ¢ if and only if

a (UJ)
p g "
Lemma B.5 {p € S(A) : p £ A'} is a Gy subset of S(A) for any alge-
braically closed A" C A. In particular,
{p: p is trivial, wt(p) =1 and p L. A’}

is a Gs for any such A’.
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Proof. Since p ,J4‘a A’ implies p 1. A’ among trivial, weight 1 types, the
second sentence follows from the first. To conclude the first, say that the
L(A)-formula ¢(x) decides §(x,y) € L(A) if

Var¥gy ((en) Ablae) Ay L A = [5(ay)  6(rz.y)))

and let D(9) = {p € S(A) : some ¢ € p decides §(z,y)}. Clearly, each D(d)
is an open subset of S(A). Thus, it suffices to prove that p j_“ A’ if and only
if p € D(9) for all §(x,y) € L(A).

To see this, first assume that p IJL‘_“ A’. Then c%d for any c realizing p
and any df(/ A. That is,

Vi, Voo Vy (p(xl) Ap(z2) Ay £ A = [tp(ry/A) = tp(ﬁzy/A)D :

so by compactness for every §(z,y) € L(A) there is a ¢(x) € p deciding J.

Conversely, suppose p € D(0) for every 6(z,y) € L(A). Take c realizing p
and d freely joined from A over A’. Choose ¢* realizing p|Ad. Since p € D(0)
for each §(z,vy), it follows that tp(cd/A) = tp(c*d/A), so c%d as required.
|
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