PERIODS AND IGUSA LOCAL ZETA FUNCTIONS
PRAKASH BELKALE AND PATRICK BROSNAN

ABSTRACT. We show that the coefficients in the Laurent series of the
Igusa local zeta function&(s) = fc f*w are periods. This is proved by
first showing the existence of functional equations for these functions.
This will be used to show in a subsequent paper (by P. Brosnan) that cer-
tain numbers occurring in Feynman amplitudes (up to Gamma factors)
are periods.

We also give several examples of our main result, and one example
showing that Euler’s constantis an exponential period.

1. INTRODUCTION

In their paper[[11], Kontsevich and Zagier give an elementary definition
of a period integral as an absolutely convergent integral of a rational func-
tion over a subset dR" defined by polynomial inequalities and equalities.
They then show that some of the most important quantities in mathematics
are periods and sketch a proof that their notion of a period agrees with the
more elaborate notion that algebraic geometers have studied since Riemann
and Weirstral3. The last chapter links periods to the “framed motives” stud-
ied by A. Goncharov and proposes a structure of a torsor on a certain set
of framed motives. The paper is also full of interesting examples given to
justify the following:

Philosophical Principle 1.1. Whenever you meet a new number and have
decided (or convinced yourself) that it is transcendental, try to figure out
whether it is a period.

In this paper we show the “periodicity” of certain numbers naturally aris-
ing in the theory of Igusa local zeta functions. This result arose out of a
desire to show that certain numbers considered in quantum field theory are
periods. We briefly explain this motivation.

If (D) is a Feynman amplitude coming from a scalar field theory cor-
responding to a Feynman integral with all parameter®ijrithen/(D) =
G(D)J(D) whereG(D) is a relatively simple Gamma factor andD) is
a meromorphic function which can be written in terms of Igusa local zeta
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functions. The numbers we want to show to be periods are the coefficients
in the Laurent series expansion &fD) at D, for D, any integer. We re-
mark that this confirms (albeit in a very weak sense) the fact noticed by
Kreimer and Broadhurst that the principal parts of the Laurent series for
primitive diagrams often have coefficients which are multiple zeta values
(this is not expected in general [2]).

To prove this (or even to state it precisely), we will have to explain the
functions(D) in some detail, and this involves explaining the the tech-
nique of dimensional regularization. This subject is well-known in physics
but unfortunately not in mathematics. However, once dimensional regu-
larization is understood precisely, the proof of the theorem follows from a
result on Igusa local zeta functions which is the main theorem of this paper.

The two topics, dimensional regularization and the arithmetic nature of
the special values of Igusa local zeta functions, have different flavors. We
have, therefore, decided to separate them. In this paper, we consider only
the second topic and prove that the the special values of certain Igusa zeta
functions are periods, a fact which we believe is interesting in its own right.
The connection to Feynman amplitudes will be made in the forthcoming
paper [6]. However, in example 3.1, we sketch the connection to Feynman
amplitudes for a certain typical class of integrals.

To explain our result on Igusa Zeta functions, we start by describing a
special case: Let\,, C R™ be then-simplex

{(x1,...,2,) | le <l,z; >0fori=1,...n}
equipped with the,-form
w=dzx; A ANdz,.

Let f € R[xy,...,z,] be a polynomial function which is non-negative on
A. Then, according to results of Atiyah [1] and Bernstein and Gelfand [3],
the function

I(s) = fiw

A

is meromorphic on the complexplane with isolated singularities. These
functions are callethusa local zeta function®ur main theorem concern-
ing them is the following:

Theorem 1.2. Suppose that € Q[z4,...,z,] is a polynomial with ratio-
nal coefficients and let, be an integer. Let

I(s) = Zai(s — 50)"

be the Laurent series expansionlo§) at s,. Then the:; are periods.
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The proof of this statement has two components. The first is to show
the result for positive integerg. The second is to control the Laurent
series coefficients for negative integess We achieve this by showing the
existence of functional equations of the form:

d+r

(1) >_cils)l(s+i) =0

with the¢; polynomials inQ[s].

It will be convenient to prove a version of this result which is more gen-
eral in the following two senses: (a) the simpl&y can be taken to be a
general semi-algebraic set defined o@rand (b) the functiory can be
taken to lie in the function fiel@(x, . . ., z,). For (b) we will need to use
a more general definition df(s) than the one in[1,/3]. The general result
(Theorenj 2.8) is stated in section 2.

Theorem 1.3.Let X be a smooth variety defined over a fiégld¢ontained
iNRNQ. Letf € O(X) be afunction, and lef’' be a compact pre-oriented
semi-arithmetic subset of ;>((R) defined ovek. Then, ifw € Q"(X)isa
differential form, thdgusa zeta function

) I(s) = /C Fu

extends meromorphically to all & with poles occurring only at negative
integers. Moreover, for any, € Z, the coefficients; in the Laurent expan-
sion
3) I(s) = ai(s — o)’

i>N

are periods.

We will use the symboP to denote the)-algebra of periods and use
the definition of a period that appears inl[11]. For the convenience of the
reader, we also paraphrase this definitiorj in|(2.3).

We thank A. Goncharov, D. Kreimer, M. V. Nori, H. Rossi and T. Tera-
soma for useful communication. The idea of using Picard-Fuchs equations
in Theoren{ 2.B comes from discussions with Madhav Nori. This idea is
standard when studying periods of powers of functions, but it came some-
what of a surprise that there were no Gamma factors at the end.

2. IGUSA ZETA FUNCTIONS

2.1. Atiyah’s Theorem. Let X be a smooth complex algebraic variety de-
fined overR. Let X (R) denote the real points df and letG be a subset of
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X (R) defined by inequalities
4) G={r e X(R)|gi(x) > 0foralli}

where here thg; are real-analytic functions oX (R). Let f be a real-
analytic function onX (R) which is non-negative and not identically zero
onG. LetI' denote the characteristic function@f In this notation Atiyah’s
theorem([1] can be stated as follows.

Theorem 2.1(Atiyah). The functionf*I", which is locally integrable for
R(s) > 0, extends analytically to a distribution o which is a mero-
morphic function ofs in the whole complex plane. Over any relatively
compact open sdf in X the poles off*I" occur at the points of the form
—r/N,r = 1,2,---, whereN is a fixed integer (depending ghand U)
and the order of any pole does not exceed the dimension d¥loreover,
fr =T.

2.2. Semi-algebraic Sets.The following definition is given in[5].

Definition 2.2. AregionC C R™ is semi-algebraidf it is a union of inter-
sections of sets of the forqw € X(R)|f(z) > 0} or {z € X(R)|f(z) =
0} with f € Rlzy, ..., x,].

We will say thatC' C R" is semi-arithmetigf the functionsf appearing
in the definition are iR, [ X1, ..., X,,] with R,, = RN Q.

Definition 2.3. A period is a number whose real and imaginary parts are
given by absolutely convergent integrals of the fofmfdy. whereC' ¢ R”

is a semi-arithmetic sef;, € R,,(z1,...,2,) andu is Lebesgue measure
onR".

Assume thatX is a variety defined oveR. For f € R[X], let X ;>

denote the set

{r e X(R)|f(z) = 0}.
Every pointz € X has an affine neighborhodd which is isomorphic to a
closed subset of”. Following [5], we say that a s&t ¢ X (R) is semi-
algebraicif C'NV (considered as a subsetl®f) is semi-algebraic for every
such affine neighborhodd. If X andz are defined oveR,;,, we can find a
V also defined oveR,;;. We say thaC' is semi-arithmeti¢f C'NV is semi-
arithmetic for all such/. Clearly, X - is semi-algebraic fof € R[.X] and
semi-arithmetic forf € R, [X].

Let C' ¢ X(R) be a semi-algebraic (resp. semi-arithmetic) set contained
in a dimensiom variety X, which contains an open (in the usual topology)
subset ofX (R). It is known that the interior of’ contains a semi-algebraic
(resp. semi-arithmetic) dense open suliget C' which is smooth and ori-
entable. (This follows from Proposition 2.9.10 of [5].) Bypee-orientation
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of C', we mean a choice of such a subSet#long with an orientation aof.
If w € Q"(X) is a differential form and” is pre-oriented, then we make
the definition

(5) /C def /

If C C R™ then the interior ofC is smooth and comes with a canon-
ical pre-orientation inherited from the standard orientatioriR6n For C'
compact, the orientation gives a classiire H,(C,0C) wheredC' is the
topological boundary of'. To use Atiyah’s theorem in the context of semi-
algebraic sets, we need to be able to convert an intggralover an arbi-
trary semi-algebraic set into a sum of integrals over sets of the form of the
setG in (). The following lemma is needed to this end.

Lemmaz2.4.Letf; (1 <¢<n)andg,; (1 <j < m)be two sets of functions
in R[X]. LetU = U; U U, be an oriented open set with

(6) Uy = {zeX|fi>01<i<n},
(7 Uy = {z€X|gi>01<j<m}.
Consider strings of the form

e=(ay,...,an,by,...,bp)

where theu;, b; are in {41, —1} and either all thex’s are +1 or all the
b’s are +1.
Consider

Ue:{l’EX‘CLZ’fZ'>0 bjgj>0 1<z<n,1§j§m}
Then, for a formv € Q™ (X) (withn = dim X),

[z~

where thee are subject to the above constraints.

2.3. Periods. Since our domains of integration are going to be semi-algebraic
sets, we need a more flexible way of generating periods. This is given by
the following theorem whose proof is sketchedlin/[11] (pp. 3,31).

Theorem 2.5. The ringP of periods is exactly the ring generated by num-
bers of the fornjf7 w whereX a smooth algebraic variety of dimensidale-

fined overQ , D C X is a divisor with normal crossings; € Q4(X) is an
algebraic differential form otX of the top degree, andc H,;(X (C), D(C); Q).
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We could have replace@ by Q above, and obtained the same ring (as
Kontsevich and Zagier remark). This is easy because a variety defined over
Q can be viewed as defined ov&;, but we get several copies over the
algebraic closure. But there is one more modification that one can make
which is a bit more subtle. This is to allow for absolutely convergent in-
tegrals. Most examples (eg. multiple zeta values) are not directly periods
in the above sense, the integrals defining them can have singularities on the
boundary. To take care of this we note the following theorem which will be
proved in Sectiof}4.

Theorem 2.6. Let X be a smootm-dimensional algebraic variety defined
over a fieldk C R,,. Let F' be a reduced effective divisor and lete
Q"(X —F) be ann-form. LetC' ¢ X (R) be a pre-oriented semi-arithmetic
set with non-empty interiaf”. Then the integra}fcw € P provided that it
is absolutely convergent.

Remark2.7. The theorem is certainly assumediin/[11] and a proof is sketched
on pages 3 and 31 of that reference. Our purpose in providing our own proof
is to elaborate on their comment that the result follows from resolution of
singularities in characteristit

2.4. Laurent Series Coefficients.We now turn to the theorem on Igusa
Zeta functions.

Theorem 2.8.Let X be a smooth variety defined overC R,, and let

f € O(X) be afunction. Let’ be a compact pre-oriented semi-arithmetic
subset ofX,-((R) defined overk. Then, ifw € Q"(X) is a differential
form, the function

(©) I(s) = /C frw

extends meromorphically to all & with poles occurring only at negative
integers. Moreover, for any, € Z, the coefficients; in the Laurent expan-
sion
(10) I(s) = Z ai(s — s0)’
i>N

are periods.

Ouir first step is to prove the theorem fgy > 0. In this case, Atiyah’s
theorem shows that the integral fiis) converges and is analytic in a neigh-

borhood ofsy,. Thus, assuming # 0, we can differentiate under the inte-
gral sign to obtain

(11) 10(s4) = /C £ log!(f)w.
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Now

_ [t fl@) -1
(12) logf(x)—/o (f(x)—l)t—i—ldt'

Thus we can write thivg factors in [(11) as period integrals.
To do this explicitly, set” = X x Al, D = C x [0,1]' and
flz) =1 flz) =1
(f(z) =Dt +1 (f(z) =Dt +1

n:u)/\ dtl/\/\ dtl

We then have
13 o= [ folog'(f)w.
(13) /Dfn/cf og!(f)w

The left hand side is absolutely convergent. Thi#4(s,) is a period for
all l as long as, > 0 (theorenj 2.6), and the theorem is verified §pr> 0.

To verify the theorem fok, < 0, we use an auxiliary function and the
Picard-Fuchs equation. Set

(14) J(t) = /C : j’t ;

viewing the integrand as anform on X x A'. ThenJ(t) = Y., I())!

for all t such that the sum converges. Siri¢és compact,f is bounded on

C' by some constan®. Thus, fort < 1/R, C' does not intersect the divisor

Z = V(1 —tf) where the integrand may have a pole, and the integral (14)
converges.

Using the triangulation theorem for semi-algebraic sets ([5] Theorem
9.2.1), we can assume th@is homeomorphic analytically to ansimplicial
complex with onen-cell and thatC' is contained in a divisoD C X (de-
fined overk) Leto € H,(X(R) — Z(R), D(R) — Z(R);Z) be the class
represented by integration over the point€athat are smooth iX'. Then,
for eacht with |t| < 1/R,

(15) J(t):/liutf.

There is an algebraic vector bundle= H}. (X —Z, D—Z) overA! — S
whereS is a finite subset of\! which can include 0 and is defined over
The stalks ol are the de Rham cohomology groui$(X,—Z,, Z,— D,)
over the fieldk(y) forally € A'—S. The integrand = 747 can be thought
of as a global section of (because it is an algebraic differential form of
the top degree it is closed and vanishes when restrictéd-to7).
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This bundleV carries an algebraic connection (Gauss-MaRinan iso-
morphism over\! — S (of analytic vector bundles)

VA% — ,C ® OYC
Z

where L is the local system whose fiber atc Y is the singular coho-
mology of the pai( X, — Z,, D, — Z,). The connection is integrable, has
regular singular points and the sheaf of flat sections is the gheaf

If o is a flat section of the dual local systefh (which is the local system
of the homology of pairé/™(X,— Z,, D,— Z,)) over an open séf C A'—
S in the analytic topology, then we can form a functionléng(y) = fa Sy-
If T is a tangent vector field ofi, we have the formula

T(g) = / Vr(s)y.

Now, V is a vector bundle of finite rank so given any sectiamverA!'—S,
there is a relation of the form (we use only the algebraicityafnd not the
regularity)

> atV5 (),

where they; are rational functions inwith coefficients ink. We can assume
that they are polynomials by multiplying the equation by a polynomial
k[t].

Integrating this against the obtained fromC' ands = 7 we obtain a
nontrivial linear relation of the form

(16) Z a:(t)J9(t) =0
=0

where theg;(t) € k(t). (Seel[8] for a complete reference to the Picard-
Fuchs theory .)

Clearing denominators i (IL6), we can assume thatgthe € k|t].
Expanding outg;(t) = 3% a;;t/ (for somea;; € k) and JO(t) =

Jj=

! o

E G J. ,)'tﬁf’l(j) and equating terms with the same powet,ofve ob-
— (7 —1)!

Jj=0

tain a set of relations between thgj)’'s. Explicitly, we obtain the relation

(17) Zzzai,j%l(sﬂ—j)ﬁzo

>0 i=1 j=0

whered = maxd;.



PERIODS AND IGUSA LOCAL ZETA FUNCTIONS 9
(s+1i—j)!
s—j)!
nomial of degreeé in s, we see that we have a relation of the form

Noting that, for each paif, j), the coefficient; ; is a poly-

d+r
(18) > ci(s)I(s+i) =0

=0
with the ¢; polynomials ink[s]. Note that, as long ag andw are nonzero
the relation[(1B) is nontrivial.

We wish to show thaf (18) holds for all complex valuessof By the
uniqueness of analytic continuation, it is enough to show that this is so for
R(s) > d + r. We then use the following corollary of a result from [7] (p.
953).

Theorem 2.9(Carleson) Let i(z) be holomorphic fofR(z) > 0 and as-
sumeh(n) = 0 forn € N. Thenh(z) = 0 if h(z) < Ke™* for a
constantsn and K.

To use Carleson’s theorem, [B(z) be the left hand side of (18) viewed
as a function of a complex variable= s — d — r. SetQ(z) = (Zi(—f))M
where)M is a positive integer greater than the degrees of amy(ef. Then
Q(z) is holomorphic forR(z) > 0. Moreover, sincef is bounded on the
semi-algebraic sef by a numberR, |1(s)| is bounded byd R*® for some
constantd. ThusQ(z) is bounded byK ™) for some constants, and
K. It follows from Carleson’s theorem thék(z) = 0 for %(s) > 0. Thus,
by uniqueness of analytic continuation, it follows tidxt:) = 0 for all =.

Without loss of generality, we can assume thds) in (18) is nonzero.
Then we have a relation

d+r

(19) I(s) = Zli(s)f(s + ).
—ci(s)

ColS
rem[2.8 by desc(z—:-nding induction ep For sy, > 0, the theorem is estab-
lished. Suppose then that the theorem is establisheg, for A/. We can
use the Laurent expansions for the terms on right hand sidle jof (19) to write
out the Laurent expansion for the left hand side. Using the fact thdt the
are rational function irk(¢) and using the Laurent expansionsd§) at
sg > M, itis easy to see that the theorem holdsdot s;.

wherel;(s) = . Using (19), we can complete the proof of Theo-

Remark2.1Q The use of Carleson’s theorem is intriguing and the question
naturally arises if there is a motivic proof . Namely, from the validity of the
functional equation for integer > 0, we deduced it for al. Now consider
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the case of rational and positive. The equation

d+r

> als)I(s+i)=0

=0
is then a nontrivial relation between periods which is obtained only at the
level of values (and not in the abstract ring of periods which is conjectured
to inject into complex numbers[11]). Itis of course expected that the equa-
tion holds at a motivic level, but this is not visible from our method.

Remark2.11 Precedents to the functional equation in theofem 2.8 should
be noted. They first appear in Bernstein’s papér [4]. Using the theory of
D-modules, he shows that jf is non vanishing orR™ , the domain of
integration was all oR™ and the polynomial functiorf satisfied a growth
rate of the form

F(X)] = X
for A > 0and||(x,...,z,)|| = > 2%, then functions of the type

H(s) = fodxy, ... dx,
Rn
satisfied functional equations. This was achieved beautifully using the the-
ory of D—modules. But this approach fails (or at least we could not make
it work) when the domain of integration is an arbitrary semi-algebraic set.

3. EXAMPLES

Example 3.1. Let G be a graph without self loops and withedges labeled
1,...,n. Letx, denote a formal variable placed on the edge £(G) (the
edge set ofy).

Form the homogenous polynomialinvariables

P=> I«
T egT
where thel’ sum is over spanning trees @f This polynomial appears in
the study of Feynman amplitudes, and the matrix tree theorem shows that
this polynomial can be expressed as a determinant[2, 12].
Let A, C R" be the standard-simplex (each coordinate positive and
sum of coordinates- 1). Consider the function

I(s) = / Pdzy ... dx,
Ap

This has an meromorphic continuation to all@fand our theorem proves

that the values (residues, Taylor series coefficients) at every integer of this
function are periods. These special values are related to Feynman amplitude
calculations.
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To describe the relation, I8t denote the vertex set @ and pick an
orientation ofG denoting byh(e) (resp. t(e)) the head (resp. tail) of the
edgee. Form the integral

1 D
(20) J(D>:/RED££TWH5( S - 3 o [[

veEV  elh(e)=v elt(e)=v eckE

whered denotes the delta function. The integral is gotten by applying the
Feynman rules([10]) to the gragh. The delta function insures conserva-
tion of momentum, and it can be removed by replacing the integration over
all edges by an integral over the space of loops in the graph.

For example, for the graph

(22) U3
SN
(%) l—r V3
U1
we have the integral
/ 1
rzp (P +1)2(r2+1)2((1 —7)2+1)2
(where here we usi to denotg/|?).
When the integral i (20) converges, it is given by

a1 PR2T(E — by D/2)
T'(E)

whereb;, is the first Betti number ofy and we writeE for the number of
edges.

dP1dPr

(22)  J(D)=

(23) J(D) =

1(=D/2)

To obtain this expression, one uses the technique of Feynman parameters.
Seel[[10] (pp. 206—-207, exercises 15 & 16) for a derivation of the expression
in the casé) = 4 (easily generalized to higher dimension). Fosuch that
the integral does not converge [23) can be taken as the definition of the
J(D). Moreover, ad (s) is a meromorphic complex-valued functiop, |(23)
can be taken as the definition D) for complexD.

In the terminology of quantum field theory, (20) is a Feynman amplitude
with zero external momentum and all masses equdl. tAs such, it is
a special Feynman amplitude; however, it is typical in the sense that all
Feynman amplitudes can be expressed in terms of Igusa zeta functions using
considerations similar to the ones used to defivé (23). An general theory,
will we presented in [6].
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Example 3.2.Let f(z) = z(1 — z) and

/fdx

In this case/(s) is the well-known Beta function or Eulerian integral of the
firstkind B(s + 1, s+ 1) (seel[14] p. 253). Expressing the Beta function in
terms of Gamma functions, we have
r Hr 1
/() = DE DTG +1)
I'(2s + 2)

Using the functional equation, we can write this as
s+ 1)I'(s+1)
24 I(s) = :
(24) ()= s Dr@s 11)
We can then use the expansionleg I'(s + 1) to write an expansion for

I(s) in terms of special values of the Riemann zeta function.
By ([14], 13.6), we have

(25) logl(s+1) = —ys + Z

Substituting this expression |n@24), we obtain

(26) log(2s + 1) +logI(s) = #(2’”1 — 1)¢(m)s™
Thus,
@) 1) = ey T @ - 1cm)e) Y (-29)"

Expanding this out in powers af we see that all coefficients can be ex-
pressed as finite rational combinations of fien). Thus we obtain an
explicit example of theorem 3.8.

Note that we could recover the functional equation for the Beta func-
tion using using the methods we used to prover thedrein 2.8. However,
the easiest way to understand the construction is to phrase it in terms of
Bernstein’s theory. This approach consists of finding a differential operator
D € k[z, s,d/dx] (no differentiations irs), so that

Df* = b(s)f*!

and using this to decrease the order. In our case we find

[(1— 21;)% +4s]f* = sf* .
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Using this and integration by parts we dét + 2)/(s) = sI(s — 1). The
functional equation turns out to be simple but the Taylor series coefficients
at say; are not simple (involver) and at; involve elliptic integrals. That a
single functional equation captures the growth of these integrals of different
genus is surprising.

Let us analyze this example in relation to the algebraic cupes=
z(1 — z) for positive integersV. Let Cy be the smooth model of this
equation. It admits a mapto P! with coordinater. This map is ramified
over(, 1,00. There is a unique lifting of the real paity 1| to Cy so that
y stays real. The values(%) are therefore intimately tied with the pairs

(Cn,{0,1}).

If the boundary is irregular, the method of the above example runs into
serious difficulties.

This theorem connects with the work of Terasoma [13] who showed that
the coefficients of the Taylor expansion of certain Selberg integrals with
respect to exponential variables can be expressed as a linear combination of
multiple zeta values. We thank Terasoma for bringing this to our attention.
This shows the possible complexity of the Taylor series coefficients.

Example 3.3.In section 4.3 of([11], the notion of a@xponential periods
introduced. This is a number that can be written as an absolutely convergent
integral of the product of an algebraic function with the exponential of an
algebraic function over a semi-algebraic set where all polynomials appear-
ing in the integral have algebraic coefficients. The prototypical example of
an exponential period is

\/_:/ e~ dz.

In the last paragraph of [11], the authors speculate that the stpof
nential periodscan be reasonably extended to include Euler's constant
Using (12) and (24), however, it is quite easy to see thatready is an
exponential period. Explicitly,

(28) v = —/ e “logxdr

- // =l e
[CES e

4. PERIODS AND SEMFARITHMETIC SETS

In this section we prove a theorém[2.6. The main tool is the same corol-
lary of resolution of singularities used by Atiyah to prove theofem 2.1. We
state it here in the form that we will use.
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Theorem 4.1(Resolution Theorem)Let F' € O(X) be a nonzero function
on a smooth, complexdimensional algebraic variety. Let € Q" (X — E)
be a differentialn-form whereF is a divisor. LetZ(w) denote the zero set
of w. Then there is a proper morphism: X — X from a smooth variety
X such that

(i) ¢: X —A — X — Ais an isomorphism, wheré¢ = F~1(0)UEU
Z(w)and A = ¢ (A).

(i) for eachP e X there are local coordinategy,, . . . ,,) centered
at P so that, locally nearP,

T
=1
w = 5Hy;jdy1/\--~/\dyn
j=1

wheree, 6 are units inOx p, thek; are non-negative integers and theare
arbitrary integers.

The theorem, the statement of which is very close to the statement of
Atiyah’s resolution theorem on p. 147 of [1], is proved by applying Main
Theorem Il in [9] to the ideal$'Ox, E andZ(w).

Proposition 4.2. Let X be a smootm-dimensional algebraic variety de-
fined ovelR,;,. Let " be a reduced effective divisor anddee Q" (X —E)
be ann-from. Let

G = {r e X(R)|gi(x) = 0}

for some sefg; }!", of functions inO(X'). be a compact, pre-oriented semi-
algebraic set with non-empty interias®. Thenwa converges absolutely

only if there is a smooth-dimensional algebraic varietX with proper,

birational morphismy : X — X and a compact semi-algebraic sgtsuch
that

0] fé Yrw = wa.

(i) ¢*w is holomorphic orG.

Proof. Using the resolution theorem with = [[", ¢;, we can find a
smooth varietyX with a proper, birational morphism t& such that for
every pointP € X we have local paramete(g,,--- ,y,) defined in a
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neighborhood ofP with
goy = a]]y”
j=1

Pw = 6Hy§jdy1/\~-/\dyn.

Jj=1

Here thee; andé are invertible neaP. SetG equal to the analytic closure
of ¢~'(G — A) with A as in the resolution theorem. The¢p p*w = [, w
becausé& andG differ only by measuré sets. Moreover, sinae is proper
andG is a closed subset of '@, G is compact.

To see thats*w is holomorphic on7, let P € G be a point and let/ be
a neighborhood of with a local coordinate systefw;, - - - ,y,) as in the
resolution theorem. SincE is in the closure ofp™' (G — A), ¢;(P) > 0
for all i. Lets; be the sign£1) of ¢;,(P). Then, sincef,,w is absolutely
convergent, it follows that

(29) / prw = / [Tv7 dnn--Ady,
0<siyi(p)<r 0<siyi(p)<r j_1

is absolutely convergent for a sufficiently smalllt is easy to see that this
is not possible unleds > 0 for all j. Thusy*w is holomorphic atP. [

Proposition 4.3. Let X be a smooth algebraic variety ové,,, and let
G = {z € X(R)|g;(z) > 0} be a compact pre-oriented set. Lete
Ox(X) be a differentialn-form. Then there is a divisobD C X and a
chaino € H,(X, D) suchthatf,w = [ w.

Proof. The pre-orientation o&' gives us a dense, smooth, open semi-algebraic
subsetU in G with an orientation orl/. We, therefore, obtain a chain

o € H,(X,D) whereD is the set of zeroes of the functiogs defining

G. Thiso corresponds to the orientation on the open subsed we have

fa W= fG w. O
Using theorem 2]5, theorgm 2.6 is then a corollary of the proposition.
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