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ABSTRACT. We show that the coefficients in the Laurent series of the
Igusa local zeta functionsI(s) =

∫
C

fsω are periods. This is proved by
first showing the existence of functional equations for these functions.
This will be used to show in a subsequent paper (by P. Brosnan) that cer-
tain numbers occurring in Feynman amplitudes (up to Gamma factors)
are periods.

We also give several examples of our main result, and one example
showing that Euler’s constantγ is an exponential period.

1. INTRODUCTION

In their paper [11], Kontsevich and Zagier give an elementary definition
of a period integral as an absolutely convergent integral of a rational func-
tion over a subset ofRn defined by polynomial inequalities and equalities.
They then show that some of the most important quantities in mathematics
are periods and sketch a proof that their notion of a period agrees with the
more elaborate notion that algebraic geometers have studied since Riemann
and Weirstraß. The last chapter links periods to the “framed motives” stud-
ied by A. Goncharov and proposes a structure of a torsor on a certain set
of framed motives. The paper is also full of interesting examples given to
justify the following:

Philosophical Principle 1.1. Whenever you meet a new number and have
decided (or convinced yourself) that it is transcendental, try to figure out
whether it is a period.

In this paper we show the “periodicity” of certain numbers naturally aris-
ing in the theory of Igusa local zeta functions. This result arose out of a
desire to show that certain numbers considered in quantum field theory are
periods. We briefly explain this motivation.

If I(D) is a Feynman amplitude coming from a scalar field theory cor-
responding to a Feynman integral with all parameters inQ, thenI(D) =
G(D)J(D) whereG(D) is a relatively simple Gamma factor andJ(D) is
a meromorphic function which can be written in terms of Igusa local zeta
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functions. The numbers we want to show to be periods are the coefficients
in the Laurent series expansion ofJ(D) at D0 for D0 any integer. We re-
mark that this confirms (albeit in a very weak sense) the fact noticed by
Kreimer and Broadhurst that the principal parts of the Laurent series for
primitive diagrams often have coefficients which are multiple zeta values
(this is not expected in general [2]).

To prove this (or even to state it precisely), we will have to explain the
functionsI(D) in some detail, and this involves explaining the the tech-
nique of dimensional regularization. This subject is well-known in physics
but unfortunately not in mathematics. However, once dimensional regu-
larization is understood precisely, the proof of the theorem follows from a
result on Igusa local zeta functions which is the main theorem of this paper.

The two topics, dimensional regularization and the arithmetic nature of
the special values of Igusa local zeta functions, have different flavors. We
have, therefore, decided to separate them. In this paper, we consider only
the second topic and prove that the the special values of certain Igusa zeta
functions are periods, a fact which we believe is interesting in its own right.
The connection to Feynman amplitudes will be made in the forthcoming
paper [6]. However, in example 3.1, we sketch the connection to Feynman
amplitudes for a certain typical class of integrals.

To explain our result on Igusa Zeta functions, we start by describing a
special case: Let∆n ⊂ Rn be then-simplex

{(x1, . . . , xn) |
∑

x1 ≤ 1, xi ≥ 0 for i = 1, . . . n}

equipped with then-form

ω = dx1 ∧ · · · ∧ dxn.

Let f ∈ R[x1, . . . , xn] be a polynomial function which is non-negative on
∆. Then, according to results of Atiyah [1] and Bernstein and Gelfand [3],
the function

I(s) =

∫
∆n

f sω

is meromorphic on the complexs-plane with isolated singularities. These
functions are calledIgusa local zeta functions. Our main theorem concern-
ing them is the following:

Theorem 1.2. Suppose thatf ∈ Q[x1, . . . , xn] is a polynomial with ratio-
nal coefficients and lets0 be an integer. Let

I(s) =
∑
i≥N

ai(s− s0)
i

be the Laurent series expansion ofI(s) at s0. Then theai are periods.
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The proof of this statement has two components. The first is to show
the result for positive integerss0. The second is to control the Laurent
series coefficients for negative integerss0. We achieve this by showing the
existence of functional equations of the form:

(1)
d+r∑
i=0

ci(s)I(s + i) = 0

with theci polynomials inQ[s].
It will be convenient to prove a version of this result which is more gen-

eral in the following two senses: (a) the simplex∆n can be taken to be a
general semi-algebraic set defined overQ, and (b) the functionf can be
taken to lie in the function fieldQ(x0, . . . , xn). For (b) we will need to use
a more general definition ofI(s) than the one in [1, 3]. The general result
(Theorem 2.8) is stated in section 2.

Theorem 1.3. Let X be a smooth variety defined over a fieldk contained
in R∩Q. Letf ∈ O(X) be a function, and letC be a compact pre-oriented
semi-arithmetic subset ofXf≥0(R) defined overk. Then, ifω ∈ Ωn(X) is a
differential form, theIgusa zeta function

(2) I(s) =

∫
C

f sω

extends meromorphically to all ofC with poles occurring only at negative
integers. Moreover, for anys0 ∈ Z, the coefficientsai in the Laurent expan-
sion

(3) I(s) =
∑
i≥N

ai(s− s0)
i

are periods.

We will use the symbolP to denote theQ-algebra of periods and use
the definition of a period that appears in [11]. For the convenience of the
reader, we also paraphrase this definition in (2.3).

We thank A. Goncharov, D. Kreimer, M. V. Nori, H. Rossi and T. Tera-
soma for useful communication. The idea of using Picard-Fuchs equations
in Theorem 2.8 comes from discussions with Madhav Nori. This idea is
standard when studying periods of powers of functions, but it came some-
what of a surprise that there were no Gamma factors at the end.

2. IGUSA ZETA FUNCTIONS

2.1. Atiyah’s Theorem. Let X be a smooth complex algebraic variety de-
fined overR. LetX(R) denote the real points ofX and letG be a subset of
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X(R) defined by inequalities

(4) G = {x ∈ X(R) | gi(x) ≥ 0 for all i}
where here thegi are real-analytic functions onX(R). Let f be a real-
analytic function onX(R) which is non-negative and not identically zero
onG. LetΓ denote the characteristic function ofG. In this notation Atiyah’s
theorem [1] can be stated as follows.

Theorem 2.1(Atiyah). The functionf sΓ, which is locally integrable for
<(s) > 0, extends analytically to a distribution onX which is a mero-
morphic function ofs in the whole complex plane. Over any relatively
compact open setU in X the poles off sΓ occur at the points of the form
−r/N, r = 1, 2, · · · , whereN is a fixed integer (depending onf and U )
and the order of any pole does not exceed the dimension ofX. Moreover,
f 0Γ = Γ.

2.2. Semi-algebraic Sets.The following definition is given in [5].

Definition 2.2. A regionC ⊂ Rn is semi-algebraicif it is a union of inter-
sections of sets of the form{x ∈ X(R)|f(x) > 0} or {x ∈ X(R)|f(x) =
0} with f ∈ R[x1, . . . , xn].

We will say thatC ⊂ Rn is semi-arithmeticif the functionsf appearing
in the definition are inRalg[X1, . . . , Xn] with Ralg = R ∩Q.

Definition 2.3. A period is a number whose real and imaginary parts are
given by absolutely convergent integrals of the form

∫
C

fdµ whereC ⊂ Rn

is a semi-arithmetic set,f ∈ Ralg(x1, . . . , xn) andµ is Lebesgue measure
onRn.

Assume thatX is a variety defined overR. For f ∈ R[X], let Xf≥0

denote the set
{x ∈ X(R)|f(x) ≥ 0}.

Every pointx ∈ X has an affine neighborhoodV which is isomorphic to a
closed subset ofAn. Following [5], we say that a setC ⊂ X(R) is semi-
algebraicif C∩V (considered as a subset ofRn) is semi-algebraic for every
such affine neighborhoodV . If X andx are defined overRalg, we can find a
V also defined overRalg. We say thatC is semi-arithmeticif C∩V is semi-
arithmetic for all suchV . Clearly,Xf≥0 is semi-algebraic forf ∈ R[X] and
semi-arithmetic forf ∈ Ralg[X].

Let C ⊂ X(R) be a semi-algebraic (resp. semi-arithmetic) set contained
in a dimensionn varietyX, which contains an open (in the usual topology)
subset ofX(R). It is known that the interior ofC contains a semi-algebraic
(resp. semi-arithmetic) dense open subsetU ⊂ C which is smooth and ori-
entable. (This follows from Proposition 2.9.10 of [5].) By apre-orientation
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of C, we mean a choice of such a subsetU along with an orientation ofU .
If ω ∈ Ωn(X) is a differential form andC is pre-oriented, then we make
the definition

(5)
∫

C

ω
def
=

∫
U

ω.

If C ⊂ Rn then the interior ofC is smooth and comes with a canon-
ical pre-orientation inherited from the standard orientation onRn. For C
compact, the orientation gives a class inσ ∈ Hn(C, ∂C) where∂C is the
topological boundary ofC. To use Atiyah’s theorem in the context of semi-
algebraic sets, we need to be able to convert an integral

∫
C

ω over an arbi-
trary semi-algebraic set into a sum of integrals over sets of the form of the
setG in (4). The following lemma is needed to this end.

Lemma 2.4.Letfi (1 ≤ i ≤ n) andgj (1 ≤ j ≤ m) be two sets of functions
in R[X]. LetU = U1 ∪ U2 be an oriented open set with

U1 = {x ∈ X|fi > 0 1 ≤ i ≤ n},(6)

U2 = {x ∈ X|gi > 0 1 ≤ j ≤ m}.(7)

Consider strings of the form

e = (a1, . . . , an, b1, . . . , bm)

where theai, bj are in {+1,−1} and either all thea’s are +1 or all the
b’s are+1.

Consider

Ue = {x ∈ X|aifi > 0, bjgj > 0, 1 ≤ i ≤ n; 1 ≤ j ≤ m}
Then, for a formω ∈ Ωn(X) (with n = dim X),

(8)
∫

U

ω =
∑
e

∫
Ue

ω

where thee are subject to the above constraints.

2.3. Periods. Since our domains of integration are going to be semi-algebraic
sets, we need a more flexible way of generating periods. This is given by
the following theorem whose proof is sketched in [11] (pp. 3,31).

Theorem 2.5. The ringP of periods is exactly the ring generated by num-
bers of the form

∫
γ
ω whereX a smooth algebraic variety of dimensiond de-

fined overQ , D ⊂ X is a divisor with normal crossings,ω ∈ Ωd(X) is an
algebraic differential form onX of the top degree, andγ ∈ Hd(X(C), D(C); Q).
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We could have replacedQ by Q above, and obtained the same ring (as
Kontsevich and Zagier remark). This is easy because a variety defined over
Q can be viewed as defined overQ, but we get several copies over the
algebraic closure. But there is one more modification that one can make
which is a bit more subtle. This is to allow for absolutely convergent in-
tegrals. Most examples (eg. multiple zeta values) are not directly periods
in the above sense, the integrals defining them can have singularities on the
boundary. To take care of this we note the following theorem which will be
proved in Section 4.

Theorem 2.6. Let X be a smoothn-dimensional algebraic variety defined
over a fieldk ⊂ Ralg. Let F be a reduced effective divisor and letω ∈
Ωn(X−F ) be ann-form. LetC ⊂ X(R) be a pre-oriented semi-arithmetic
set with non-empty interiorCo. Then the integral

∫
C

ω ∈ P provided that it
is absolutely convergent.

Remark2.7. The theorem is certainly assumed in [11] and a proof is sketched
on pages 3 and 31 of that reference. Our purpose in providing our own proof
is to elaborate on their comment that the result follows from resolution of
singularities in characteristic0.

2.4. Laurent Series Coefficients.We now turn to the theorem on Igusa
Zeta functions.

Theorem 2.8. Let X be a smooth variety defined overk ⊂ Ralg and let
f ∈ O(X) be a function. LetC be a compact pre-oriented semi-arithmetic
subset ofXf≥0(R) defined overk. Then, ifω ∈ Ωn(X) is a differential
form, the function

(9) I(s) =

∫
C

f sω

extends meromorphically to all ofC with poles occurring only at negative
integers. Moreover, for anys0 ∈ Z, the coefficientsai in the Laurent expan-
sion

(10) I(s) =
∑
i≥N

ai(s− s0)
i

are periods.

Our first step is to prove the theorem fors0 > 0. In this case, Atiyah’s
theorem shows that the integral forI(s) converges and is analytic in a neigh-
borhood ofs0. Thus, assumingf 6= 0, we can differentiate under the inte-
gral sign to obtain

(11) I(l)(s0) =

∫
C

f s0 logl(f)ω.
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Now

(12) log f(x) =

∫ 1

0

f(x)− 1

(f(x)− 1)t + 1
dt.

Thus we can write thelog factors in (11) as period integrals.
To do this explicitly, setY = X × Al, D = C × [0, 1]l and

η = ω ∧ f(x)− 1

(f(x)− 1)t1 + 1
dt1 ∧ · · · ∧

f(x)− 1

(f(x)− 1)tl + 1
dtl.

We then have

(13)
∫

D

f s0η =

∫
C

f s0 logl(f)ω.

The left hand side is absolutely convergent. Thus,I(l)(s0) is a period for
all l as long ass0 > 0 (theorem 2.6), and the theorem is verified fors0 > 0.

To verify the theorem fors0 ≤ 0, we use an auxiliary function and the
Picard-Fuchs equation. Set

(14) J(t) =

∫
C

ω

1− tf

viewing the integrand as ann-form onX × A1. ThenJ(t) =
∑

l≥0 I(l)tl

for all t such that the sum converges. SinceC is compact,f is bounded on
C by some constantR. Thus, fort < 1/R, C does not intersect the divisor
Z = V (1− tf) where the integrand may have a pole, and the integral (14)
converges.

Using the triangulation theorem for semi-algebraic sets ([5] Theorem
9.2.1), we can assume thatC is homeomorphic analytically to ann-simplicial
complex with onen-cell and that∂C is contained in a divisorD ⊂ X (de-
fined overk) Let σ ∈ Hn(X(R) − Z(R), D(R) − Z(R); Z) be the class
represented by integration over the points ofC that are smooth inX. Then,
for eacht with |t| < 1/R,

(15) J(t) =

∫
σ

ω

1− tf
.

There is an algebraic vector bundleV = Hm
DR(X−Z,D−Z) overA1−S

whereS is a finite subset ofA1 which can include 0 and is defined overk.
The stalks ofV are the de Rham cohomology groupsHn(Xy−Zy, Zy−Dy)
over the fieldk(y) for all y ∈ A1−S. The integrands = ω

1−tf
can be thought

of as a global section ofV (because it is an algebraic differential form of
the top degree it is closed and vanishes when restricted toD − Z).
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This bundleV carries an algebraic connection (Gauss-Manin)∇, an iso-
morphism overA1 − S (of analytic vector bundles)

VA1
C
→ L

⊗
Z

OYC

whereL is the local system whose fiber aty ∈ YC is the singular coho-
mology of the pair(Xy − Zy, Dy − Zy). The connection is integrable, has
regular singular points and the sheaf of flat sections is the sheafL.

If σ is a flat section of the dual local systemL∗ (which is the local system
of the homology of pairsHn(Xy−Zy, Dy−Zy)) over an open setU ⊂ A1−
S in the analytic topology, then we can form a function onU : g(y) =

∫
σ
sy.

If T is a tangent vector field onU , we have the formula

T (g) =

∫
σ

∇T (s)y.

Now,V is a vector bundle of finite rank so given any sections overA1−S,
there is a relation of the form (we use only the algebraicity of∇ and not the
regularity)

r∑
i=0

qi(t)∇i
T (s)y.

where theqi are rational functions int with coefficients ink. We can assume
that they are polynomials by multiplying the equation by a polynomial∈
k[t].

Integrating this against theσ obtained fromC ands = ω
1−tf

we obtain a
nontrivial linear relation of the form

(16)
r∑

i=0

qi(t)J
(i)(t) = 0

where theqi(t) ∈ k(t). (See [8] for a complete reference to the Picard-
Fuchs theory .)

Clearing denominators in (16), we can assume that theqi(t) ∈ k[t].
Expanding outqi(t) =

∑di

j=0 ai,jt
j (for someai,j ∈ k) and J (i)(t) =∑

j≥0

j!

(j − i)!
tj−iI(j) and equating terms with the same power oft, we ob-

tain a set of relations between theI(j)′s. Explicitly, we obtain the relation

(17)
∑
s≥0

r∑
i=1

d∑
j=0

ai,j
(s + i− j)!

(s− j)!
I(s + i− j) ts = 0

whered = max di.
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Noting that, for each pair(i, j), the coefficientai,j
(s + i− j)!

(s− j)!
is a poly-

nomial of degreei in s, we see that we have a relation of the form

(18)
d+r∑
i=0

ci(s)I(s + i) = 0

with theci polynomials ink[s]. Note that, as long asf andω are nonzero
the relation (18) is nontrivial.

We wish to show that (18) holds for all complex values ofs. By the
uniqueness of analytic continuation, it is enough to show that this is so for
<(s) > d + r. We then use the following corollary of a result from [7] (p.
953).

Theorem 2.9(Carleson). Let h(z) be holomorphic for<(z) > 0 and as-
sumeh(n) = 0 for n ∈ N. Thenh(z) = 0 if h(z) ≤ Kem<(z) for a
constantsm andK.

To use Carleson’s theorem, letP (z) be the left hand side of (18) viewed
as a function of a complex variablez = s − d − r. SetQ(z) = P (z)

(z+1)M

whereM is a positive integer greater than the degrees of any ofci(s). Then
Q(z) is holomorphic for<(z) > 0. Moreover, sincef is bounded on the
semi-algebraic setC by a numberR, |I(s)| is bounded byAR<(s) for some
constantA. ThusQ(z) is bounded byKem<(s) for some constantsm and
K. It follows from Carleson’s theorem thatQ(z) = 0 for <(s) > 0. Thus,
by uniqueness of analytic continuation, it follows thatQ(z) = 0 for all z.

Without loss of generality, we can assume thatc0(s) in (18) is nonzero.
Then we have a relation

(19) I(s) =
d+r∑
i=1

li(s)I(s + i).

whereli(s) =
−ci(s)

c0(s)
. Using (19), we can complete the proof of Theo-

rem 2.8 by descending induction ons0. For s0 > 0, the theorem is estab-
lished. Suppose then that the theorem is established fors0 > M . We can
use the Laurent expansions for the terms on right hand side of (19) to write
out the Laurent expansion for the left hand side. Using the fact that theli
are rational function ink(t) and using the Laurent expansions ofI(s) at
s0 > M , it is easy to see that the theorem holds fors = s0.

Remark2.10. The use of Carleson’s theorem is intriguing and the question
naturally arises if there is a motivic proof . Namely, from the validity of the
functional equation for integers > 0, we deduced it for alls. Now consider
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the case ofs rational and positive. The equation
d+r∑
i=0

ci(s)I(s + i) = 0

is then a nontrivial relation between periods which is obtained only at the
level of values (and not in the abstract ring of periods which is conjectured
to inject into complex numbers [11]). It is of course expected that the equa-
tion holds at a motivic level, but this is not visible from our method.

Remark2.11. Precedents to the functional equation in theorem 2.8 should
be noted. They first appear in Bernstein’s paper [4]. Using the theory of
D-modules, he shows that iff is non vanishing onRn , the domain of
integration was all ofRn and the polynomial functionf satisfied a growth
rate of the form

|f(X)| ≥ C||X||A

for A > 0 and||(x1, . . . , xn)|| =
∑

x2
i , then functions of the type

H(s) =

∫
Rn

f−sdx1, . . . , dxn

satisfied functional equations. This was achieved beautifully using the the-
ory ofD−modules. But this approach fails (or at least we could not make
it work) when the domain of integration is an arbitrary semi-algebraic set.

3. EXAMPLES

Example 3.1. Let G be a graph without self loops and withn edges labeled
1, . . . , n. Let xe denote a formal variable placed on the edgee ∈ E(G) (the
edge set ofG).

Form the homogenous polynomial inn-variables

P =
∑

T

∏
e6∈T

xe

where theT sum is over spanning trees ofG. This polynomial appears in
the study of Feynman amplitudes, and the matrix tree theorem shows that
this polynomial can be expressed as a determinant [2, 12].

Let ∆n ⊂ Rn be the standardn-simplex (each coordinate positive and
sum of coordinates= 1). Consider the function

I(s) =

∫
∆n

P sdx1 . . . dxn

This has an meromorphic continuation to all ofC and our theorem proves
that the values (residues, Taylor series coefficients) at every integer of this
function are periods. These special values are related to Feynman amplitude
calculations.



PERIODS AND IGUSA LOCAL ZETA FUNCTIONS 11

To describe the relation, letV denote the vertex set ofG and pick an
orientation ofG denoting byh(e) (resp. t(e)) the head (resp. tail) of the
edgee. Form the integral

(20) J(D) =

∫
RED

∏
e∈E

1

1 + |pe|2
∏
v∈V

δ(
∑

e|h(e)=v

pe −
∑

e|t(e)=v

pe)
∏
e∈E

dDpe

whereδ denotes the delta function. The integral is gotten by applying the
Feynman rules ([10]) to the graphG. The delta function insures conserva-
tion of momentum, and it can be removed by replacing the integration over
all edges by an integral over the space of loops in the graph.

For example, for the graph

(21) v3

l−r

��

r

  B
BB

BB
BB

B

v2

l
>>||||||||

v3

r~~||
||

||
||

v1

l

``BBBBBBBB

we have the integral

(22) J(D) =

∫
R2D

1

(l2 + 1)2(r2 + 1)2((l − r)2 + 1)2
dDl dDr

(where here we usel2 to denote|l|2).
When the integral in (20) converges, it is given by

(23) J(D) =
πb1D/2Γ(E − b1D/2)

Γ(E)
I(−D/2)

whereb1 is the first Betti number ofG and we writeE for the number of
edges.

To obtain this expression, one uses the technique of Feynman parameters.
See [10] (pp. 206–207, exercises 15 & 16) for a derivation of the expression
in the caseD = 4 (easily generalized to higher dimension). ForD such that
the integral does not converge (23) can be taken as the definition of the
J(D). Moreover, asI(s) is a meromorphic complex-valued function, (23)
can be taken as the definition ofJ(D) for complexD.

In the terminology of quantum field theory, (20) is a Feynman amplitude
with zero external momentum and all masses equal to1. As such, it is
a special Feynman amplitude; however, it is typical in the sense that all
Feynman amplitudes can be expressed in terms of Igusa zeta functions using
considerations similar to the ones used to derive (23). An general theory,
will we presented in [6].
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Example 3.2.Let f(x) = x(1− x) and

I(s) =

∫ 1

0

f sdx.

In this case,I(s) is the well-known Beta function or Eulerian integral of the
first kindB(s + 1, s + 1) (see [14] p. 253). Expressing the Beta function in
terms of Gamma functions, we have

I(s) =
Γ(s + 1)Γ(s + 1)

Γ(2s + 2)
.

Using the functional equation, we can write this as

(24) I(s) =
Γ(s + 1)Γ(s + 1)

(2s + 1)Γ(2s + 1)
.

We can then use the expansion oflog Γ(s + 1) to write an expansion for
I(s) in terms of special values of the Riemann zeta function.

By ([14], 13.6), we have

(25) log Γ(s + 1) = −γs +
∞∑

m=2

(−1)mζ(m)sm.

Substituting this expression into (24), we obtain

(26) log(2s + 1) + log I(s) =
∞∑

m=2

(−2)m+1

m
(2m−1 − 1)ζ(m)sm

Thus,

(27) I(s) = exp(
∞∑

m=2

(−2)m+1

m
(2m−1 − 1)ζ(m)sm)

∞∑
n=0

(−2s)m.

Expanding this out in powers ofs, we see that all coefficients can be ex-
pressed as finite rational combinations of theζ(m). Thus we obtain an
explicit example of theorem 2.8.

Note that we could recover the functional equation for the Beta func-
tion using using the methods we used to prover theorem 2.8. However,
the easiest way to understand the construction is to phrase it in terms of
Bernstein’s theory. This approach consists of finding a differential operator
D ∈ k[x, s, d/dx] (no differentiations ins), so that

Df s = b(s)f s−1

and using this to decrease the order. In our case we find

[(1− 2x)
d

dx
+ 4s]f s = sf s−1.
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Using this and integration by parts we get(4s + 2)I(s) = sI(s − 1). The
functional equation turns out to be simple but the Taylor series coefficients
at say1

2
are not simple (involveπ) and at1

3
involve elliptic integrals. That a

single functional equation captures the growth of these integrals of different
genus is surprising.

Let us analyze this example in relation to the algebraic curvesyN =
x(1 − x) for positive integersN . Let CN be the smooth model of this
equation. It admits a mapλ to P1 with coordinatex. This map is ramified
over0, 1,∞. There is a unique lifting of the real path[0, 1] to CN so that
y stays real. The valuesI(M

N
) are therefore intimately tied with the pairs

(CN , {0, 1}).

If the boundary is irregular, the method of the above example runs into
serious difficulties.

This theorem connects with the work of Terasoma [13] who showed that
the coefficients of the Taylor expansion of certain Selberg integrals with
respect to exponential variables can be expressed as a linear combination of
multiple zeta values. We thank Terasoma for bringing this to our attention.
This shows the possible complexity of the Taylor series coefficients.

Example 3.3. In section 4.3 of [11], the notion of anexponential periodis
introduced. This is a number that can be written as an absolutely convergent
integral of the product of an algebraic function with the exponential of an
algebraic function over a semi-algebraic set where all polynomials appear-
ing in the integral have algebraic coefficients. The prototypical example of
an exponential period is

√
π =

∫ ∞

−∞
e−x2

dx.

In the last paragraph of [11], the authors speculate that the set ofexpo-
nential periodscan be reasonably extended to include Euler’s constantγ.
Using (12) and (24), however, it is quite easy to see thatγ already is an
exponential period. Explicitly,

γ = −
∫ ∞

0

e−x log x dx(28)

= −
∫ ∞

0

∫ 1

0

e−x x− 1

(x− 1)t + 1
dt dx.

4. PERIODS AND SEMI-ARITHMETIC SETS

In this section we prove a theorem 2.6. The main tool is the same corol-
lary of resolution of singularities used by Atiyah to prove theorem 2.1. We
state it here in the form that we will use.
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Theorem 4.1(Resolution Theorem). LetF ∈ O(X) be a nonzero function
on a smooth, complexn-dimensional algebraic variety. Letω ∈ Ωn(X−E)
be a differentialn-form whereE is a divisor. LetZ(ω) denote the zero set
of ω. Then there is a proper morphismϕ : X̃ → X from a smooth variety
X̃ such that

(i) ϕ : X̃− Ã → X−A is an isomorphism, whereA = F−1(0)∪E∪
Z(ω) andÃ = ϕ−1(A).

(ii) for eachP ∈ X̃ there are local coordinates(y1, . . . , yn) centered
at P so that, locally nearP ,

F ◦ ϕ = ε

n∏
j=1

y
kj

j

ω = δ
n∏

j=1

y
lj
j dy1 ∧ · · · ∧ dyn

whereε, δ are units inOX,P , thekj are non-negative integers and thelj are
arbitrary integers.

The theorem, the statement of which is very close to the statement of
Atiyah’s resolution theorem on p. 147 of [1], is proved by applying Main
Theorem II in [9] to the idealsFOX , E andZ(ω).

Proposition 4.2. Let X be a smoothn-dimensional algebraic variety de-
fined overRalg. LetF be a reduced effective divisor and letω ∈ Ωn(X−E)
be ann-from. Let

G = {x ∈ X(R)|gi(x) ≥ 0}

for some set{gi}m
i=1 of functions inO(X). be a compact, pre-oriented semi-

algebraic set with non-empty interiorG0. Then
∫

G
ω converges absolutely

only if there is a smoothn-dimensional algebraic varietỹX with proper,
birational morphismϕ : X̃ → X and a compact semi-algebraic setG̃ such
that

(i)
∫

G̃
ϕ∗ω =

∫
G

ω.
(ii) ϕ∗ω is holomorphic onG̃.

Proof. Using the resolution theorem withF =
∏m

i=1 gi, we can find a
smooth varietyX̃ with a proper, birational morphism toX such that for
every pointP ∈ X̃ we have local parameters(y1, · · · , yn) defined in a
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neighborhood ofP with

gi ◦ ϕ = εi

n∏
j=1

y
kij

j

ϕ∗ω = δ
n∏

j=1

y
lj
j dy1 ∧ · · · ∧ dyn.

Here theεi andδ are invertible nearP . SetG̃ equal to the analytic closure
of ϕ−1(G − A) with A as in the resolution theorem. Then

∫
G̃

ϕ∗ω =
∫

G
ω

becausẽG andG differ only by measure0 sets. Moreover, sinceϕ is proper
andG̃ is a closed subset ofϕ−1G, G̃ is compact.

To see thatϕ∗ω is holomorphic onG̃, let P ∈ G̃ be a point and let̃U be
a neighborhood ofP with a local coordinate system(y1, · · · , yn) as in the
resolution theorem. SinceP is in the closure ofϕ−1(G − A), gi(P ) ≥ 0
for all i. Let si be the sign (±1) of εi(P ). Then, since

∫
G

ω is absolutely
convergent, it follows that

(29)
∫

0<siyi(p)<r

ϕ∗ω =

∫
0<siyi(p)<r

n∏
j=1

y
lj
j dy1 ∧ · · · ∧ dyn

is absolutely convergent for a sufficiently smallr. It is easy to see that this
is not possible unlesslj ≥ 0 for all j. Thusϕ∗ω is holomorphic atP . �

Proposition 4.3. Let X be a smooth algebraic variety overRalg and let
G = {x ∈ X(R)|gi(x) ≥ 0} be a compact pre-oriented set. Letω ∈
OX(X) be a differentialn-form. Then there is a divisorD ⊂ X and a
chainσ ∈ Hn(X, D) such that

∫
G

ω =
∫

σ
ω.

Proof. The pre-orientation onG gives us a dense, smooth, open semi-algebraic
subsetU in G with an orientation onU . We, therefore, obtain a chain
σ ∈ Hn(X, D) whereD is the set of zeroes of the functionsgi defining
G. Thisσ corresponds to the orientation on the open subsetU so we have∫

σ
ω =

∫
G

ω. �

Using theorem 2.5, theorem 2.6 is then a corollary of the proposition.
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