
Graph Regression and Classification using Permutation Invariant Representations

Naveed Haghani,1 Maneesh Singh,2 Radu Balan,3*

1 University of Maryland, Applied Mathematics, Applied Statistics and Scientific Computing (AMSC) Program, College Park,
MD 20742

2 Verisk Analytics, Jersey City, NJ 07310
3 University of Maryland, Department of Mathematics and CSCAMM, College Park, MD 20742

nhaghan1@umd.edu, msingh@verisk.com, rvbalan@umd.edu

Abstract

We address the problem of graph regression using graph con-
volutional neural networks and permutation invariant repre-
sentation. Many graph neural network algorithms can be ab-
stracted as a series of message passing functions between the
nodes, ultimately producing a set of latent features for each
node. Processing these latent features to produce a single esti-
mate over the entire graph is dependent on how the nodes are
ordered in the graph’s representation. We propose a permu-
tation invariant mapping that produces graph representations
that are invariant to any ordering of the nodes. This mapping
can serve as a pivotal piece in leveraging graph convolutional
networks for graph classification and graph regression prob-
lems. We tested out this method and validated our solution on
the QM9 dataset.

Introduction
In recent years, graph convolutional networks have gained
much traction in a variety of graph inference problems, most
prominently node classification and link prediction. Graph
convolutions typically address such problems by producing
a set of latent embeddings for each node on a graph. For a
graph G = (V, E) where V is a set of nodes and E is a set
of edges, let A ∈ Rn×n with n = |V| be the associated
adjacency matrix for G. Also let z(i) ∈ Rr be an r length
feature vector for the ith node vi ∈ V . The set of all feature
vectors can be represented by the matrix Z ∈ Rn×r where
the ith row of Z is given by z(i)

T
. A graph convolutional

network, Γ, takes in a graph along with an associated feature
matrix and produces a latent embedding matrix X ∈ Rn×d,
where the ith row of X corresponds to the latent feature set
for the ith node: Γ(A,Z) = X .

For node classification, these embeddings can directly be
employed to classify a node. For link prediction, the embed-
dings offer a vector representation for every node allowing
a similarity metric to quantify any pair of nodes’ associa-
tion with one another. In this paper, we address the prob-
lem of graph regression using graph convolutional networks
(Gilmer et al. 2017). Given a set of latent embeddings X

*Author partially supported by NSF DMS-1816608 and NSF-
DMS 2108900 grants, and by a Simons Foundation fellowship
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

produced by a graph convolutional network, a deep network
classifier can learn a continuous variable over this latent fea-
ture set. This problem, however, incurs an added challenge.
Any traditional deep network applied over the latent embed-
dings (e.g. flattened rows fed through a fully connected net-
work) would be sensitive to the ordering of the nodes and
the order in which their data is concatenated. Two distinct
permutations of the same graph data would thus, in all like-
lihood, produce different results. In this paper we address
this problem directly and study its effect on the overall graph
regression problem.

We conceive that the problem of permutation sensitiv-
ity can be addressed in any of four broadly different ways.
First, one can find a universally consistent scheme to order
the nodes for every graph in a given dataset. Such a solu-
tion though would be problem specific and any particular
problem domain is not guaranteed to lend itself to an effec-
tive scheme. Second, one can use data augmentation to feed
the deep network numerous permutations of each graph in
the training set. We believe this method has the potential to
be very effective but may not scale well for datasets with
larger graph sizes. Third, if an intermediate pooling algo-
rithm could be developed that itself is invariant to the node
ordering, successive pooling operations could be employed
until the problem is scaled down far enough to make the
issue negligible. Finally, one can employ a permutation in-
variant function that, when employed within the network,
ensures the network’s output is necessarily consistent across
all possible permutations of any given graph. Our contribu-
tion primarily focuses on this fourth approach.

In this paper we present two novel permutation invariant
mapping functions; one based on feature orderings and one
based on gaussian kernels. When these mapping are applied
to the latent node embeddings produced by a graph convo-
lutional network, we get a permutation invariant representa-
tion for the graph. We use these permutation invariant map-
pings to build an end-to-end deep network graph classifier.
We offer theoretical guarantees as to the stability of both of
our mappings and injectivity of one of our mappings. We
also test these methods against previous permutation invari-
ant functions presented in the literature as well as a data agu-
mentation approach that avoids the use of any permutation
invariant mapping. We test our results on the QM9 dataset,
a supervised problem of predicting a physical property of

chemical compounds.

Prior Works on Permutation Invariant Maps
Vinyals, Bengio, and Kudlur (2015) designed the set to set
algorithm to map any set of vectors into a single vector in-
variant to any ordering of the given vectors. The algorithm
works by applying a weighted sum of the feature set over all
the nodes. This sum is passed through an Long-Short Term
Memory (LSTM) network to derive a new vector that is sub-
sequently cross-compared with each node’s feature set. This
process is repeated an arbitrary number of times until the
output of the LSTM is finally taken as the embedding.

Li et al. (2015) employs two separate neural networks,
both applied over the feature set for each node. One neu-
ral network produces a set of new embeddings, the other
serves as an attention mechanism whose output is multiplied
to these new embeddings. The result here is then summed
over over all the nodes.

Zhang et al. (2018) introduced SortPooling. SortPooling
is a method to order the latent embeddings of a graph. It
takes a specific column/feature set and orders all the rows
according to the values each node takes in this column.

The sorting embedding has been used in applications un-
der the name of “Pooling Map” (Zaheer et al. 2017), based
on “Max Pooling”.

A naı̈ve extension of the unidimensional map ↓: Rn →
Rn, ↓ (x) = (xπ(1), . . . , xπ(n))

T , xπ(1) ≥ · · · ≥ xπ(n) to
the case d > 1 might employ the lexicographic order: order
monotone decreasing the rows according to the first column,
and break the tie by going to the next column. While this
gives rise to an injective map, it is easy to see it is not even
continuous, let alone Lipschitz. Our paper introduces a novel
method that bypasses this issue.

Problem
Take the equivalence relation ∼ on Rn×d defined such that
given V, V ′ ∈ Rn×d, then V = V ′ if V ′ = πV for some
π ∈ Sn, the set of all n×n permutation matrices. Our goal is
to find a mapping ϕ : Rn×d → Rn×D ∼ Rm with m = nD
such that:

• Permutation invariance; if V ∼ V ′, then ϕ(V) = ϕ(V ′)

• Injectivity modulo permutations; if ϕ(V) =
ϕ(V ′), then V ∼ V ′

• (bi)-Lipschitz continuity with constants A,B > 0: for
every V, V ′ ∈ Rn×d,

A min
Π∈Sn

∥V −ΠV ′∥2F ≤ ∥ϕ(V)− ϕ(V ′)∥22 ≤ B min
Π∈Sn

∥V −ΠV ′∥2F
(1)

where F denotes the Frobenius norm.

We wish to find embeddings that effectively distinguish
between graphs-feature pairings that are non-isomorphic.
This is achieved by ensuring our mapping is injective, i.e.
given a permutation invariant representation the original em-
bedding can feasibly be reproduced up to a row-wise per-
mutation. We also aim to produce a stable, i.e. Lipschitz,
mapping bounding the magnitude of change in the output
between two distinct inputs passed through it, facilitating a

deep network’s ability to learn functions over this space of
representations.

Our Methodology
Our deep learning framework for graph classification is
comprised of three components; a graph convolutional new-
tork Γ, a permutation invariant mapping ϕ, and a deep neural
network approximator η. Given a graph’s adjacency matrix
(or weight matrix) A and an associated feature matrix Z, the
end-to-end deep network produces an estimate p̂ meant to
approximate some given global graph attribute p. The graph
convolutional network produces a set of latent embeddings
X for the graph. The permutation invariant mapping trans-
lates this latent embedding matrix into a new representation
ϕ(X) ∈ Rm consistent over all possible node orderings. Fi-
nally, a deep network estimates the regressed variable this
representation, and thus the graph, predicts. Given labeled
data, the entire network can be trained in a supervised man-
ner. The three successive processes are expressed by the
equations: Γ(A,Z) = X, ϕ(X) = Y, η(Y) = p̂

In this paper for Γ we use the Graph Convolutional Net-
work (GCN) outlined in Kipf and Welling (2016). For our
deep neural network regressor η we use a simple multi-
layer perceptron. The permutation invariant mapping ϕ im-
plements two general approaches, ordering and summing.

Ordering Method Let X ∈ Rn×d be our set of latent em-
beddings produced by applying a graph convolutional net-
work, where n represents the number of nodes in the graph
and d represents the number of latent features.

In our ordering method, we construct the permutation in-
variant representation by first embedding X linearly into a
larger dimensional space: X 7→ XR ∈ Rn×D and then
act with the sorting operator↓ columnwise, independently
from one column to another: ϕ : Rn×d → Rn×D ∼ RnD,
ϕ(X) = [↓ (Xr1) · · · ↓ (XrD)], where R = [r1 · · · rD] are
the columns of the encoding key R. The idea here is that the
redundancy obtained from X · R will embed the row-wise
relationships that would otherwise be lost by the ordering
scheme if applied directly to X .

This technique can be easily shown to be permutation in-
variant. If D is sufficiently large, and columns of R form a
full spark frame, it can be shown :
Theorem 1. (Balan, Haghani, and Singh 2021)
1. If D = 1 + (d − 1)n! and R ∈ Rd×D so that each sub-

matrix of d columns is full rank, the map ϕ : Rn×d/ ∼→
Rn×D, X 7→ ϕ(X) =↓ (XR) is injective and bi-
Lipschitz. In this case m = (1 + (d− 1)n!)n.

2. Let ϕ : Rn×d/ ∼→ Rn×(d+1) be given as before with
R = [Id 1] a single column of ones added to the iden-
tity matrix, then ϕ is Lipschitz everywhere with Lipschitz
constant K = 1 and injective almost everywhere.

This theorem guarantees the existence of a bi-Lipschitz
map provided we choose a large enough embedding dimen-
sion m.

Kernels Method We define a kernel function ν designed
to work as a similarity metric between two vectors a and t,
ν : Rd × Rd → R, ν(a, t) = e−∥a−t∥2

.

This function offers a similarity score we can apply over
the feature set of each node. If we are given a set of m
vectors in Rd, we can use ν to produce a similarity score
for each pairing between these vectors and each node’s fea-
ture set. Let x(i) ∈ Rd represent the column vector repre-
sentation of the feature set for the ith node, i.e. the ith row
of X transposed to a column vector. If we are given a set
of vectors ai ∈ Rd for i ∈ 1, . . . ,m, we obtain our per-
mutation invariant representation Y ∈ Rm by the formula:
yi =

∑n
k=1 ν(ai, x

(k)), for 1 ≤ i ≤ m. For a given set of
kernel vectors ai ∈ Rd for i ∈ 1, . . . ,m, this mapping is
always Lipschitz:

Theorem 2. Let ϕ : Rn×d/ ∼→ Rm be the kernel scheme
defined above mapping X ∈ Rn×d to Y ∈ Rm. Then ϕ is
Lipschitz.

Experiments
In this section we take an empirical look at the permuta-
tion invariant mappings presented in this paper. We focus
on the problem of graph regression, for which we employ
the quantum chemistry QM9 dataset (Ramakrishnan et al.
2014). In this problem, our goal is to estimate a function
F : (A,Z) → p, where (A,Z) characterizes a graph where
A ∈ Rn×n is an adjacency matrix and Z ∈ Rn×r is an asso-
ciated feature matrix where the ith row encodes an array of
r features associated with the ith node. We wish to estimate
a continuous scalar output p ∈ R+ associated with the entire
graph. The entire end-to-end network is shown in Figure 1.

In our experiments, we employ a Graph Convolutional
Network (GCN) (Kipf and Welling 2016) for Γ. For ϕ we
employ both permutation invariant mappings, orderings and
kernels. We compare against the case where no permutation
invariant mapping is used (i.e. ϕ is set to the identity). We
also compare against the case where no permutation invari-
ant mapping is used, but data augmentation is used in its
place. Our data augmentation scheme works as follows. We
take the training set and create multiple permutations of the
adjacency and associated feature matrix for each graph in
the training set. We add each permuted graph to the training
set to be included with the original graphs. In our experi-
ments we use four added permutations for each graph when
employing data augmentation. As well, we compare against
a sum pooling method which sums the feature values across
the set of nodes: ϕsum pooling = 1T

n×1X .
For the kernels method, kernel vectors are generated ran-

domly, where each element of each vector is drawn from a
standard normal distribution. Each resultant vector is then
normalized to produce a kernel vector of magnitude one.
When inputting the embedding X to the kernels based map-
ping, we first normalized the embedding for each respec-
tive node. The ordering and identity-based mappings have
the notable disadvantage of not producing the same output
embedding size for different sized graphs. To accommodate
this and have consistently sized inputs for η, we choose to
zero-pad ϕ(X) for these methods to produce a vector in Rm,
where m = Nd and N is the size of the largest graph in the
dataset.

Figure 1: End-to-end deep learning network.

Graph Regression
For our experiments in graph regression we consider the
QM9 dataset (Ramakrishnan et al. 2014), though our regres-
sion methods were not optimized for QM9 specifically. This
dataset consists of 134 thousand molecules represented as
graphs, where the nodes represent atoms and edges repre-
sent the bonds between them. Each graph has between 4 and
29 nodes, 4 ≤ n ≤ 29. Each node has 11 features, r = 11.
We hold out 20 thousand of these molecules for evaluation
purposes. The dataset includes 19 quantitative features for
each molecule. For the purposes of our study, we focus on
electron energy gap (unit eV), which is ∆ε in (Faber et al.
2017) whose chemical accuracy is 0.043eV . The best exist-
ing regressor for this feature is enn-s2s-ens5 in (Gilmer et al.
2017) and has a Mean Absolute Error (MAE) of 0.0529eV .
We run the end to end model with three GCN layers in Γ,
each with 50 hidden units. η consists of three multi-layer
perceptron layers, each with 150 hidden units. We use recti-
fied linear units as our nonlinear activation function. Finally,
we vary the size of the node embeddings d that is outputted
by Γ. We set d equal to 1 and 10.

For each method and embedding size we train for 300
epochs. Note though that the data augmentation method will
have experienced five times as many training steps due to
the increased size of its training set. We use a batch size of
128 graphs. We track the mean absolute error through the
course of training. We look at this performance metric on
the training set, on the holdout set, and on a random node
permutation of the holdout set (see Figures 2 and 3).

Discussion
From the results we see that both the ordering and kernels
method performed well for d = 10, though falling short of
data augmentation which performed the best on both train-
ing data and holdout data. For d = 1, the kernels method
failed to train adequately. The identity mapping performed
relatively well on training data and even the holdout data,
however it lost its performance on permuted holdout data.
The identity mapping’s failure to generalize across permuta-
tions of the holdout set is likely exacerbated by the fact that
the QM9 data as presented to the network comes ordered in
its node positions from heaviest atom to lightest. Data aug-
mentation notably kept its performance despite this due to
training on many permutations of the data. Our data aug-
mentation method achieved a MAE of 0.1705eV , which is
3.96 times larger than the chemical accuracy. This is worse
than the enn-s2s-ens5 method in Gilmer et al. (2017) (cur-
rent best method) that achieved a MAE 1.23 larger than
the chemical accuracy, but better than the Coulomb Matrix
(CM) representation in Rupp et al. (2012) that achieved a
MAE 5.32 larger than the chemical accuracy whose features
were optimized for this task.

Figure 2: MAE vs Epoch, embedding size d = 1 Figure 3: MAE vs Epoch, embedding size d = 10

References
Balan, R.; Haghani, N.; and Singh, M. 2021. Permutation
Invariant Representations with Applications to Graph Deep
Learning. preprint.
Faber, F. A.; Hutchison, B., Luke Huang; Gilmer, J.; Schoen-
holz, S. S.; Dahl, G. E.; Vinyals, O.; Kearnes, S.; Riley, P. F.;
and von Lilienfeld, O. A. 2017. Machine learning prediction
errors better than DFT accuracy. arXiv e-prints.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. arXiv e-prints, arXiv:1704.01212.
Kipf, T. N.; and Welling, M. 2016. Semi-Supervised Classi-
fication with Graph Convolutional Networks. arXiv e-prints,
arXiv:1609.02907.
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2015.
Gated Graph Sequence Neural Networks. arXiv e-prints,
arXiv:1511.05493.
Ramakrishnan, R.; Dral, P. O.; Rupp, M.; and Von Lilien-
feld, O. A. 2014. Quantum chemistry structures and proper-
ties of 134 kilo molecules. Scientific data, 1(1): 1–7.
Rupp, M.; Tkatchenko, A.; Müller, K.-R.; and von Lilien-
feld, O. A. 2012. Fast and Accurate Modeling of Molecular
Atomization Energies with Machine Learning. Phys. Rev.
Lett., 108: 058301.
Vinyals, O.; Bengio, S.; and Kudlur, M. 2015. Order
Matters: Sequence to sequence for sets. arXiv e-prints,
arXiv:1511.06391.
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Póczos, B.;
Salakhutdinov, R.; and Smola, A. J. 2017. Deep Sets. CoRR,
abs/1703.06114.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classifica-
tion. In Thirty-Second AAAI Conference on Artificial Intel-
ligence.

