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Consider a large scale sensor array having N sensors that mon-
itors a surveillance area. Using all sensors simultaneously may be
unreasonable in terms of power consumption and data processing.
For example, for N = 10000 sensors and a data sampling rate of
100000 samples per second, the bandwidth requirement is 1Gsam-
ples/sec. We could poll a only subset of D sensors at any one given
time instead. The /N choose D number of choices of sensors allows
for a myriad of sensor configurations, and the task is then to choose
a subset that achieves our objective.

Assume the surveillance area consists of a set of point-like
sources. We seek designs that minimize the largest interference
gain from a potentially very large number of locations while still
maintaining target unity gain.

Throughout this paper, we assume the following: Sensor loca-
tions (x, y, z-coordinates) are known. The number of real interfer-
ences is small, but their locations are unknown. The maximum num-
ber of sensors active at any time, D, is fixed in advance, and all
signals are wide band.

Our system divides the surveillance area into a large number of
small, non-overlapping target areas. For each fixed target area, we
find a subset of sensors that minimizes the gain of a large number
of interferences. By doing so, our system is robust to a wide variety
of unknown interference configurations. Our system then begins to
iteratively scan each target area. By measuring the signal strength in
each fixed target area, we are able to locate and hence monitor the
target.
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Fig. 1. Sample Scenario: L = 193 sources (1 target and 192 inter-
ferences), N = 200 sensors.

Consider the setup described earlier and sketched in Figure 1.
We assume we know the sensor locations and then fix a target area.
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Since the number, locations, and power distributions of the interfer-
ences are unknown, we assume a large number of “virtual” inter-
ferences, say L. Our objective is to minimize the largest gain from
this set of “virtual” interferences which guarantees a small gain for
any one actual intereference located at any of the virtual interference
locations.

Assume the zero indexed source is the target and the remain-
ing L sources are interferences. For these “virtual” sources we use
the direct-path model, where the transfer function between source
! and sensors n at frequency f; is given by H; ,(f;) We use this
simple direct-path model because we do not want to assume prior
knowledge of wall locations and their reflection coefficients. For
evaluation we use the direct-path plus one reflection model.

Let wx (fi) denote the processing weight for sensor n at fre-
quency f;. If w,(f;) = 0 then sensor n is inactive at frequency
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Assume that we have F’ distinct frequencies of interest, f1, f2, . . .
Given F' sets of N sensor weights, each interference [ has F' dif-
ferent gains, one for each frequency. Note that for each of the F'
frequencies, we use a different set NV sensor weights to calculate the
interference gains at that frequency. Our objective is to minimize the
maximum sum of gains across F' frequencies while still achieving
target unit gain at each frequency. Assumption H4, however limits
us to D simultaneously active sensors.

In this multi-frequency setup, sensor n becomes active if
wn(fi) # 0 for any 4. Thus the number of non-zeros in the N-
dimensional vector 1ré1;a<xp|wn( fi)| is then an appropriate measure
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of the number of active sensors. Let ||w]||o denote the pseudo-norm
which counts the number of non-zeros in the vector w. We can now
state our optimization problem:

min
(wn(FN N ey
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subject to ZHOn(fi)wn(fi) =1for:=1,2,...,F
n=1
I, max fun ()l < D
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Note that this is a non convex optimization problem due to the 1°
pseudo-norm constraint ||1121pa%xF|wn( fi)lllo < D.
_7’_

Our method is inspired by LASSO regularization [1], a regres-
sion technique that minimizes the sum of squares of residual errors
subject to the I' norm of the coefficients being less than a constant.
Similar to the sparse signal and model estimation approach in [2], the



1° pseudo-norm is replaced by the I* norm [|wl|; = 3", [wa(f)]
which is then incorporated into the optimization criterion using a La-
grange multiplier A. The optimization problem (1) is then replaced
by the following convex optimization problem which we call the \-
method:
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For very large A, the penalty term forces many of the sensors to
become inactive. Specifically, let W be the L by F' matrix of sen-
sor weights produced by the optimization. With a large A penalty,
many of the rows of W are rows containing only values very close
to zero. If the nth row only contains such small values, sensor n
is then inactive. As A decreases the penalty term becomes less ex-
pensive and more sensors become active. At the limit, A = 0, all
sensors are allowed to be active. We fine tune A until we get D non-
zero components. Specifically, this is accomplished when g, , is
significantly smaller than g, (e.g. by 3 orders of magnitude), where
gn is defined as before. We then solve (2) using this lambda. The
final weights are obtained by solving a second time (2) restricted to
the sub matrix indexed by A and A = 0.

Our approach extends the work Ling et al. [3] to include opti-
mization over multiple frequencies simultaenously and reoptimiza-
tion over the the most significant sensor locations.

We run three types of experiments to test the performance of
the A-method. First, for small problem sizes (small V), we do an
exhaustive search of all N choose D choices and compare the per-
formance of the set of sensors found by the lambda-method against
the performance of the set of sensors which achieves the global op-
timum. Second, we randomly perturb the the set of sensors found
by the A-method using the method of simulated annealing to see
how much a better of a solution we can find. Third, we compare
the performance of the A\-method beamformer against a beamformer
that maximizes the signal to noise ratio (SNR), which can be shown
to the set of sensors that lie closet to the target. The below figures
show the beam patterns for both the A\-method and the maximum-
SNR beamformer at 1000 hz along with the placement of the mi-
crophones. We also compare the expected value and variance of the
maximum gain among a varying number of randomly placed inter-
ferences in the survelliance area. The full paper will include results
for the other frequencies (2000, 4000, 8000 hz) that were simultane-
ously optimized over.
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Fig. 2. Gain map for classical beamformer that maximizes SNR
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Fig. 3. Gain map for beamformer found by lambda-method
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Fig. 4. Comparison of mean and variance of maximum gain for
varying number of randomly placed interferences



