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ABSTRACT

We will construct new classes of Parseval frames for a Hilbert space which allow signal reconstruc-
tion from the absolute value of the frame coefficients. As a consequence, signal reconstruction
can be done without using phase or its estimation.
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1. INTRODUCTION

Reconstruction of a signal using noisy phase or its estimation can be a critical problem in speech
recognition technology. But, for many years, engineers have believed that speech recognition
should be independent of phase. By constructing new classes of Parseval frames for a Hilbert
space, we will show that this allows reconstruction of a signal without using noisy phase or its
estimation.

Frames are redundant systems of vectors in a Hilbert spaces. They satisfy the well-known
property of perfect reconstruction, in that any vector of the Hilbert space can be synthesized
back from its inner products with the frame vectors. More precisely, the linear transformation
from the initial Hilbert space to the space of coefficients obtained by taking the inner product
of a vector with the frame vectors is injective and hence admits a left inverse. This property has
been succesfully used in a broad spectrum of applications, including internet coding, multiple
antenna coding, optics, quantum information theory, signal /image processing, and much more.
The purpose of this paper is to study what kind of reconstruction is possible if we only have
knowledge of the absolute values of the frame coefficients.

In this paper we consider only finite dimensional frames the reason being their direct link
to practical applications. Since the same question can be raised for infinite dimensional frames,
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we state the problem in the setting of abstract frames. Furthermore, here we will concentrate
our analysis only on real frames, which correspond e.g. to redundant wavelet filter banks.

Consider a Hilbert space H with scalar product (,). A finite or countable set of vectors
F ={fi;i € I} of H is called a frame if there are two positive constants A, B > 0 such that for
every vector r € H,

Alal? < 3 K, f) < B ) 1)
iel
The frame is tight when the constants can be chosen equal to one another, A = B. For A =
B =1, Fis called a Parseval frame. The numbers (zx, f;) are called frame coefficients.

To a frame F we associate the analysis and synthesis operators defined by:

T:H—P1) , T) ={{z, i)l (2)
T 1) — H | T*(c):Zcifi (3)

which are well defined due to (1), and are adjoint to one another. The range of T in [*(T) is
called the range of coefficients. The frame operator defined by S = T*T : H — H is invertible
by (1) and provides the perfect reconstruction formula:

r=> (x.fi)S7'f; (4)

i€l
For more information on frames we refer the reader to.5

Consider now the nonlinear mapping

M, : H — F(I) , Ma(z) = {l{z, fi)l}ier ()

obtained by taking the absolute value entrywise of the analysis operator. Let us denote by H,
the quotient space H, = H/ ~ obtained by identifying two vectors that differ by a constant
phase factor: x ~ y if there is a scalar ¢ with |¢| = 1 so that y = cx. For real Hilbert spaces ¢ can
only be +1 or —1, and thus H, = H/{z£1}. For complex Hilbert spaces ¢ can be any complex
number of modulus one, ¢ = €, and then H, = H/T', where T' is the complex unit circle. In
quantum mechanics these projective rays define quantum states (see'®). Clearly two vectors of
H in the same ray would have the same image through M,. Thus the nonlinear mapping M,
extends to H, as

M H, — (1), M(@) = {|(@ )} 7€ (6)

The problem we study in this paper is the injectivity of the map M. When it is injective,
M admits a left inverse, meaning that any vector (signal) in H can be reconstructed up to a
constant phase factor from the modulus of its frame coefficients.



2. ANALYSIS OF M FOR REAL FRAMES

Consider the case H = RY, and the index set I has cardinality M, T = {1,2,..., M}. Then
(1) ~ RM.

The set Gr(N, M;R) of N-dimensional linear subspaces of RM has the structure of an N (M —
N)-dimensional manifold called the Grassman manifold.'® The frame bundle F(N, M;R) is the
GL(N,R)-bundle over Gr(N, M) defined as follows: The fiber of F(N, M;R) over a point of

GL(N,R) corresponding to an N-dimensional linear subspace W C RM is the set of all possible
bases for W.

For a frame F = {f1,..., fur} of RY we denote by T the analysis operator,

M
T:RY—RY | T(x)=> (z,fr)ex (7)

k=1
where {ey,..., ey} is the canonical basis of RM. We let W denote the range of the analysis

map T(RY). Tt is an N-dimensional linear subspace of R¥ and thus corresponds to a point
of the Grassman manifold Gr(N, M). Two frames { f;}ic; and {g; }ier are equivalent if there is
an invertible operator 7' on H with T'(f;) = g;, for all ¢ € I. It is known that two frames are
equivalent if and only if their associated analysis operators have the same range (see®!?). We
deduce that M-element frames on RY are parametrized by the fiber bundle F/(N, M;R).

Recall the nonlinear map we are interested in is

M
M7 RN/{£1} = RM | M7(2) =Y |(x, fi)ler, v €@ (8)
k=1

When there is no danger of confusion, we shall drop F from the notation.

First we reduce our analysis to equivalent classes of frames:

PROPOSITION 1. For any two frames F and G that have the same range of coefficients, M7 is
injective if and only if MY is injective.

Proof. Any two frames F = {fi} and G = {gx} that have the same range of coefficients
are equivalent, i.e. there is an invertible R : RV — R so that g, = Rfi, 1 < k < M. Their
associated nonlinear maps M7, and respectively MY, satisfy MY (x) = M7 (R*z). This shows
that M7 is injective if and only if MY is injective. Consequently the property of injectivity of
M depends only on the subspace of coefficients W in Gr(N, M). O

This result says that for two frames corresponding to two points in the same fiber of
F(N, M;R), the injectivity of their associated nonlinear maps would jointly hold true or fail. Be-
cause of this result we shall always assume the induced topology by the base manifold Gr(N, M)
of the fiber bundle F(N, M;R) into the set of M-element frames of R¥.

If {fi}ier is a frame with frame operator S then {S™'/2f;},c; is a Parseval frame which
is equivalent to {f;}ier and called the canonical Parseval frame associated to {f;}icr. Also,
{S™fi}ier is a frame equivalent to {fi}ie; and is called the canonical dual frame associated



to {fi}icr. Proposition 2.1 shows that when the nonlinear map M7 is injective then the same
property holds for the canonical dual frame and the canonical Parseval frame.

Given ¢ C {1,..., M}, let ¢(i) denote the characteristic function of ¢ defined by the rule
that ¢(i) = 1 if i € ¢ and ¢(i) = 0 if i ¢ ¢. Define a map o4: RM — RM by the formula

oglar, - ay) = ((=1)*Way, ..., (=1)*May,).

Clearly 03) = id and oy = —o, where QSC is the complement of ¢. We let L? denote the
|#|-dimensional linear subspace of RM where L® = {(ai,...,ay)|a; = 0,i € ¢}, and we let
Py : RM — [? denote the orthogonal projection onto this subspace. Thus (Py(u)); = 0, if
i € ¢, and (Py(u)); = wj;, if i € ¢°. For every vector u € RM, o4(u) = u iff u € L?. Likewise
os(u) = —u iff u € L. Note

Po(u) = g(utog(u)) . Palu) = 3(u—ouw)

THEOREM 2 (REAL FRAMES). If M > 2N — 1 then for a generic frame F, M is injective.
By generic we mean an open dense subset of the set of all M-element frames in R,

Proof. Suppose that z and 2’ have the same image under M = M”. Let aq,...ay be the
frame coefficients of x and a,...a), the frame coefficients for z’. Then a, = +a; for each i.
In particular there is a subset ¢ C {1,..., M} of indices such that a} = (—1)*®a;. Then two

vectors z, ' have the same image under M if and only there is a subset ¢ C {1,..., M} such that
(ar,...ay) and ((=1)*Way, ..., (=1)?M)a,,) are both in W the range of coefficients associated
to F.

To finish the the proof we will show that when M > 2N — 1 such a condition is impossible
for a generic subspace W C R¥. This means that the set of such W’s is a dense (Zariski) open
set in the Grassmanian Gr(N, M). In particular the probability that a randomly chosen W will
satisfy this condition is 0.

To finish the proof of the theorem we need the following lemma.

LEMMA 3. If M > 2N — 1 then the following holds for a generic N-dimensional subspace
W C RM. Given u € W then oy(u) € W iff o4(u) = tu.

Proof. [Proof of the Lemma| Suppose u € W and o4(u) # +u but o,(u) € W. Since o, is
an involution, u + o4(u) is fixed by o4 and is non-zero. Thus W N L? # 0. Likewise

0#u—o04(u) =u+ou(u).

Hence W N L?" £ 0.

Now L? and L?" are fixed linear subspaces of dimension M — |¢| and |¢|. If M > 2N — 1
then one of these subspaces has codimension greater than or equal to N. However a generic
linear subspace W of dimension N has 0 intersection with a fixed linear subspace of codimension
greater than or equal to N. Therefore, if W is generic and z, o4(x) € W then o,(z) = 2 which
ends the proof of Lemma. O



The proof of the theorem now follows from the fact that if W is in the intersection of generic
conditions imposed by the proposition for each subset ¢ C {1,..., M} then W satisfies the
conclusion of the theorem. O

Note what the above proof actually shows:

COROLLARY 4. The map M is injective if and only if whenever there is a non-zero element
weW CRM withu € L, then W N L¢* = {0}.

Next we observe that this result is best possible.
PROPOSITION 5. If M < 2N — 2, then the result fails for all M-element frames.

Proof. Since M < 2N — 2, we have that 2M — 2N + 2 < M. Let (e;)X, be the canonical
orthonormal basis of RM. We can write (¢;), = (&;)f_; U (e;)¥,,; where both k and M — k
are > M — N + 1.

Let W be any N-dimensional subspace of R™. Since dim W+ = M — N, there exists a
nonzero vector u €span {e;}¥ | so that u L W+, hence u € W. Similarly, there is a nonzero
vector v in span {e; }M, 4 with v L W+, that is v € W. By the above corollary, M cannot be
injective. In fact M(u + v) = M(u —wv). O

The next result gives an easy way for frames to satisfy the condition above.

COROLLARY 6. If F is a M-element frame for RN with M > 2N — 1 having the property that
every N-element subset of the frame is linearly independent, then M is injective.

Proof. Given the conditions, it follows that W has no elements which are zero in N coordi-
nates and so the Corollary holds. D

COROLLARY 7.

1. If M = 2N — 1, then the condition given in Corollary 6 is also necessary.

2. If M > 2N, this condition is no longer necessary.

Proof. (1) For the first part we will prove the contrapositive. Let M = 2N — 1 and assume
there is an N-element subset (f;)ics of F which is not linearly independent. Then there is a
non-zero = € (span(f;)icy)™ C RY. Hence, 0 # u = T'(z) € L N W. On the other hand, since
dim(span(fi)icse) < N — 1, there is a non-zero y € (span(fi)c,e)™ C RY so that 0 # v =
T(y) € L N W. Now, by Corollary 4, M is not injective.

(2) If M > 2N we construct an M-element frame for RY that has an N-element linearly
dependent subset. Let F' = {fi,..., fax_1} be a frame for RY so that any N-element subset
is linearly independent. By Corollary 4, the map M7 is injective. Now extend this frame

to F = {fl, .. .,f]\/[} by ng = - = f]\/[ = fQN_l. The map M}— extends MF/ and there-
fore remains injective, whereas clearly any N-element subset that contains two vectors from
{fan-1, fan,- -, far} is no longer linearly independent. O

Remark: The frames above can easily be constructed “by hand”. Start with an orthonormal
basis for RY, say (f;)X,. Assume we have constructed sets of vectors (f;)X, such that every



subset of N vectors is linearly independent. Look at the span of all of the (N-1)-element subsets
of (fi),. Pick fur1 not in the span of any of these subsets. Then (f;)M 1! has the property
that every N-element subset is linearly independent.

Now we will give a slightly different proof of this result which gives necessary and sufficient
conditions for a frame to have the required properties.
THEOREM 8. Let (f;)M, be a frame for RN. The following are equivalent:
(1) The map M is injective.
(2) For every subset ¢ C {1,2,..., M}, either {fi}icy spans RY or { fi}icye spans RY.
Proof. (1) = (2): We prove the contrapositive. So assume that there is a subset ¢ C

{1,2,... M} so that neither {f; ; i € ¢} nor {f; ; i € {¢%} spans RY. Hence there are non-zero
vectors x,y € RY so that z L span(f;)icp and y L span(fi)eqt- Then 0 # T(x) € L NW and

0#T(y) € L* N W. Now by Corollary 4 we have that M cannot be injective.

(2) = (1): Suppose M(2) = M(5) for some 2,9 € RN /{£1}. This means for every 1 < j <
M, [z, f;)| = |{y, f;)| where z € Z and y € §. Let

o=47 : (& fi) == i)} (9)
Note
=1 @ fi) =) (10)
Now, = +y L span(fi)icg and = —y L span(f;);cqe. Assume that {f; ; i € ¢} spans RY. Then
r+y=0andthusz=g. If {fi; i€ d)ﬂ} spans RY then x — y = 0 and again & = §. Either
way & = ¢ which proves M is injective. D
For M < 2N — 1 there are plenty of frames for which M is not injective. However for a

generic frame, we can show the set of rays that can be reconstructed from the image under M
is open dense in RY /{%1}.

THEOREM 9. Assume M > N. Then for a generic frame F € F[N, M;R|, the set of vectors
x € RN so that (M7) Y (M7 (x)) consists of one point in RN /{£1} has dense interior in RN .

Proof.

Let F be a M-element frame in RY. Then F is similar to a frame G which consists of the
union of the canonical basis of RN, {dy,...,dy}, with some other set of M — N vectors. Let
G={g; 1 <k< M} Thus gy, = dj, 1 < j <N, for some N elements {ki, ko, ..., kn} of
{1,2,..., M}. Consider now the set B of frames F so that its similar frame G constructed above
has a vector g, with all entries non-zero,

B={FeFIN.M;R| | F~G={g}, {dr,....,dn} C G,

N

H(gko, d;) # 0, for some ko}

j=1
Clearly B is open dense in F[N, M;R]. Thus generically F € B. Let G be its similar frame
satisfying the condition above. We want to prove the set X = X7 of vectors z € R so that



(M9)~1(M¢(x)) has more than one point is thin, i.e. it is included in a set whose complement is
open and dense in RY. We claim X C Ud)(Vq;r U qu) where <V¢i)¢c{1727_"7 ~y are linear subspaces
of RY of codimension 1 indexed by subsets ¢ of {1,2..., N}. This claim will conclude the proof
of Theorem.

To verify the claim, let z,y € RY be so that MY9(x) = MY(y) and yet x # y, nor x # —y.
Since G contains the canonical basis of RY, |z| = |yi| for all 1 <k < N. Then there is a subset
¢ C {1,2,...,N} so that yp = (=1)*®z;. Note ¢ # 0, nor ¢ # {1,2,..., N}. Denote by D,
the diagonal N x N matrix (Dg)p = (—1)*®). Thus y = Dyz, and yet Dy # 1. Let gy, €G
be so that none of its entries vanishes. Then [(x, gx,)| = [(Y, k)| Implies

(@, (I £ Dg)gr,) = 0

This proves the set X9 is included in the union of 2(2" — 2) linear subspaces of codimension 1,

Ugpo,e8 201 (1 — Dy)gio} " UL + Ds)gro}

Since F is similar to G, X7 is included in the image of the above set through a linear invertible
map, which proves the claim.

0

3. IMPLEMENTATION OF THESE RESULTS

For these results to be widely applied they need to run on existing software with only trivial
modifications. So there are two critical issues that need to be addressed for implementation of
signal reconstruction without phase. (1) Find wavelet frames which work in this setting - so we
can use the fast wavelet transform for transforming the signal. (2) Find efficient reconstruction
algorithms - preferably algorithms which are close to the inverse wavelet transform. These two
problems are the focus of current research on this topic.®> It appears at this time that small
frames near the threshold of our results ((2INV — 1) elements) may require exponential time for
reconstruction. However, it is shown in® that generic frames with N?-elements give polynomial
time reconstruction (on the order of at most N calculations). In® there are some special classes
of frames with N? elements which have extremely efficient algorithms for reconstruction in N
calculations (2N in the complex case).

In the following we present a nonlinear reconstruction method using neural networks.

A 3-layer neural network with input ¢ = (c¢f)1<f<pr and output z = (z,)1<n<n is defined by:

M

o = o> arer+0) . 1<k<L (11)
f=1
L

Zn = U(anqu+7n) , 1<n<N (12)
k=1

where 0 : R — [0,1] is the sigmoid function o(u) = 1/(1 +e™*), and A = (aks)1<k<ri1<f<M:
B = (buk)1<n<ni<k<r, and 0 = (0x)1<k<r, T = (Tn)1<n<n are network parameters to be learned



in the training phase. We compactly write them as 7 = (A, B, 0, 7). When dealing with Parseval
frames, the input vector norm can always be recovered from the Euclidian norm of the frame
coefficients (hence from their absolute values). Denote by F : (RT)™ — RY the inverse of the
nonlinear map (8). Using above neural network, F' can be implemented by

2 2
ci+-c

F(e),=2p4]—2—-M 1<n<N 13

(FleDn=2n\| 7z > 1SS (13)

The entire theory presented in Section 2 proves the existence of the inverse F'. In turn, this fact

allows to train a neural network, and control its performance. More results will be presented

elsewhere (3).
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