
Chapter 1
Optimization methods for frame conditioning
and application to graph Laplacian scaling

Radu Balan, Matthew Begué, Chae Clark, Kasso Okoudjou

1.1 Introduction

The notion of scalable frame has been investigated in recent years [?, ?, ?, ?], where
the focus was more on characterizing frames whose vectors can be rescaled resulting
in a tight frame. For completeness, we recall that a set of vectors F = { fi}M

i=1 in some
(finite dimensional) Hilbert space H is a frame for H if there exist two constants
0 < A≤ B < ∞ such that

A‖x‖2 ≤
M

∑
i=i
|〈x, fi〉|2 ≤ B‖x‖2

for all x∈H . When A = B the frame is said to be tight and if in addition, A = B = 1
it is termed a Parseval frame. When F = { fi}M

i=1 is a frame, we shall abuse notations
and denote by F again, the n×M matrix whose ith column is fi, and where n is the
dimension of H . Using this notation, the frame operator is the n×n matrix S=FF∗

where F∗ is the adjoint of F . It is a folklore to note that F is a frame if and only
if S is a positive definite operator and the optimal lower frame bound, A, coincides
with the lowest eigenvalue of S while the optimal upper frame bound, B, equals the
largest eigenvalue of S. We refer to [?, ?, ?] for more details on frame theory.

It is apparent that tight frames are optimal frames in the sense that the condi-
tion number of their frame operator is 1. We recall that, the condition number of a
matrix A, denoted κ(A), is defined as the ratio of the largest singular value and the
smallest singular value of A, i.e., κ(A) = σmax(A)/σmin(A). By analogy, for a frame
in a Hilbert space { fi}M

i=1 ⊆H with optimal frame bounds A and B, we define the
condition number of the frame to be the condition number of its associated frame
operator κ({ fi}) := κ(S) = B/A. In particular, if a frame is Parseval then its con-
dition number equals 1. In fact, a frame is tight if and only if its condition number
is 1. Scalable frames were precisely introduced to turn a non optimal (non-tight)
frame into an optimal one, by just rescaling the length of each frame vector. More
precisely,
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Definition 1 ([?, Definition 2.1]). A frame { fi}M
i=1 in some Hilbert space H is

called a scalable frame if there exist nonnegative numbers s1, ...,sM such that
{si fi}M

i=1 is a Parseval frame for H .

It follows from the definition that a frame { fi}M
i=1 is scalable if and only if there

exist scalars si ≥ 0 so that

κ

(
M

∑
i=1

s2
i fi f ∗i

)
= 1.

To date various equivalent characterizations of scalable frames have been proved
and attempts to measure how close to scalable a non-scalable frame is have been
offered [?, ?, ?, ?]. In particular, if a frame is not scalable, then one can naturally
measure how “not scalable” the frame is by measuring

min
si≥0

∥∥∥∥∥In−
M

∑
i=1

s2
i fi f ∗i

∥∥∥∥∥
F

, (1.1)

as proposed in [?], where ‖·‖F denotes the Frobenius norm of a matrix. Other mea-
sures of scalability were also proposed by the same authors. However, it is not clear
that, when a frame is not scalable, an optimal solution to (1.1) yields a frame {si fi}
that is as best conditioned as possible. Recently, the relationship between the so-
lution to this problem and the condition number of a frame has been investigated
in [?]. In particular, Casazza and Chen show that the problem of minimizing the
condition number of a scaled frame

min
si≥0

κ

(
M

∑
i=1

s2
i fi f ∗i

)
, (1.2)

is equivalent to solving the minimization problem

min
si≥0

∥∥∥∥∥In−
M

∑
i=1

s2
i fi f ∗i

∥∥∥∥∥
2

, (1.3)

where ‖·‖2 is the operator norm of a matrix. Specifically they show that any opti-
mizer of (1.2) is also an optimizer of (1.3); vice-versa, any optimizer of (1.3) min-
imizes the condition number in (1.2). Furthermore, they show that the optimal so-
lution to (1.1) does not even have to be a frame, and so would yield an undefined
condition number for the corresponding system.

In this chapter, we consider numerical solutions to the scalability problem. Recall
that a frame F = { fi}M

i=i ⊂H is scalable if and only if the exist scalars {si}M
i=1 ⊂

[0,∞) such that
M

∑
i=1

s2
i fi fi = I.
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Consequently, the condition number of the scaled frame F̃ = {si fi}M
i=i is 1. We

are thus interested in investigating the solutions to the following three optimization
problems:

min
si≥0 ,s 6=0

λmax
(
∑

M
i=1 s2

i fi f ∗i
)

λmin
(
∑

M
i=1 s2

i fi f ∗i
) . (1.4)

min
si ≥ 0 , s 6= 0

∑
M
i=1 s2

i ‖ fi‖2
2 = N

λmax

(
M

∑
i=1

s2
i fi f ∗i

)
−λmin

(
M

∑
i=1

s2
i fi f ∗i

)
. (1.5)

min
si≥0 ,s 6=0

∥∥∥∥∥IN−
M

∑
i=1

s2
i fi f ∗i

∥∥∥∥∥
F

. (1.6)

Our motivation stems from the fact it appears from the existing literature on
scalable frames that the set of all such frames is relatively small, e.g., see [?]. As
a result, one is interested in scaling a frame in an optimal manner. For example,
by minimizing the condition number of the scaled frame (1.4), or the gap of the
spectrum of the scaled frame (1.5). Furthermore, one can try to find the relationship
between the optimal solutions to these two problems with the measures of scalability
introduced in [?], of which (1.1) is a typical example.

In addition, we investigate these optimization problems from a practical point
of view: the existence of fast algorithms to produce optimal solutions. As such, we
are naturally lead to consider these problems in the context of convex optimization.
We recall that in such a setting one wants to solve for s∗ = argmins f (s) for a real
convex function f : X →R∪{∞} defined on a convex set X . Using the convexity of
f and X it follows that:

1. If s∗ is a local minimum of f , then it is a global minimum.
2. The set of all (global) minima is convex.
3. If f is a strictly convex function and a minimum exists, then the minimum is

unique.

In addition, the convexity of f and X allows the use of convex analysis to produce
fast, efficient algorithmic solvers, we refer to [?] and references therein for more
details.

We point out that (1.4) is equivalent to (1.2) simply by the definition of condition
number of a frame. However, the condition number function κ , is not convex. As
such, it is nontrivial to find the optimal solution of (1.4). However, κ is a quasi-
convex function (see [?, Theorem 13.6] for a proof), meaning that its lower level
sets form convex sets; that is, the set {X : κ(X) ≤ a} forms a convex set for any
real a ≥ 0. See [?] and references therein for a survey on some algorithms that can
numerically solve certain quasiconvex problems. We refer to [?] for a survey of re-
sults on optimizing the condition number. But we note that, while minimizing the
condition number κ is not a convex problem, an equivalent convex problem was
considered in [?]. For comparison and completeness we state one of the main re-
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sults of [?]. First, observe that if X is a symmetric positive semidefinite matrix, then
its condition number is defined as

κ(X) =

λmax(X)/λmin(X) if λmin(X)> 0,
∞ if λmin(X) = 0 and λmax(X)> 0,
0 if X ≡ 0.

In this setting, it was proved in [?] that the problem of minimizing the condition
number is equivalent to solving another problem with convex programming.

Theorem 1 ([?], Theorem 3.1). Let Ω ⊆ S N be some nonempty closed convex
subset of S N , the space of N×N symmetric matrices and let S N

+ be the space of
symmetric positive semidefinite N×N matrices. Then the problem of solving

κ
∗ = inf{κ(X) : X ∈S N

+ ∩Ω}

is equivalent to the problem of solving

λ
∗ = inf{λmax(X) : X ∈ tΩ , t ≥ 0, X � I}, (1.7)

that is, λ ∗ = κ∗.

The problem described by (1.7) can be restated as solving for optimal scalars
{si} satisfying

min
si≥0 ,s6=0

{
λmax

(
M

∑
i=1

s2
i fi f ∗i

) ∣∣∣∣∣λmin

(
M

∑
i=1

s2
i fi f ∗i

)
≥ 1

}
. (1.8)

Therefore, when we obtain numerical solutions to the condition number problem
(1.4), we actually solve (1.8) and the theory of [?] guarantees that the optimal solu-
tions to both problems are indeed equal.

Theorem 1 has an intuitive interpretation. Suppose κ(X) = κ∗. Then rescaling
X by a positive scalar, t, will also scale its eigenvalues by the same factor 1/t, thus
leaving its condition number, κ(X/t), unchanged. Therefore, without loss of gener-
ality, we can assume that X is rescaled so that λmin(X/t) ≥ 1 which is imposed in
the last condition of (1.7). Once we know that λmin(X/t) is at least 1 then minimiz-
ing the condition number of X/t is equivalent to minimizing λmax(X/t) so long as
X/t ∈Ω which is guaranteed by the first condition in (1.7).

The goal of this chapter is to investigate the relationship among the solutions
to each of the optimization problems (1.4), (1.5), and (1.6). In addition, we shall
investigate the behavior of the optimal solution to each of these problems vis-á-vis
the projection of a non-scalable frame onto the set of scalable frames. We shall also
describe a number of algorithms to solve some of these problems and compare some
of the performances of these algorithms. Finally, we shall apply some of the results
of frame scalability to the problem of reweighing a graph in a such a way that the
condition number of the resulting Laplacian is as small as possible. The chapter is
organized as follow. In Section 1.2 we investigate the three problems stated above
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and compare their solutions, and in Section 1.3 we consider the application to finite
graph reweighing.

1.2 Non-scalable frames and optimally conditioned scaled frames

We begin by showing the relationship between the three formulations of this scala-
bility problem. We shall first show the equivalence of these problems when a frame
is exactly scalable, and present toy examples of the different solutions obtained
when a frame is only approximately scalable.

Lemma 1. Let F = { fi}M
i=1 be a frame in RN . Then the following statements are

equivalent:

(a) F = { fi}M
i=1 is a scalable frame.

(b) Problem (1.4) has a global minimum solution, s∗= {s∗i }, with objective function
value 1.

(c) Problem (1.5) has a global minimum solution, s∗= {s∗i }, with objective function
value 0.

(d) Problem (1.6) has a global minimum solution, s∗= {s∗i }, with objective function
value 0.

Proof. Assume F is scalable with weights, {si}M
i=1. Then S̃ = ∑

M
i=1 s2

i fi f ∗i = IN , and
the largest and smallest eigenvalue of the scaled frame operator is 1,

λmax
(
∑

M
i=1 s2

i fi f ∗i
)

λmin
(
∑

M
i=1 s2

i fi f ∗i
) =

λmax

(
S̃
)

λmin

(
S̃
) = 1.

Assume problem (1.4) has a global minimum solution, {si}M
i=1. As, λmax ≥ λmin,

the feasible solution must result in λmax = λmin = A. Applying this feasible solution
as a scaling of F , we have,

S̃ =
M

∑
i=1

s2
i fi f ∗i = AIN .

By normalizing the feasible solution by the square-root of A, we have the Parseval
scaling,

{s̃i}M
i=1 =

{
1√
A

si

}M

i=1
.

We have just proved that (a) and (b) are equivalent.
Assume F is scalable with weights, {si}M

i=1. Then S̃ = ∑
M
i=1 s2

i fi f ∗i = IN , and the
difference between the largest and smallest eigenvalue of the scaled frame operator
is 0,
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λmax

(
M

∑
i=1

s2
i fi f ∗i

)
−λmin

(
M

∑
i=1

s2
i fi f ∗i

)
= λmax

(
S̃
)
−λmin

(
S̃
)
= 0.

Additionally N = tr(IN) = ∑
M
i=1 s2

i ‖ fi‖2
2 which shows that {si}M

i=1 is a feasible solu-
tion for (1.5).

Assume problem (1.5) has a global minimum solution, {si}M
i=1. As, λmax ≥ λmin,

the feasible solution must result in λmax = λmin = A. Applying this feasible solution
as a scaling of F , we have,

S̃ =
M

∑
i=1

s2
i fi f ∗i = AIN .

But the feasibility condition ∑
M
i=1 s2

i ‖ fi‖2
2 = N implies N = tr(AIN), hence A = 1.

We have just proved that (a) and (c) are equivalent.
Assume F is scalable with weights, {si}M

i=1. Then S̃ = ∑
M
i=1 s2

i fi f ∗i = IN , and the
objective function for (1.6) attains the global minimum ,∥∥∥∥∥IN−

M

∑
i=1

s2
i fi f ∗i

∥∥∥∥∥
F

= ‖IN− IN‖F = 0.

Assume problem (1.6) has a global minimum solution, {si}M
i=1, which occurs

when
∥∥IN−∑

M
i=1 s2

i fi f ∗i
∥∥

F = 0. This implies that S̃ = ∑
M
i=1 s2

i fi f ∗i = IN , and we have
a Parseval scaling. We have just proved that (a) and (d) are equivalent.

Remark 1. Lemma 1 asserts that the problem of finding optimal scalings, {si}M
i=1, for

a given scalable frame F = { fi}M
i=1 is equivalent to finding the absolute minimums

of the following optimization problems:

• minsi≥0 ,s 6=0
λmax

(
∑

M
i=1 s2

i fi f ∗i
)

λmin
(
∑

M
i=1 s2

i fi f ∗i
)

• min si ≥ 0 , s 6= 0
∑

M
i=1 s2

i ‖ f1‖2
2 = N

λmax
(
∑

M
i=1 s2

i fi f ∗i
)
−λmin

(
∑

M
i=1 s2

i fi f ∗i
)

• minsi≥0 ,s 6=0
∥∥IN−∑

M
i=1 s2

i fi f ∗i
∥∥

F

Lemma 1 is restrictive in that it requires the frame F = { fi}M
i=1 be scalable to

state equivalence among problems, but there can be a wide variance in the solutions
obtained when the frame is not scalable. Even nearly-tight frames vary in initial
feasible solutions. We briefly consider ε-tight frames and analyze the distance from
the minimum possible objective function value.

Let Fε = {gi}M
i=1 with ‖gi‖2 = 1 for all i be an ε-tight frame such that,

(1− ε)IN �
M

∑
i=1

gig∗i � (1+ ε)IN .
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First considering the case in which the frame cannot be conditioned any further, so
the optimal scaling weights are si = 1. Analyzing the solution produced by the three
optimization methods, we see the difference in solutions produced.

λmax
(
∑

M
i=1 s2

i gig∗i
)

λmin
(
∑

M
i=1 s2

i gig∗i
) =

λmax
(
∑

M
i=1 gig∗i

)
λmin

(
∑

M
i=1 gig∗i

) =
1+ ε

1− ε
= 1+

2ε

1− ε
.

λmax

(
M

∑
i=1

s2
i fi f ∗i

)
−λmin

(
M

∑
i=1

s2
i gig∗i

)
= (1+ ε)− (1− ε) = 2ε

λmax

(
M

∑
i=1

s2
i gig∗i

)
= λmax

(
M

∑
i=1

gig∗i

)
= 1+ ε.

We lack the information necessary to give exact results for formulation (1.6), so we
instead give an upper bound when si = 1.∥∥∥∥∥IN−

M

∑
i=1

s2
i gig∗i

∥∥∥∥∥
F

=

∥∥∥∥∥IN−
M

∑
i=1

gig∗i

∥∥∥∥∥
F

≤
√

N

∥∥∥∥∥IN−
M

∑
i=1

gig∗i

∥∥∥∥∥
2

≤ ε
√

N.

It makes sense that we could enforce this constraint, as we could re-normalize the
frame elements by the reciprocal of the smallest eigenvalue of the frame operator.
It is not true, though, that the scalings produced must be the same. Moreover, when
not using the constraint on the smallest eigenvalue, the scalings can vary wildly.

Remark 2. For general frames, the optimization problems (1.4)-(1.6) do not produce
tight frames. However they can be solved using special classes of convex optimiza-
tion algorithms: problems (1.4) and (1.5) are solved by Semi-Definite Programs
(SDP), whereas problem (1.6) is solved by a Quadratic Program (QP) – see [?] for
details on SDPs and QPs. In the following we state these SDPs explicitly.

SDP 1 – Operator Norm Optimization:

(t1,s(1)) = argmin t,s1, . . . ,sM ≥ 0
∑

M
i=1 s2

i fi f ∗i − tIN− IN ≤ 0
∑

M
i=1 s2

i fi f ∗i + tIN− IN ≥ 0

t (1.9)

This SDP implements the optimization problem (1.3). In turn, as showed by Cassaza
and Chen in [?], the solution to this problem is also an optimizer of the condition
number optimization problem (1.4). Conversely, assume s(∗) is a solution of (1.4).
Let A = λmin(∑

M
i=1 s2

i fi f ∗i ) and B = λmax(∑
M
i=1 s2

i fi f ∗i ). Let r = 2
A+B . Then s(∗) =

(rs2
i )

M
i=1 is a solution of (1.9) and the optimum value of the optimization criterion is

t1 = rB−1 = 1− rA.
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SDP 2 – Minimum Upper Frame Bound Optimization:

(t2,s(2)) = argmin t,s1, . . . ,sM ≥ 0
∑

M
i=1 s2

i fi f ∗i − IN ≥ 0
∑

M
i=1 s2

i fi f ∗i − tIN ≤ 0

t (1.10)

This SDP implements the optimization problem (1.8) which as previously discussed,
also produces the solution s(2) to (1.4). Conversely, assume s(∗) is a solution of
(1.4). Let A = λmin(∑

M
i=1 s2

i fi f ∗i ) and B = λmax(∑
M
i=1 s2

i fi f ∗i ). Let r = 1
A . Then s(∗) =

(rs2
i )

M
i=1 is a solution of (1.10), and the optimum value of the optimization criterion

is t2 = B
A .

SDP 3 – Spectral Gap Optimization:

(t3,v3,s(3)) = argmin t,v,s1, . . . ,sM ≥ 0
∑

M
i=1 s2

i fi f ∗i − tIN ≤ 0
∑

M
i=1 s2

i fi f ∗i − vIN ≥ 0
∑

M
i=1 si ‖ fi‖2

2 = N

t− v (1.11)

This SDP implements the optimization problem (1.5). As remarked earlier (1.5)
is not equivalent to any of (1.3),(1.4) or (1.8). A spectral interpretation of these
optimization problems is as follows. The SDP 1 (and implicitly (1.4) and (1.8))
scales the frame so that the largest and smallest eigenvalues of the scaled frame
operator are equidistant and closest to value 1. The SDP 3 scales the frame so that
the largest and smallest eigenvalues of the scaled frame operator are closest to one
another while the average eigenvalue is set to 1. Equivalently, the solution to SDP 3
also minimizes the following criterion:

λmax(S̃)−λmin(S̃)
1
N tr(S̃)

where S̃ = ∑
M
i=1 s2

i fi f ∗i is the scaled frame operator.
QP 4 – Frobenius Norm Optimization:

s(4) = argmin s1, . . . ,sM ≥ 0

M

∑
i, j=1

sis j|〈 fi, f j〉|2−2
M

∑
i=1

s2
i ‖ fi‖2

2 +N (1.12)

This QP implements the optimization problem (1.6).

Example 1. Consider the 5-element frame, X ⊆ R3, generated such that each coor-
dinate is a random integer from 0 to 5.

X =

2 4 1 4 4
3 1 2 0 2
1 4 3 5 2


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We then numerically compute Xκ , Xg, XF , which are the rescaled frames that
minimize problems SDP 1, SDP 3 and QP 4, respectively. That is, Xκ is the rescaled
frame, Xκ = {si fi}, such that s∗ = {si} is the minimizer to Problem (1.3), which also
minimizes the frame condition number, κ . Similarly, Xg is rescaled to minimize the
eigenvalue gap λmax −λmin while the average eigenvalue is 1, and XF is rescaled to
minimize Frobenius distance to the identity matrix.

In our numerical implementation minimizing condition number, we used the
CVX toolbox in MATLAB [?] which is a solver for convex optimization problems.

Let sκ , sg, and sF denote the scaling vectors that determine the frames Xκ , Xg, and
XF , respectively. That is, Xκ = S1/2

κ X where Sκ is the diagonal matrix with values
given by sκ , and so on. We obtained scalings

sκ = [0.0187, 0, 0.0591, 0.0122, 0.0242],
sg= [0.0875, 0, 0.0398, 0.0297, 0],
sF = [0.0520, 0, 0.0066, 0.0177, 0].

The results comparing each of the four frames are summarized in Table 1.1.

λmin λmax κ (λmax −λmin )/
1
N ∑

N
i=1 λi ‖I3−·‖F ‖I3−·‖2

X 4.1658 110.41 26.504 2.5296 109.95 109.41
Xκ 0.1716 1.8284 10.655 2.2888 1.4348 0.8284
Xg 0.0856 2.3558 27.501 2.2701 1.6938 1.3558
XF 0.01672 1.1989 71.667 2.2903 1.2048 0.9832

Table 1.1: Comparisons of extreme eigenvalues, condition number, relative spectral
gap, Frobenius distance to identity, and the operator norm distance to identity for the
non scalable frame X and its rescaled versions that minimize Problems (1.4)–(1.6).

Observe that each of the three methods can produce widely-varying spectra.

We now demonstrate special conditions in which a frame’s condition number can
be decreased using matrix perturbation theory.

Lemma 2 (Weyl’s Inequality, [?, Corollary 4.9]). Let A be a Hermitian matrix
with real eigenvalues {λi(A)}d

i=1 and let B be a Hermitian matrix of the same size
as A with eigenvalues {λi(B)}d

i=1. Then for any i = 1, ...,d we have

λi(A+B) ∈ [λi(A)+λ1(B),λi(A)+λd(B)].

An immediate corollary of Weyl’s inequality tells us that perturbing a matrix by a
positive semidefinite matrix will cause the eigenvalues to not decrease.

Corollary 1. Let A be a Hermitian matrix with real eigenvalues {λi(A)}d
i=1 and let

B � 0 be Hermitian and of the same size of A. Then for any i = 1, ...,d, we have
λi(A)≤ λi(A+B). The inequality is strict if B� 0 is positive definite.
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Lemma 3. Let f be an eigenvector of A with associated eigenvalue λ . Let B be a
matrix of the same size as A with the property that B f = 0. Then f is an eigenvector
of A+B with eigenvalue λ .

Lemma 4 ([?, Section 1.3]). Let A and B be two N×N Hermitian matrices of same
size. Then for any i = 1, ...,N, the mapping t 7→ λi(A+ tB) is Lipschitz continuous
with Lipschitz constant ‖B‖2.

Corollary 2. Let A be an N×N Hermitian matrix with simple spectrum and mini-
mum eigengap δ > 0, i.e.,

δ = min
i6= j
|λi−λ j|.

Let B be a non-negative Hermitian matrix of same size as A. Then the mappings
t 7→ λi(A+ tB) are interlacing:

λ1(A)≤ λ1(A+tB)≤ λ2(A)≤ λ2(A+tB)≤ ·· ·≤ λN−1(A+tB)≤ λN(A)≤ λN(A+tB)

for t ∈ (0, δ

‖B‖2
).

The following theorem gives conditions in which we can guarantee that the con-
dition number of frame can be reduced.

Theorem 2. Let F = { fi}m
i=1 ⊆ Cd be a frame that is not tight and whose frame

operator has simple spectrum with minimal eigengap δ > 0. Suppose that there
exists some index k such that fk is orthogonal to the eigenspace corresponding to
λmax(FF∗) and not orthogonal to the eigenspace corresponding to λmin(FF∗). Then
there exists a rescaled frame F̃ = {si fi}m

i=1 satisfying κ(F̃) < κ(F). In particular,
one scaling that decreases the condition number is

si =

{ m
m−1+

√
1+γ

, for i 6= k
m
√

1+γ

m−1+
√

1+γ
, for i = k

for γ ∈ (0,δ ‖ fk‖−2).

Proof. Let fk denote the frame element as described in the assumptions in the
statement of the theorem. For γ ∈ (0,δ ), consider the frame operator HH∗ =
FF∗+ γ fk f ∗k which corresponds to the rescaled frame of F where each scale si = 1
except for sk =

√
1+ γ . The matrix fk f ∗k is Hermitian and positive semidefinite so

by Corollary 1, we have λi(FF∗)≤ λi(HH∗) for every i = 1, ...,N. Then by Corol-
lary 2, the eigenvalues of the frame operator HH∗ satisfies the following interlacing
property:

λ1(FF∗)≤ λ1(HH∗)≤ λ2(FF∗)≤ λ2(HH∗)≤ ·· · ≤ λN(FF∗) = λN(HH∗),

where the last equality follows from Lemma 3 and the fact that fk is orthogonal to
the eigenspace corresponding to λN(FF∗).

We can now compute
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κ(FF∗) =
λN(FF∗)
λ1(FF∗)

≥ λN(HH∗)
λ1(HH∗)

= κ(HH∗).

Finally, we renormalize the scales {si} by the constant factor m(m−1+
√

1+ γ)−1

to preserve the property that ∑
m
i=1 si =m. This renormalization scales all eigenvalues

by the same factor which leaves the condition number unchanged. The frame

F̃ =
m

m−1+
√

1+ γ
H

is the frame described in the statement of the theorem, which concludes the proof.

Remark 3. Having discussed the equivalence between the formulations above, we
have seen that they do not necessarily produce similar solutions. This brings the
question of which formulation we should use in general, to the forefront. One could
answer this question by seeking a metric that best describes the distance of a frame
to the set of tight frames. This is similar to the Paulsen problem [?], in that, after
we have solved one of the formulations above, we produce a scaling and subsequent
new frame and wish to determine the distance of this new frame to the canonical
Parseval frame associated to our original frame. In [?], the question of distance to
Parseval frames was generalized to include frames that could be made tight with a
diagonal scaling, resulting in the distance between a frame and the set of scalable
frames:

dF = min
Ψ∈S C (M,N)

‖F−Ψ‖F . (1.13)

However, due to the fact that the topology of the set of scalable frames S C (M,N)
is not yet well-understood, computing dF is almost impossible for a non-scalable
frame. A source of future work involves finding bound on dF using the optimal
solutions to the three problems we stated above to analyze and produce bounds on
the minimum distance.

1.3 Minimizing condition number of graphs

In this section we outline how to apply and generalize the problems the optimization
problems from Section 1.2 in the setting of (finite) graph Laplacians. This task is not
a simply as directly applying the condition number minimization problem (1.4), and
the others, with graph Laplacian operators.

Recall that any finite graph has a corresponding positive semidefinite Laplacian
matrix with eigenvalues {λk}N−1

k=0 and eigenvectors { fk}N−1
k=0 . Further any graph has

smallest eigenvalue λ = 0 with multiplicity equal to number of connected compo-
nents in the graph with eigenvalues equal to constant functions supported on those
connected components. Because any Laplacian’s smallest eigenvalue equals 0, its
condition number κ(L) is undefined. For simplicity, let us assume that all graphs
in this section are connected and hence 0 = λ0 < λ1 ≤ λ2 ≤ ·· · ≤ λN−1. Suppose
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we restricted the Laplacian operator to the (N− 1)-dimensional space spanned by
the eigenvectors f1, ..., fN−1. Then this new operator, call it L0, has eigenvalues
λ1, ...,λN−1 which are all strictly positive. Now, κ(L0), the condition number of
L0 is a well-defined number.

Recall that the complete graph on N vertices, KN , is the most connected a graph
on N vertices can be since one can traverse from any two vertices on precisely one
edge. It is the only graph that has all nonzero eigenvalues equal, i.e., λ0 = 0 and
λ1 = λ2 = · · · = λN−1 = N− 1. This graph achieves the highest possible algebraic
connectivity, λ1, of a graph on N vertices. If we create L0 by projecting the Laplacian
of KN onto the N− 1-dimensional space spanned by the eigenvectors correspond-
ing with nonzero eigenvalue then L0 equals NIN−1, that is a the (N− 1)× (N− 1)
identity matrix times N.

Lemma 5. Let G be a connected graph with eigenvalues {λk}N−1
k=0 and eigenvectors

{ fk}N−1
k=0 of the graph Laplacian L. Let F̃ = [ f1 f2 · · · fN−1] be the N×(N−1) matrix

of eigenvectors excluding the constant vector f0. Then the (N−1)× (N−1) matrix

L0 = F̃∗LF̃ (1.14)

has eigenvalues {λk}N−1
k=1 and associated orthonormal eigenvectors {F̃∗ fk}N−1

k=1 .

Proof. We first show that {F̃∗ fk}N−1
k=1 are eigenvectors to L0 with eigenvalues λk.

For any k = 1, ...,N−1 we have

L0F̃∗ fk = F̃∗LF̃F̃∗ fk.

But since F̃ is an orthonormal basis for the eigenspace that its vectors span,
then F̃F̃∗ is simply the orthogonal projection onto the eigenspace spanned by
{ f1, ..., fN−1}. That is, for any vector f , we have F̃F̃∗ f = f −〈 f , f0〉 f0, which is
simply the function f minus its mean value. For each k = 1, ...,N−1, the eigenvec-
tors fk have zero mean, i.e., 〈 fk, f0〉= 0. Hence F̃F̃∗ fk = fk and therefore

L0F̃∗ fk = F̃∗L fk = F̃∗(λk fk) = λkF̃∗ fk.

The orthonormality of the eigenvectors {F̃∗ fk}N−1
k=1 follows directly from the or-

thonormality of { fk}N−1
k=0 and the computation

〈F̃∗ fk, F̃∗ f j〉= (F̃∗ fk)
∗F̃∗ f j = f ∗k F̃F̃∗ f j = f ∗k f j = δ (k, j).

Unlike the Laplacian, the operator in (1.14) is full rank and its rank equals the rank
of the Laplacian. We denote it L0 because it behaves as the Laplacian after the
projection of the function onto the zero’th eigenspace is removed.

For a general finite graph, the Laplacian can be written as the sum of rank-one
matrices L = ∑

m
i=1 viv∗i where vi is the i’th column in the incidence matrix B asso-

ciated to the i’th edge in the graph and m is the total number of edges in the graph.
Thus, the Laplacian can be formed by the product L = BB∗. The columns of the in-
cidence matrix, B, as vectors in RN do not form a frame; B has rank N−1. However,
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the restriction B to the (N−1)-dimensional space spanned by f1, ...., fN−1, call it B0,
is a frame in that space. Then the methods of Section 1.2 do apply to the frame B0
with corresponding frame operator L0 = B0B∗0. Therefore the operator L0 can also
be written as one matrix multiplication L0 = (F̃∗B)(F̃∗B)∗. For other related results
on graphs and frames we refer to [?]. We seek scalars si ≥ 1 so that the rescaled
frame {siF̃∗vi}m

i=1 is tight or as close to tight as possible. In terms of matrices, we
seek a nonnegative diagonal matrix X = diag(si) so that L̃0 := F̃∗BX2B∗F̃ has min-
imal condition number. The resulting graph Laplacian, denoted L̃κ = BX2B∗, is the
operator with minimal condition number, L̃0, without the projection onto (N− 1)
eigenspaces, thus acting on the entire N-dimensional space. One can interpret this
problem as rescaling weights of graph edges to not only make L̃0 as close as possi-
ble to the (N−1)-identity matrix but also make the N×N Laplacian, L̃, as close to
possible as the Laplacian of the complete graph KN .

We present the pseudocode for the algorithm, GraphCondition, that pro-
duces L̃κ , the Laplacian of the graph that minimizes the condition number of L.
Lκ =GraphCondition(L,F,B)
where L is the Laplacian matrix of the graph G,
F is the N×N eigenvector matrix of L
B is the incidence matrix of L.

1. Set F̃ = F(:,2 : N).
2. Use cvx to solve for X that minimizes λmax(F̃∗BX2B∗F̃).

subject to: X � 0 is diagonal, trace(X)≥ t ≥ 0, and F̃∗BX2B∗F̃ � I.
3. Create Lκ = BX2B∗.

Example 2. We consider the barbell graph G which consists of two complete graphs
on 5 vertices that are connected by exactly one edge. The Laplacian for G has
eigenvalues λ1 ≈ 0.2984 and λ9 ≈ 6.7016, thus giving a condition number of
κ(G) ≈ 22.45. We rescale the edges via the GraphCondition algoritihm and
obtained a rescaled weighted graph G̃κ which has eigenvalues λ1 ≈ 0.3900 and
λ10 ≈ 6.991, thus giving a condition number κ(G̃κ)≈ 17.9443.

Both graphs, G and G̃κ , are shown in Figure 1.1. The edge bridging the two
complete clusters is assigned the highest weight of 1.8473. All other edges eminat-
ing from those two vertices are assigned the smallest weights of 0.7389. All other
edges not connected to either of the two “bridge” vertices are assigned a weight of
1.1019.

We show in the following example that the scaling coefficients {si}m
i=1 that min-

imize the condition number of a graph are not necessarily unique.

Example 3. Consider the graph G complete graph on four nodes with the edge
(3,4) removed. Then G was rescaled and conditioned via GraphCondition; both
graphs are shown in Figure 1.2. The orignal Laplacian, L, and the rescaled condi-
tioned Laplacian, L̃κ , produced by the GraphCondition algorithm are given as

GraphCondition
GraphCondition
cvx
GraphCondition
GraphCondition
GraphCondition
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Fig. 1.1: Top: The barbell graph G. Bottom: The condiitoned graph with rescaled
weights that minimizes the condition number. The width of the edges are drawn to
be proportional to the weight assigned to that edge.

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2

 , L̃κ ≈


2.8406 −0.6812 −1.0797 −1.0797
−0.6812 2.8406 −1.0797 −1.0797
−1.0797 −1.0797 2.1594 0
−1.0797 −1.0797 0 2.1594

 ,
with spectra

σ(L) = {0,2,4,4}, σ(L̃κ) = {0,2.1594,3.5218,4.3188}.
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Both Laplacians have a condition number κ(L) = κ(L̃κ) = 2 which shows that the
scaling of edges that minimize condition number are not necessarily unique.

Fig. 1.2: The unweighted graph G (left) and its rescaled version G̃κ (right) yet both
graphs have a condition number equal to 2.

We prove that the GraphCondition algorithm will not disconnect a connected
graph.

Proposition 1. Let G = G(V,E,ω) be a connected graph and let G̃κ = G̃κ(V, Ẽ, ω̃)
be the rescaled version of G that minimizes graph condition number. Then G̃κ is
also a connected graph.

Proof. Let κ0 := κ(G) ≥ 1 and suppose that G̃κ is disconnected. This implies that
G̃κ has eigenvalue 0 with multiplicity at least 2 (one for each of its connected com-
ponents). This violates the condition F̃∗BX2B∗F̃ � I in the GraphCondition
algorithm, which yields the unique minimizer.

We next consider the analogue of minimizing the spectral gap, λN−1− λ1, for
graphs. Just as before with condition number, we create the positive definite matrix
L0 and its incidence matrix, B0, and minimize its spectral gap by the methods in
Section 1.2 to minimize problem (1.5). We denote the rescaled graph that minimizes
the spectral gap by G̃g.

Example 4. We present numerical results of each of the graph rescaling techniques
for the barbell graph shown in Figure 1.1. Each of the rescaled graphs are pictured
in Figure 1.3 and numerical data is summarized in Table 1.2.

As discussed in the motivation of this section, reducing the condition number of
a graph makes the graph more “complete”, that is, more like the complete graph in
terms of its spectrum. Since the algebraic connectivity λ1 is as great as possible,
it is the only graph for which λ1 = λN−1, the graph is the most connected a graph

GraphCondition
GraphCondition
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Fig. 1.3: From top to bottom: G̃κ and G̃g, which minimize the condition number and
spectral gap, respectively.

λ1 λN−1 κ λN−1−λ1
G 0.2984 6.7016 22.4555 6.4031

G̃κ 1.0000 17.9443 17.9443 16.9443
G̃g 0.0504 1.1542 22.8794 1.1038

Table 1.2: Comparison of condition number and spectral gap of the barbell graph,
G, shown in Figure 1.1 and its rescaled versions, respectively.

can possibly be, and as such the distance between any two points is minimal. As
previously discussed, the effective resistance is a natrual metric on graphs and one
can compute that for any two distinct vertices, i and j, on the complete graph on N
vertices we have

R(i, j) =
N−1

∑
k=1

1
λk

( fk(i)− fk( j))2 =
1
N

N−1

∑
k=1

( fk(i)− fk( j))2

=
1
N
(ei− e j)

∗FF∗(ei− e j) =
1
N
(ei− e j)

∗(ei− e j)

=
1
N

∥∥ei− e j
∥∥2

=
2
N
.
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Conjecture 1. The process of conditioning a graph reduces the average resistance
between any two vertices on the graph.

The intuition behind Conjecture 1 can be motivated by studying the quantity
∑

N−1
k=1 1/λk. Consider a sequence of positive numbers {ak}N

k=1 with average ā =

1/N ∑
N
k=1 ak. Then since the function h(t) = 1/t is continous and convex on the set

of positive numbers, it is also midpoint convex on that set, i.e.,

N
ā
= Nh(ā)≤

N

∑
k=1

h(ak) =
N

∑
k=1

1
ak

.

With this fact, let {λk}N−1
k=1 denote the eigenvalues of connected graph G and

{λ̃k}N−1
k=0 denote the eigenvalues of the conditioned graph G̃κ , both satisfying

λ̄ = 1/N ∑
N−1
k=1 λk = 1/N ∑

N−1
k=1 λ̃k. Since G̃κ is better conditioned than G, then∥∥∥∑

N−1
k=1 λ̃k− λ̄

∥∥∥ ≤ ∥∥∑
N−1
k=1 λk− λ̄

∥∥. In other words, the eigenvalues {λ̃k}N−1
k=1 are

closer to the average λ̄ than the eigenvaleus {λk}N−1
k=1 are. Hence

N−1

∑
k=1

1
λ̃k
≤

N−1

∑
k=1

1
λk

. (1.15)

Equation (1.15) almost resembles the effective resistance R(i, j)=∑
N−1
k=1 1/λk( fk(i)−

fk( j))2 except for the term ( fk(i)− fk( j))2. This term will be difficult to account for
since little is known about the eigenvectors of G̃κ . Analysis of eigenvectors of per-
turbed matrices is a widely open area of research and results are very limited, see
[?, ?, ?, ?].

We remark that Conjecture 1 claims that conditoning a graph will reduce the
average effective resistance between points; it is not true that the resistance between
all points will be reduced. If the weight on edge (i, j) is reduced, then its effective
resistance between points i and j is increased. Since we impose that the trace of the
Laplacians be preserved, if any edge weights are increased, then by conservation at
least one other edge’s weight must be decreased. The vertex pairs for those edges
will then have an increased effective resistance between them.

While we lack the theoretical justification, numerical simulations support Con-
jecture 1 and this is a source of future work.

The authors of [?] approach a similar way. They propose using convex optimiza-
tion to minimize the total effective resistance of the graph,

Rtot =
N

∑
i, j=1

R(i, j).

They show that the optimization problem is related to the problem of reweighting
edges to maximize the algebraic connectivity λ1.
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