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Frames and Phaseless Reconstruction

Radu Balan

Abstract. Frame design for phaseless reconstruction is now part of the broader
problem of nonlinear reconstruction and is an emerging topic in harmonic anal-

ysis. The problem of phaseless reconstruction can be simply stated as follows.
Given the magnitudes of the coefficients generated by a linear redundant sys-

tem (frame), we want to reconstruct the unknown input. This problem first

occurred in X-ray crystallography starting in the early 20th century. The same
nonlinear reconstruction problem shows up in speech processing, particularly

in speech recognition.

In this lecture we shall cover existing analysis results as well as stability
bounds for signal recovery including: necessary and sufficient conditions for in-

jectivity, Lipschitz bounds of the nonlinear map and its left inverses, stochastic

performance bounds, and algorithms for signal recovery.

1. Introduction

These lecture notes concern the problem of finite dimensional vector recon-
struction from magnitudes of frame coefficients.

Variants of this problem appear in several areas of engineering and science.
In particular in X-ray crystallography one measures the magnitudes of the Fourier
transform of the electron density from which one infers the atomic structure of
the crystal [Fin82]. In speech processing, automatic speech recognition engines
typically use cepstral coefficients, which are absolute values of linear combinations
of the short time Fourier transform coefficients [HLO80, Ba10]. The phaseless
reconstruction problem unifies these and other similar problems [BCE06].

While the problem can be stated in the more general context of infinite dimen-
sional Hilbert spaces, in these lectures we focus exclusively on the finite dimensional
case. In this case any spanning set is a frame (see [Ca00] for a complete definition
and list of properties). Specifically let H = Cn denote the n dimensional complex
Hilbert space and let F = {f1, . . . , fm} be a set of m ≥ n vectors that span H.
Fix a real linear space V , that is also a subset of H, V ⊂ H. Our problem is to
study when a vector x ∈ V can be reconstructed from magnitudes of its frame coef-
ficients {|〈x, fk〉| , 1 ≤ k ≤ m} and how to do so efficiently. This setup covers both
the real case and the complex case as studied before in literature: in the real case
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2 RADU BALAN

F ⊂ V = Rn; in the complex case V = H = Cn. Note we assume V is a real linear
space which may not be closed under multiplication with complex scalars. While
the analysis both of the real case and complex case is presented in a unified way, the
reader should be aware that the two cases are not equally easy. In particular the
geometric criterion (4) of Theorem 3.2 does not have a counterpart in the complex
case.

Consider the following additional notation. Let

(1.1) T : H → Cm , (T (x))k = 〈x, fk〉 , 1 ≤ k ≤ m
denote the frame analysis map. Its adjoint is called the synthesis map and is defined
by

(1.2) T ∗ : Cm → H , T ∗(c) =

m∑
k=1

ckfk.

We now define the main nonlinear function we discuss in this paper

x 7→ (|〈x, fk〉|)1≤k≤m.

For two vectors x, y ∈ H, consider the equivalence relation x ∼ y if and only if
there is a constant c of magnitude 1 so that x = cy. Thus x ∼ y if and only if
x = eiϕy for some real ϕ. Let Ĥ = H/ ∼ denote the quotient space. Note the

nonlinear map is well defined on Ĥ since |〈cx, fk〉| = |〈x, fk〉| for all scalars c with
|c| = 1. We let α denote the quotient map

(1.3) α : Ĥ → Rm , (α(x))k = |〈x, fk〉| , 1 ≤ k ≤ m.
For purposes that will become clear later, let us also define the map

(1.4) β : Ĥ → Rm , (β(x))k = |〈x, fk〉|2 , 1 ≤ k ≤ m.

For the subspace V denote by V̂ the set of equivalence classes V̂ = {x̂ , x ∈ V }.

Definition 1.1. The frame F is called a phase retrievable frame with respect
to a set V if the restriction α|V̂ is injective.

In these lecture notes we study the following problems:

(1) Find necessary and sufficient conditions for α|V̂ to be a one-to-one (injec-
tive) map;

(2) Study Lipschitz properties of the maps α, β and their inverses;
(3) Study robustness guarantees (such as Cramer-Rao Lower Bounds) for any

inversion algorithm;
(4) Recovery using convex algorithms (Linear Tensor recovery, and PhaseLift);
(5) Recovery using iterative algorithms (Gerchberg-Saxton, Wirtinger flow,

regularized least-squares).

2. Geometry of Ĥ and Sp,q Spaces

2.1. Ĥ. Recall Ĥ = Ĉn = Cn/ ∼= Cn/T 1 where T 1 = {z ∈ C , |z| = 1}.
Algebraically Ĉn is a homogeneous space invariant to multiplications by positive

real scalars. In particular any x ∈ Ĉn \ {0} has a unique decomposition x = rp,
where r = ‖x‖ > 0 and p ∈ CPn−1 is in the projective space CPn−1 = P(Cn).
Thus, topologically,

Ĉn = {0} ∪
(
(0,∞)× CPn−1

)
.
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The subset
˚̂Cn = Ĉn \ {0} = (0,∞)× CPn−1

is a real analytic manifold.
Now consider the set V̂ of equivalence classes associated to vectors in V . Similar

to Ĥ, V̂ admits the following decomposition

V̂ = {0} ∪ ((0,∞)× P(V )) ,

where P(V ) = { {zx , z ∈ C} , x ∈ V, x 6= 0} denotes the projective space associated
to V . The interior subset

˚̂
V = V̂ \ {0} = (0,∞)× P(V )

is a real analytic manifold of (real) dimension 1 + dimR P(V ).
Two important cases are as follows:

• Real case. V = Rn embedded as x ∈ Rn 7→ x + i0 ∈ Cn = H. Then
two vectors x, y ∈ V are ∼ equivalent if and only if x = y or x = −y.
Similarly, the projective space P(V ) is diffeomorphically equivalent to the
real projective space RPn−1 which is of (real) dimension n− 1. Thus

dimR(
˚̂
V ) = n.

• Complex case. V = Cn which has real dimension 2n. Then the projec-
tive space P(V ) = CPn−1 has real dimension 2n − 2 (it is also a Khäler
manifold) and thus

dimR(
˚̂
V ) = 2n− 1.

The significance of the real dimension of
˚̂
V is encoded in the following result:

Theorem 2.1 ([BCE06]). If m ≥ 1 + dimR(
˚̂
V ) then for a (Zariski) generic

frame F of m elements, the set of vectors x ∈ V such that α−1(α(x̂)) has one point

in V̂ has dense interior in V .

The real case of this result is contained in Theorem 2.9, whereas the complex
case is contained in Theorem 3.4. Both can be found in [BCE06].

2.2. Sp,q. Consider now Sym(H) = {T : Cn → Cn , T = T ∗}, the real vector
space of self-adjoint operators over H = Cn endowed with the Hilbert-Schmidt
scalar product 〈T, S〉HS = trace(TS). We also use the notation Sym(W ) for the
real vector space of symmetric operators over a (real or complex) vector space W .
In both cases self-adjoint means the operator T satisfies 〈Tx, y〉 = 〈x, Ty〉 for every
x, y in the underlying vector space W . T ∗ means the adjoint operator of T , and
therefore the transpose conjugate of T , when T is a matrix. When T is a an operator
acting on a real vector space, TT denotes its adjoint. For two vectors x, y ∈ Cn we
denote

(2.1) Jx, yK =
1

2
(xy∗ + yx∗) ∈ Sym(Cn),

their symmetric outer product. On Sym(H) and B(H) = Cn×n we consider the
class of p-norms defined by the p-norm of the vector of singular values:

(2.2) ‖T‖p =

{
max1≤k≤n σk(T ) for p =∞

(
∑n
k=1 σ

p
k)

1/p
for 1 ≤ p <∞

,
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where σk =
√
λk(T ∗T ), 1 ≤ k ≤ n, are the singular values of T , with λk(S), 1 ≤

k ≤ n, denoting the eigenvalues of S.
Fix two integers p, q ≥ 0 and set

Sp,q(H) = {T ∈ Sym(H) , T has at most p strictly positive eigenvalues

and at most q strictly negative eigenvalues},(2.3)

S̊p,q(H) = {T ∈ Sym(H) , T has exactly p strictly positive eigenvalues

and exactly q strictly negative eigenvalues}.(2.4)

For instance S̊0,0(H) = S0,0(H) = {0} and S̊1,0(H) is the set of all non-negative
operators of rank exactly one. When there is no confusion we shall drop the un-
derlying vector space H = Cn from notation.

The following basic properties can be found in [Ba13], Lemma 3.6; in fact, the
last statement is a special instance of the Witt’s decomposition theorem.

Lemma 2.2.

(1) For any p1 ≤ p2 and q1 ≤ q2, Sp1,q1 ⊂ Sp2,q2 ;
(2) For any nonnegative integers p, q the following disjoint decomposition holds

true

(2.5) Sp,q = ∪pr=0 ∪
q
s=0 S̊r,s,

where by convention S̊p,q = ∅ for p+ q > n.
(3) For any p, q ≥ 0,

(2.6) −Sp,q = Sq,p.
(4) For any linear operator T : H → H (symmetric or not, invertible or not)

and nonnegative integers p, q,

(2.7) T ∗Sp,qT ⊂ Sp,q.
However if T is invertible then T ∗Sp,qT = Sp,q.

(5) For any nonnegative integers p, q, r, s,

(2.8) Sp,q + Sr,s = Sp,q − Ss,r = Sp+r,q+s.

The spaces S1,0 and S1,1 play a special role in the following section. Next we
summarize their properties (see Lemmas 3.7 and 3.9 in [Ba13], and the comment
after Lemma 9 in [BCMN13]).

Lemma 2.3 (Space S1,0). The following statements hold true:

(1) S̊1,0 = {xx∗ , x ∈ H,x 6= 0};
(2) S1,0 = {xx∗ , x ∈ H} = {0} ∪ {xx∗ , x ∈ H,x 6= 0};
(3) The set S̊1,0 is a real analytic manifold in Sym(Cn) of real dimension

2n− 1. As a real manifold, its tangent space at X = xx∗ is given by

(2.9) TX S̊1,0 =

{
Jx, yK =

1

2
(xy∗ + yx∗) , y ∈ Cn

}
.

The R-linear embedding Cn 7→ TX S̊1,0 given by y 7→ Jx, yK has null space
{iax , a ∈ R}.

Lemma 2.4 (Space S1,1). The following statements hold true:

(1) S1,1 = S1,0 − S1,0 = S1,0 + S0,1 = {Jx, yK , x, y ∈ H};
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(2) For any vectors x, y, u, v ∈ H,

xx∗ − yy∗ = Jx+ y, x− yK = Jx− y, x+ yK,(2.10)

Ju, vK =
1

4
(u+ v)(u+ v)∗ − 1

4
(u− v)(u− v)∗.(2.11)

Additionally, for any T ∈ S1,1 let T = a1e1e
∗
1 − a2e2e

∗
2 be its spectral

factorization with a1, a2 ≥ 0 and 〈ei, ej〉 = δi,j. Then

T = J
√
a1e1 +

√
a2e2,

√
a1e1 −

√
a2e2K.

(3) The set S̊1,1 is a real analytic manifold in Sym(Cn) of real dimension
4n− 4. Its tangent space at X = Jx, yK is given by

(2.12) TX S̊1,1 = {Jx, uK + Jy, vK =
1

2
(xu∗ + ux∗ + yv∗ + vy∗) , u, v ∈ Cn}.

The R-linear embedding Cn×Cn 7→ TX S̊1,1 given by (u, v) 7→ Jx, uK+Jy, vK
has null space {a(ix, 0) + b(0, iy) + c(y,−x) + d(iy, ix) , a, b, c, d ∈ R}.

(4) Let T = Ju, vK ∈ S1,1. Then its eigenvalues and p-norms are:

a+ =
1

2

(
real(〈u, v〉) +

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
≥ 0,(2.13)

a− =
1

2

(
real(〈u, v〉)−

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
≤ 0,(2.14)

‖T‖1 =

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2,(2.15)

‖T‖2 =

√
1

2

(
‖u‖2‖v‖2 + (real(〈u, v〉))2 − (imag(〈u, v〉))2

)
,(2.16)

‖T‖∞ =
1

2

(
| real(〈u, v〉)|+

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
.(2.17)

(5) Let T = xx∗ − yy∗ ∈ S1,1. Then its eigenvalues and p-norms are:

a+ =
1

2

(
‖x‖2 − ‖y‖2 +

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2

)
,(2.18)

a− =
1

2

(
‖x‖2 − ‖y‖2 −

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2

)
,(2.19)

‖T‖1 =

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2,(2.20)

‖T‖2 =

√
‖x‖4 + ‖y‖4 − 2|〈x, y〉|2,(2.21)

‖T‖∞ =
1

2

(
|‖x‖2 − ‖y‖2|+

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2

)
.(2.22)

Note the above results hold true for the case of symmetric operators over the
real subspace V . In particular the factorization at Lemma 2.4(1) implies that

(2.23) S1,1(V ) = S1,0(V )− S1,0(V ) = S1,0(V ) + S0,1(V ) = {Ju, vK , u, v ∈ V }.

More generally this result holds for subsets V ⊂ H that are closed under addition
and subtraction (such as modules over Z).
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2.3. Metrics. The space Ĥ = Ĉn admits two classes of distances (metrics).
The first class is the “natural metric” induced by the quotient space structure. The
second metric is a matrix norm-induced distance.

Fix 1 ≤ p ≤ ∞.
The natural metric denoted by Dp : Ĥ × Ĥ → R is defined by

(2.24) Dp(x̂, ŷ) = min
ϕ∈[0,2π)

‖x− eiϕy‖p,

where x ∈ x̂ and y ∈ ŷ. In the case p = 2 the distance becomes

D2(x̂, ŷ) =

√
‖x‖2 + ‖y‖2 − 2|〈x, y〉|.

By abuse of notation we use also Dp(x, y) = Dp(x̂, ŷ) since the distance does not
depend on the choice of representatives.

The matrix norm-induced distance denoted by dp : Ĥ × Ĥ → R is defined by

(2.25) dp(x̂, ŷ) = ‖xx∗ − yy∗‖p,

where again x ∈ x̂ and y ∈ ŷ. In the case p = 2 we obtain

d2(x, y) =

√
‖x‖4 + ‖y‖4 − 2|〈x, y〉|2.

By abuse of notation we use also dp(x, y) = dp(x̂, ŷ) since again the distance does
not depend on the choice of representatives.

As analyzed in [BZ14], Proposition 2.4, Dp is not Lipschitz equivalent to dp,
however Dp is an equivalent distance to Dq and similarily, dp is equivalent to dq,
for any 1 ≤ p, q ≤ q (see also [BZ15b] for the last claim below):

Lemma 2.5.

(1) For each 1 ≤ p ≤ ∞, Dp and dp are distances (metrics) on Ĥ;
(2) (Dp)1≤p≤∞ are equivalent distances; that is, each Dp induces the same

topology on Ĥ and, for every 1 ≤ p, q ≤ ∞, the identity map i : (Ĥ,Dp)→
(Ĥ,Dq), i(x) = x, is Lipschitz continuous with Lipschitz constant

LipDp,q,n = max(1, n
1
q−

1
p ).

(3) (dp)1≤p≤∞ are equivalent distances, that is, each dp induces the same

topology on Ĥ and, for every 1 ≤ p, q ≤ ∞, the identity map i : (Ĥ, dp)→
(Ĥ, dq), i(x) = x, is Lipschitz continuous with Lipschitz constant

Lipdp,q,n = max(1, 2
1
q−

1
p ).

(4) The identity map i : (Ĥ,Dp) → (Ĥ, dp), i(x) = x is continuous, but it is

not Lipschitz continuous. The identity map i : (Ĥ, dp)→ (Ĥ,Dp), i(x) =
x is continuous but it is not Lipschitz continuous. Hence the induced
topologies on (Ĥ,Dp) and (Ĥ, dp) are the same, but the corresponding
distances are not Lipschitz equivalent.

(5) The metric space (Ĥ, dp) is isometrically isomorphic to S1,0 endowed with
the p-norm. The isomorphism is given by the map

κβ : Ĥ → S1,0 , x 7→ Jx, xK = xx∗.
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(6) The metric space (Ĥ,D2) is Lipschitz isomorphic (not isometric) with
S1,0 endowed with the 2-norm. The bi-Lipschitz map

κα : Ĥ → S1,0 , x 7→ κα(x) =

{ 1
‖x‖xx

∗ if x 6= 0

0 otherwise

has lower Lipschitz constant 1 and upper Lipschitz constant
√

2.

Note the Lipschitz constant LipDp,q,n is equal to the operator norm of the identity

map between (Cn, ‖ · ‖p) and (Cn, ‖ · ‖q): LipDp,q,n = ‖I‖lp(Cn)→lq(Cn). Note also the

equality Lipdp,q,n = LipDp,q,2. A consequence of the last two claims in the above result

is that while the identity map between (Ĥ,Dp) and (Ĥ, dq) is not bi-Lipschitz, the
map x 7→ 1√

‖x‖
x is bi-Lipschitz.

3. The Injectivity Problem

In this section we summarize existing results on the injectivity of the maps α
and β. Our plan is to present the real and the complex case in a unified way.

Recall that V is a real vector space which is also a subset of H = Cn. The
special two cases are V = Rn (the real case) and V = Cn (the complex case).

First we describe the realification procedure of H and V . Consider the R-linear
map  : Cn → R2n defined by

(x) =

[
real(x)
imag(x)

]
.

Let V = (V ) be the embedding of V into R2n, and let Π denote the orthogonal
projection (with respect to the real scalar product on R2n) onto V. Let J denote
the folowing orthogonal antisymmetric 2n× 2n matrix

(3.1) J =

[
0 −In
In 0

]
,

where In denotes the n × n identity matrix. Note that JT = −J , J2 = −I2n and
J−1 = −J .

Each vector fk of the frame set F = {f1, . . . , fm} is mapped by  onto a vector
in R2n denoted by ϕk, and a symmetric operator in S2,0(R2n) denoted by Φk:

(3.2) ϕk = (fk) =

[
real(fk)
imag(fk)

]
, Φk = ϕkϕ

T
k + Jϕkϕ

T
k J

T .

Note that when fk 6= 0 the symmetric form Φk has rank 2 and belongs to S̊2,0. Its
spectrum has two distinct eigenvalues: ‖ϕk‖2 = ‖fk‖2 with multiplicity 2, and 0
with multiplicity 2n− 2. Furthermore, 1

‖ϕk‖2
Φk is a rank 2 projection.

Let ξ = (x) and η = (y) denote the realifications of vectors x, y ∈ Cn. Then
a bit of algebra shows that

〈x, fk〉 = 〈ξ, ϕk〉+ i〈ξ, Jϕk〉,(3.3)

〈Fk, xx∗〉HS = trace (Fkxx
∗) = |〈x, fk〉|2 = 〈Φkξ, ξ〉 = 〈Φk, ξξT 〉HS ,

〈Fk, Jx, yK〉HS = trace (FkJx, yK) = real(〈x, fk〉〈fk, y〉) = 〈Φkξ, η〉 = trace(ΦkJξ, ηK)
= 〈Φk, Jξ, ηK〉HS ,

where Fk = Jfk, fkK = fkf
∗
k ∈ S1,0(H).



8 RADU BALAN

The following objects play an important role in the subsequent theory:

R : Cn → Sym(Cn) , R(x) =

m∑
k=1

|〈x, fk〉|2fkf∗k , x ∈ Cn,(3.4)

R : R2n → Sym(R2n) , R(ξ) =

m∑
k=1

Φkξξ
TΦk , ξ ∈ R2n,(3.5)

S : R2n → Sym(R2n) , S(ξ) =
∑

k:Φkξ 6=0

1

〈Φkξ, ξ〉
Φkξξ

TΦk , ξ ∈ R2n,(3.6)

Z : R2n → R2n×m , Z(ξ) =
[

Φ1ξ | . . . | Φmξ
]
, ξ ∈ R2n.(3.7)

Note R = ZZT .
Following [BBCE07] we note that |〈x, fk〉|2 is the Hilbert-Schmidt scalar prod-

uct between two rank 1 symmetric forms:

|〈x, fk〉|2 = trace (FkX) = 〈Fk, X〉HS ,
where X = xx∗. Thus the nonlinear map β induces a linear map on the real vector
space Sym(Cn) of symmetric forms over Cn:

(3.8) A : Sym(Cn)→ Rm , (A(T ))k = 〈T, Fk〉HS = 〈Tfk, fk〉 , 1 ≤ k ≤ m
Similarly it induces a linear map on Sym(R2n), the space of symmetric forms over
R2n = (Cn), that is denoted by A:
(3.9)
A : Sym(R2n)→ Rm , (A(T ))k = 〈T,Φk〉HS = 〈Tϕk, ϕk〉+〈TJϕk, Jϕk〉 , 1 ≤ k ≤ m.
Now we are ready to state a necessary and sufficient condition for injectivity that
works in both the real and the complex case:

Theorem 3.1 ([HMW11, BCMN13, Ba13]). Let H = Cn and let V be
a real vector space that is also a subset of H, V ⊂ H. Denote by V = (V ) the
realification of V . Assume F is a frame for V . The following statements are
equivalent:

(1) The frame F is phase retrievable with respect to V ;
(2) kerA ∩

(
S1,0(V )− S1,0(V )

)
= {0};

(3) kerA ∩ S1,1(V ) = {0};
(4) kerA ∩ (S2,0(V ) ∪ S1,1(V ) ∪ S0,2) = {0};
(5) There do not exist vectors u, v ∈ V with Ju, vK 6= 0 so that

real (〈u, fk〉〈fk, v〉) = 0 , ∀ 1 ≤ k ≤ m;

(6) kerA ∩
(
S1,0(V)− S1,0(V)

)
= {0};

(7) kerA ∩ S1,1(V) = {0};
(8) There do not exist vectors ξ, η ∈ V, with Jξ, ηK 6= 0 so that

〈Φkξ, η〉 = 0 , ∀ 1 ≤ k ≤ m.

Proof.
(1)⇔ (2) It is immediate once we notice that any element in the null space of

A of the form xx∗ − yy∗ implies A(xx∗) = A(yy∗) for some x, y ∈ V with x̂ 6= ŷ.
(2)⇔ (3) and (3)⇔ (5) are consequences of (2.23).
For (4) first note that kerA ∩ S2,0(V ) = {0} = kerA ∩ S0,2(V ) since F is a

frame for V . Thus (3)⇔ (4).
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(6),(7) and (8) are simply restatements of (2),(3) and (4) using the realification
procedure. 2

In the case (4) above, note that S2,0(V ) ∪ S1,1(V ) ∪ S0,2(V ) is the set of all
rank less than or equal to 2 symmetric operators in Sym(V ) (This statement has
been proposed in [BCMN13]).

The above general injectivity result is next made more explicit in the cases
V = Cn and V = Rn.

Theorem 3.2 ([BCE06, Ba12]). (The real case) Assume F ⊂ Rn. The
following are equivalent:

(1) F is phase retrievable for V = Rn;
(2) R(x) is invertible for every x ∈ Rn, x 6= 0;
(3) There do not exist vectors u, v ∈ Rn with u 6= 0 and v 6= 0 so that

〈u, fk〉〈fk, v〉 = 0 , ∀ 1 ≤ k ≤ m;

(4) For any disjoint partition of the frame set F = F1 ∪ F2, either F1 spans
Rn or F2 spans Rn.

Recall a set F ⊂ Cn is called full spark if any subset of n vectors is linearly
independent. Then an immediate corollary of the above result is the following

Corollary 3.3 ([BCE06]). Assume F ⊂ Rn. Then

(1) If F is phase retrievable for Rn then m ≥ 2n− 1;
(2) If m = 2n− 1, then F is phase retrievable if and only if F is full spark;

Proof.
Indeed, the first claim follows from Theorem 3.2(4): If m ≤ 2n− 2 then there

is a partition of F into two subsets each of cardinal less than or equal to n − 1.
Thus neither set can span Rn. Contradiction.

The second claim is immediate from the same statement as above. 2

A more careful analysis of Theorem 3.2(4) gives a recipe of constructing two
non-similar vectors x, y ∈ Rn so that α(x) = α(y). Indeed, if F = F1 ∪ F2 so that
dim span(F1) < n and dim span(F2) < n then there are non-zero vectors u, v ∈ Rn
with 〈u, fk〉 = 0 for all k ∈ I, and 〈v, fk〉 = 0 for all k ∈ Ic. Here I is the
index set of frame vectors in F1 and Ic denotes its complement in {1, . . . ,m}. Set
x = u + v and y = u − v. Then |〈x, fk〉| = |〈v, fk〉| = |〈y, fk〉| for all k ∈ I, and
|〈x, fk〉| = |〈u, fk〉| = |〈y, fk〉| for all k ∈ Ic. Thus α(x) = α(y), but x 6= y and
x 6= −y.

Theorem 3.4 ([BCMN13, Ba13]). (The complex case) The following are
equivalent:

(1) F is phase retrievable for H = Cn;
(2) rank(Z(ξ)) = 2n− 1 for all ξ ∈ R2n, ξ 6= 0;
(3) dim kerR(ξ) = 1 for all ξ ∈ R2n, ξ 6= 0;
(4) There do not exist ξ, η ∈ R2n, ξ 6= 0 and η 6= 0 so that 〈Jξ, η〉 = 0 and

(3.10) 〈Φkξ, η〉 = 0 , ∀1 ≤ k ≤ m.

In terms of cardinality, here is what we know:

Theorem 3.5 ([Mi67, HMW11, BH13, Ba15, MV13, CEHV13, Viz15]).
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(1) [HMW11] If F is a phase retrievable frame for Cn then

(3.11) m ≥ 4n− 2− 2b+

 2 if n odd and b = 3mod 4
1 if n odd and b = 2mod 4
0 otherwise

,

where b = b(n) denotes the number of 1’s in the binary expansion of n−1.
(2) [BH13] For any positive integer n there is a frame with m = 4n−4 vectors

so that F is phase retrievable for Cn;
(3) [CEHV13] If m ≥ 4n−4 then a (Zariski) generic frame is phase retriev-

able for Cn;
(4) [Ba15] The set of phase retrievable frames is open in Cn × · · · × Cn. In

particular phase retrievable property is stable under small perturbations.
(5) [CEHV13] If n = 2k + 1 and m ≤ 4n − 5 then F cannot be phase

retrievable for Cn.
(6) [Viz15] For n = 4 there is a frame with m = 11 < 4n − 4 = 12 vectors

that is phase retrievable for Cn.

4. Robustness of Reconstruction

In this section we analyze stability bounds for reconstruction. Specifically we
analyze two types of margins:

• Deterministic, worst-case type bounds: These bounds are given by lower
Lipschitz constants of the forward nonliner analysis maps;

• Stochastic, average type bounds: Cramer-Rao Lower Bounds (CRLB).

4.1. Bi-Lipschitzianity of the Nonlinear Analysis Maps. In Section 2
we introduced two distances on Ĥ. As the following theorem shows, the nonlinear
maps α and β are bi-Lipschitz with respect to the corresponding distance:

Theorem 4.1. [Ba12, EM12, BCMN13, Ba13, BW13, BZ14, BZ15a,
BZ15b] Let F be a phase retrievable frame for V , a real linear space, subset of
H = Cn. Then:

(1) The nonlinear map α : (V̂ , D2) → (Rm, ‖‖2) is bi-Lipschitz. Specifically
there are positive constants 0 < A0 ≤ B0 <∞ so that

(4.1)
√
A0D2(x, y) ≤ ‖α(x)− α(y)‖2 ≤

√
B0D2(x, y) , ∀x, y ∈ V.

(2) The nonlinear map β : (V̂ , d1) → (Rm, ‖‖2) is bi-Lipschitz. Specifically
there are positive constants 0 < a0 ≤ b0 <∞ so that

(4.2)
√
a0d1(x, y) ≤ ‖β(x)− β(y)‖2 ≤

√
b0d1(x, y) , ∀x, y ∈ V.

The converse is also true: If either (4.1) or (4.2) holds true for all x, y ∈ V then
F is phase retrievable for V .

The choice of distance D2 and d1 in the statement of this theorem is only
for reasons of convenience since these specific constants will appear later in the
text. Any other distance Dp instead of D2, and dq instead of d1 would work. The
Lipschitz constants would be different, of course. This result was first obtained for
the real case in [EM12] for the map α and in [Ba12] for the map β. The complex
case for map β was shown independently in [BCMN13] and [Ba13]. The complex
case for the more challenging map α was proved in [BZ15b]. The paper [BW13]
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computes the optimal bound A0 in the real case. The statement presented here
(Theorem 4.1) unifies these two cases.

On the other hand the condition that F is phase retrievable for V is equivalent
to the existence of a lower bound for a family of quadratic forms. We state this
condition now:

Theorem 4.2. Let F ⊂ H = Cn and let V be a real vector space, subset of H.
Denote by V = (V ) ⊂ R2n the realification of V , and let Π denote the projection
onto V. Then the following statements are equivalent:

(1) F is phase retrievable for V ;
(2) There is a constant a0 > 0 so that

(4.3) ΠR(ξ)Π ≥ a0ΠP⊥JξΠ , ∀ ξ ∈ V, ‖ξ‖ = 1,

where P⊥Jξ = I2n − PJξ = I2n − JξξTJT is the orthogonal projection onto
the orthogonal complement to Jξ;

(3) There is a0 > 0 so that for all ξ, η ∈ R2n,

(4.4)

m∑
k=1

|〈ΠΦkΠξ, η〉|2 ≥ a0

(
‖Πξ‖2‖Πη‖2 − |〈JΠξ,Πη〉|2

)
.

Note the same constant a0 can be chosen in (4.2) and (4.3) and (4.4). This
result was shown separately for the real and complex case. Here we state these
conditions in a unified way.

Proof.
(1)⇔ (2) If F is a phase retrievable frame for V then, by Theorem 3.1(8), for

all vectors ξ, η ∈ V, with Jξ, ηK 6= 0 we have 〈Φkξ, η〉 6= 0, for some 1 ≤ k ≤ m.
Take µ ∈ R2n and set η = Πµ. Normalize ξ to ‖ξ‖ = 1. Then

m∑
k=1

|〈Φkξ, η〉|2 = 〈R(ξ)Πµ,Πµ〉,

and by (2.15),

‖Jξ, ηK‖21 = ‖ξ‖2‖η‖2−|〈ξ, Jη〉|2 = ‖Πµ‖2−|〈Jξ,Πµ〉|2 = 〈(I2n − JξξTJT )Πµ,Πµ〉.

Thus if µ satisfies Jξ,ΠµK = 0 then it must also satisfy Πµ = tJξ for some real t.
In this case Πµ lies in the null space of R(ξ). In particular this proves that the
following quotient of quadratic forms

〈ΠR(ξ)Πµ, µ〉
〈Π(I2n − JξξTJT )Πµ, µ〉

is bounded above and below away from zero. This proves that (4.3) must hold for
some a0 > 0. Conversely, if (4.3) holds true, then for every ξ, η ∈ V with Jξ, ηK 6= 0,
〈P⊥Jξη, η〉 6= 0 and thus 〈Φkξ, η〉 6= 0 for some k. This shows that F is a phase
retrievable frame for V .

(2)⇔ (3) This follows by writing out (4.3) explicitly.
2

Remark 4.3. Condition (2) of this theorem expressed by Equation (4.3) can
be used to check if a given frame is phase retrievable as we explain next.
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In the real case, Π = In ⊕ 0, and this condition reduces to

R(x) =

m∑
k=1

|〈x, fk〉|2fkfTk ≥ a0‖x‖2IH , ∀x ∈ H = Rn.

In turn this is equivalent to any of the conditions of Theorem 3.2.
In the complex case the condition (4.3) turns into

(4.5) λ2n−1(R(ξ)) ≥ a0 , ∀ξ ∈ R2n, ‖ξ‖ = 1,

where λ2n−1(R(ξ)) denotes the next to the smallest eigenvalue of R(ξ). The
algorithm requires an upper bound for b0 = max‖ξ‖=1 λ1(R(ξ)). For instance

b0 ≤ Bmaxk ‖fk‖2, where B is the frame upper bound [Ba15]. The condition
(4.5) can be checked using an ε-net of the unit sphere in R2n. Specifically let
{ξεj} be such an ε-net, that is ‖ξεj‖ = 1 and ‖ξεj − ξεk‖ < ε for all j 6= k. Set

a0 = 1
2 minj λ2n−1(R(ξεj )). If 2b0ε ≤ a0 then stop, otherwise set ε = 1

2ε and
construct a new ε-net.

The condition 2b0ε ≤ a0 guarantees that for every ξ ∈ R2n with ‖ξ‖ = 1,
λ2n−1(R(ξ)) ≥ a0 since (see also [Ba15] for a similar derivation)

‖R(ξ)−R(ξεj )‖ ≤
√
b20‖ξ − ξεj‖‖ξ + ξεj‖ ≤ 2b0‖ξ − ξεj‖ ≤ 2b0ε

and by Weyl’s perturbation theorem (see III.2.6 in [Bh97])

λ2n−1(R(x)) ≥ λ2n−1(R(ξεj ))− ‖R(ξ)−R(ξεj )‖ ≥ 2a0 − 2bε ≥ a0.

Unfortunately such an approach has at least an NP computational cost since
the cardinality of an ε-net is of the order

(
1
ε

)n
.

The computations of lower bounds is fairly subtle. In fact there is a distinction
between local bounds and global bounds. Specifically for every z ∈ V we define the
following bounds:

The type I local lower Lipschitz bounds are defined by:

A(z) = lim
r→0

inf
x,y∈V,D2(x,z)<r,D2(y,z)<r

‖α(x)− α(y)‖22
D2(x, y)2

,(4.6)

a(z) = lim
r→0

inf
x,y∈V,d1(x,z)<r,d1(y,z)<r

‖β(x)− β(y)‖22
d1(x, y)2

.(4.7)

The type II local lower Lipschitz bounds are defined by:

Ã(z) = lim
r→0

inf
y∈V,D2(y,z)<r

‖α(z)− α(y)‖22
D2(z, y)2

,(4.8)

ã(z) = lim
r→0

inf
y∈V,d1(y,z)<r

‖β(z)− β(y)‖22
d1(z, y)2

.(4.9)

Similarly the type I local upper Lipschitz bounds are defined by:

B(z) = lim
r→0

sup
x,y∈V,D2(x,z)<r,D2(y,z)<r

‖α(x)− α(y)‖22
D2(x, y)2

,(4.10)

b(z) = lim
r→0

sup
x,y∈V,d1(x,z)<r,d1(y,z)<r

‖β(x)− β(y)‖22
d1(x, y)2

(4.11)
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and the type II local upper Lipschitz bounds are defined by:

B̃(z) = lim
r→0

sup
y∈V,D2(y,z)<r

‖α(z)− α(y)‖22
D2(z, y)2

,(4.12)

b̃(z) = lim
r→0

sup
y∈V,d1(y,z)<r

‖β(z)− β(y)‖22
d1(z, y)2

.(4.13)

The global lower bounds are defined by

A0 = inf
x,y∈V,D2(x,y)>0

‖α(x)− α(y)‖22
D2(x, y)2

,(4.14)

a0 = inf
x,y∈V,d1(x,y)>0

‖β(x)− β(y)‖22
d1(x, y)2

,(4.15)

whereas the global upper bounds are defined by

B0 = sup
x,y∈V,D2(x,y)>0

‖α(x)− α(y)‖22
D2(x, y)2

,(4.16)

b0 = sup
x,y∈V,d1(x,y)>0

‖β(x)− β(y)‖22
d1(x, y)2

(4.17)

and represent the square of the corresponding Lipschitz constants .
Due to homogeneity A0 = A(0), B0 = B(0), a0 = a(0), and b0 = b(0). On

the other hand, for z 6= 0, A(z) = A( z
‖z‖ ), B(z) = B( z

‖z‖ ), a(z) = a( z
‖z‖ ), and

b(z) = b( z
‖z‖ ). Note that A(z) stands for the local lower Lipschitz bound of type I

at z, whereas A denotes the optimal lower frame bound of F .
The exact expressions of these bounds are summarized by the following results.

For any I ⊂ {1, 2, . . . ,m} let F [I] = {fk , k ∈ I} denote the subset indexed by I.
Also let σ2

1 [I] and σ2
n[I] denote the upper and the lower frame bound of set F [I],

respectively. Thus:

σ2
1 [I] = λmax

(∑
k∈I

fkf
∗
k

)
, σ2

n[I] = λmin

(∑
k∈I

fkf
∗
k

)
.

As usual, Ic denotes the complement of the index set I, that is Ic = {1, . . . ,m} \ I.

Theorem 4.4 ([BW13, BCMN13]). (The real case) Assume F ⊂ Rn is a
phase retrievable frame for Rn. Let A and B denote its optimal lower and upper
frame bound, respectively. Then:

(1) For every 0 6= x ∈ Rn, A(x) = σ2
n[supp(α(x))], where supp(α(x)) =

{k , 〈x, fk〉 6= 0};
(2) For every x ∈ Rn, Ã(x) = A;
(3) A0 = A(0) = minI(σ

2
n[I] + σ2

n[Ic]);

(4) For every x ∈ Rn, B(x) = B̃(x) = B;

(5) B0 = B(0) = B̃(0) = B, the optimal upper frame bound;

(6) For every 0 6= x ∈ Rn, a(x) = ã(x) = λmin(R(x))/‖x‖2;
(7) a0 = a(0) = ã(0) = min‖x‖=1 λmin(R(x));

(8) For every 0 6= x ∈ Rn, b(x) = b̃(x) = λmax(R(x))/‖x‖2;

(9) b0 = b(0) = b̃(0) = max‖x‖=1 λmax(R(x));
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(10) a0 is the largest constant so that

R(x) ≥ a0‖x‖2In , ∀x ∈ Rn,

or, equivalently,
m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 ≥ a0‖x‖2‖y‖2 , ∀x, y ∈ Rn;

(11) b0 is the 4th power of the frame analysis operator norm T : (Rn, ‖ · ‖2)→
(Rm, ‖ · ‖4),

b0 = ‖T‖4B(l2,l4) = max
‖x‖2=1

m∑
k=1

|〈x, fk〉|4.

The complex case is subtler. The following result presents some of the local
and global Lipschitz bounds.

Theorem 4.5 ([BZ15b]). (The complex case) Assume F is phase retrievable
for H = Cn and A,B are its optimal frame bounds. Then:

(1) For every 0 6= z ∈ Cn, A(z) = λ2n−1 (S((z))) (the next to the smallest
eigenvalue);

(2) A0 = A(0) > 0;

(3) For every z ∈ Cn, Ã(z) = λ2n−1

(
S((z)) +

∑
k:〈z,fk〉=0 Φk

)
(the next to

the smallest eigenvalue);

(4) Ã(0) = A, the optimal lower frame bound;

(5) For every z ∈ Cn, B(z) = B̃(z) = λ1

(
S((z)) +

∑
k:〈z,fk〉=0 Φk

)
(the

largest eigenvalue);

(6) B0 = B(0) = B̃(0) = B, the optimal upper frame bound;

(7) For every 0 6= z ∈ Cn, a(z) = ã(z) = λ2n−1(R((z)))/‖z‖2 (the next to
the smallest eigenvalue);

(8) For every 0 6= z ∈ Cn, b(z) = b̃(z) = λ1(R((z)))/‖z‖2 (the largest eigen-
value);

(9) a0 is the largest constant so that

R(ξ) ≥ a0(I − JξξTJT ) , ∀ ξ ∈ R2n, ‖ξ‖ = 1,

or, equivalently,
m∑
k=1

|〈Φkξ, η〉|2 ≥ a0

(
‖ξ‖2‖η‖2 − |〈Jξ, η〉|2

)
, ∀ ξ, η ∈ R2n;

(10) b(0) = b̃(0) = b0 is the 4th power of the frame analysis operator norm
T : (Cn, ‖ · ‖2)→ (Rm, ‖ · ‖4),

b0 = ‖T‖4B(l2,l4) = max
‖x‖2=1

m∑
k=1

|〈x, fk〉|4;

(11) ã(0) is given by

ã(0) = min
‖z‖=1

m∑
k=1

|〈z, fk〉|4.
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The results presented so far show that both α and β admit left inverses that are
Lipschitz continuous on their domains of definition. One remaining problem is to
know whether these left inverses can be extended to Lipschitz maps over the entire
Rm. The following two results provide a positive answer (see [BZ14, BZ15b] for
details).

Theorem 4.6 ([BZ15b]). Assume F ⊂ H = Cn is a phase retrievable frame

for Cn. Let
√
A0 be the lower Lipschitz constant of the map α : (Ĥ,D2) →

(Rm, ‖ · ‖2). Then there is a Lipschitz map ω : (Rm, ‖ · ‖2) → (Ĥ,D2) so that:

(i) ω(α(x)) = x for all x ∈ Ĥ, and (ii) its Lipschitz constant is Lip(ω) ≤ 4+3
√

2√
A0

.

Theorem 4.7 ([BZ14, BZ15a]). Assume F ⊂ H = Cn is a phase retrievable

frame for Cn. Let
√
a0 be the lower Lipschitz constant of the map β : (Ĥ, d1) →

(Rm, ‖ · ‖2). Then there is a Lipschitz map ψ : (Rm, ‖ · ‖2) → (Ĥ, d1) so that: (i)

ψ(β(x)) = x for all x ∈ Ĥ, and (ii) its Lipschitz constant is Lip(ψ) ≤ 4+3
√

2√
a0

.

Sketch of Proof
Proofs of both results follow a similar strategy. First both metric spaces (Ĥ, d1)

and (Ĥ,D2) are bi-Lipschitz isomorphic with S1,0 via Lemma 2.5. Then one uses
Kirszbraun’s Theorem (see, e.g., [BL00, HG13, WW75]) to obtain an isometric
Lipschitz extension of the left inverse of α (or β) from its range to the entire
(Rm, ‖ · ‖2) into (Sym(H), ‖ · ‖2). The final step is to construct a Lipschitz map
π : Sym(H)→ S1,0(H) so that π(x∗) = xx∗ for every x ∈ H. This map is realized
as π(A) = (λ1 − λ2)P1, where λ1 ≥ λ2 are the two largest eigenvalues of A, and
P1 is the principal eigenprojector. Using the integration contour from [ZB06] and
Weyl’s inequalities (see III.2 in [Bh97]) the authors of [BZ15b] obtained that π is

Lipschitz with Lip(π) ≤ 3 + 2
√

2 for π : (Sym(H), ‖ · ‖2)→ (S1,0, ‖ · ‖2).

4.2. Fisher Information Matrices and Cramer-Rao Lower Bounds.
Throughout this section assume F = {f1, . . . , fm} ⊂ H = Cn is a phase retrievable
frame for V , where V ⊆ H is a real linear space, and x ∈ V .

Consider two measurement processes. The first is the Additive White Gaussian
Noise (AWGN) model

(4.18) yk = |〈x, fk〉|2 + νk , 1 ≤ k ≤ m,
where (νk)1≤k≤m are independent and identically distributed (i.i.d.) realizations of
a normal random variable of zero mean and variance σ2. The second process is a
non-Additive White Gaussian Noise (nonAWGN) model where the noise is added
prior to taking the absolute value:

(4.19) yk = |〈x, fk〉+ µk|2 , 1 ≤ k ≤ m,
where (µk)1≤k≤m are i.i.d. realizations of a Gaussian complex process with zero
mean and variance ρ2.

First we present the Fisher Information matrices I for these two processes. The
general definition of the Fisher Information Matrix is (see [Ky10])

I(x) = E[(∇x log p(y;x))(∇x log p(y;x))T ].

Following [BCMN13] and [Ba13] for the AWGN model (4.18) we obtain:

(4.20) IAWGN(x) =
4

σ2
R(ξ) =

4

σ2

m∑
k=1

Φkξξ
TΦk,
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where ξ = (x) ∈ R2n. In general I(x) has rank at most 2n−1 because Jξ is always
in its kernel.

In [Bal15] the Fisher information matrix for the nonAWGN model (4.19) is
shown to have the following form:

InonAWGN(x) =
4

ρ4

m∑
k=1

(
G1

(
〈Φkξ, ξ〉
ρ2

)
− 1

)
Φkξξ

∗Φk

=
4

ρ2

m∑
k=1

G2

(
〈Φkξ, ξ〉
ρ2

)
1

〈Φkξ, ξ〉
Φkξξ

∗Φk,(4.21)

where the two universal scalar functions G1, G2 : R+ → R+ are given by

G1(a) =
e−a

a

∫ ∞
0

I2
1 (2
√
at)

I0(2
√
at)

te−tdt =
e−a

8a3

∫ ∞
0

I2
1 (t)

I0(t)
t3e−

t2

4a dt(4.22)

G2(a) = a(G1(a)− 1),

where I0 and I1 are the modifed Bessel functions of the first kind and order 0 and
1, respectively. Both Fisher information matrices have the same null space spanned
by Jξ.

Next we present a lower bound on the variance of any unbiased estimator for
x. Let z0 ∈ V be a fixed vector. Define

(4.23) Vz0 = {x ∈ V , 〈x, z0〉 > 0, }

where 〈·, ·〉 is the complex scalar product in H. Set Ez0 = spanR(Vz0) the real
vector space spanned by Vz0 . Note Ez0 = {x ∈ V , imag(〈x, z0〉) = 0}.

To make (4.18) identifiable we select the representative x ∈ Vz0 of the class x̂.
This is a mild condition since it only asks for the class x̂ not to be orthogonal to z0

with respect to the scalar product of H. An estimator ω : Rm → Ez0 is unbiased
if E[ω(β(x) + ν)] = x for all x ∈ Vz0 . Here the expectation is taken with respect to
the noise random variable.

A careful analysis (see [Ba13]) of the estimation process shows that the Cramer-
Rao Lower Bound (CRLB) for either measurement process (4.18) and (4.19) is given
by (Πz0I(x)Πz0)†, where Πz0 is the orthogonal projection onto Vz0 = (Ez0) in R2n,
and upper script † denotes the Moore-Penrose pseudo-inverse. Here I(x) stands for
the Fisher information matrix IAWGN(x) or InonAWGN(x). Then the covariance of
any unbiased estimator ω : Rm → Ez0 is bounded as follows:

(4.24) Cov[ω] ≥ (Πz0I(x)Πz0)
†
.

In particular, if one choses z0 = x then Πz0 becomes the orthogonal projection onto

the range of I(x) and (Πz0I(x)Πz0)
†

= I(x)† (see (4.25) below).
In the real case, F ⊂ V = Rn ⊂ Cn, the Fisher information matrices of the

AWGN model (4.18) and of the nonAWGN model (4.19) take the form

IAWGN(x) =
4

σ2

[
R(x) 0

0 0

]
, InonAWGN(x) =

4

σ2

m∑
k=1

G2(
|〈x, fk〉|2

ρ2
)

[
fkf

T
k 0

0 0

]
.

Restricting to the real component of the estimator, the CRLB for the AWGN model
(4.18) becomes

Cov[ωAWGN] ≥ σ2

4
R(x)−1
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whereas for the nonAWGN model (4.19), the CRLB becomes

Cov[ωnonAWGN] ≥ ρ2

4

(
m∑
k=1

G2(
|〈x, fk〉|2

ρ2
)fkf

T
k

)−1

.

In the complex case F ⊂ V = H = Cn, Πz0 = I2n − Jψ0ψ
T
0 J

T with ψ0 = (z0)
and the CRLB for AWGN becomes

Cov[ω] ≥ σ2

4
((I2n − Jψ0ψ

T
0 J

T )R(ξ)(I2n − Jψ0ψ
T
0 J

T ))†.

Since F is phase retrievable for H, by Theorem 4.5(9)R(ξ) satisfies the lower bound

R(ξ) ≥ a0(‖ξ‖2I2n − JξξTJT ). A little bit of algebra shows

a0|〈x, z0〉|2Πz0 = a0|〈ξ, ψ0〉|2Πz0

≤ a0|〈ξ, ψ0〉|2(I2n − Jψ0ψ
T
0 J

T ) + a0

[
‖ξ − 〈ξ, ψ0〉ψ0‖2I2n

−J(ξ − 〈ξ, ψ0〉ψ0)(ξ − 〈ξ, ψ0〉ψ0)TJT
]

= (I2n − Jψ0ψ
T
0 J

T )R(ξ)(I2n − Jψ0ψ
T
0 J

T ).

In particular this inequality shows that, if an unbiased estimator ω0 : Rm → Ez0
for the AWGN model (4.18) achieves the CRLB then its covariance matrix is upper
bounded by

Cov[ω0] ≤ σ2

4a0|〈x, z0〉|2
Πz0 .

This result was derived in [Ba13].
Finally, if the global phase is provided by an oracle by correlating the estimated

signal with the original signal x, then we can choose z0 = x and Πx = I2n−JξξTJT .
But then

ΠxIAWGN(x)Πx = IAWGN(x) , ΠxInonAWGN(x)Πx = InonAWGN(x)

which implies the CRLBs:

(4.25) Cov[ωAWGN] ≥
(
IAWGN(x)

)†
, Cov[ωnonAWGN] ≥

(
InonAWGN(x)

)†
.

5. Reconstruction Algorithms

We present two types of reconstruction algorithms:

• Rank 1 tensor recovery: Linear Reconstruction, PhaseLift;
• Iterative algorithms: Gerchberg-Saxton, Mean-Squares Optimization:

Wirtinger flow and IRLS.

The literature contains more algorithms than those presented here, see e.g.
[WAM12, ABFM12, Ba10, FMNW13, Fin82].

Throughout this section we assume F is a phase retrievable frame for H = Cn.
We let y = (yk)1≤k≤m denote the vector of measurements. We analyze two cases:
The noiseless case, when y = β(x), and the additive noise case, when y = β(x) + ν,
where ν ∈ Rm denotes the noise.
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5.1. Rank 1 Tensor Recovery. The matrix recovery algorithms attempt to
estimate the rank 1 matrix X = xx∗ from the measurements y = (yk)1≤k≤m. We
present two such algorithms: the linear reconstruction algorithm using lifting , and
PhaseLift. An extension of the linear reconstruction algorithm from a matrix to a
higher order tensor setting is also included.

5.1.1. Linear Reconstruction Using Lifting.
(i) Order 2 Tensor Embedding.
Linear reconstruction works well when the frame has high redundancy. Specif-

ically if m ≥ dimR(Sym(H)) = n2 then, generically, the set of rank 1 operators
{Fk = fkf

∗
k , 1 ≤ k ≤ m} is a frame for Sym(H). In this case the measurements

are linear on the space of matrices:

yk = 〈Fk, X〉HS + νk , 1 ≤ k ≤ m.

Let {F̃k , 1 ≤ k ≤ m} denote the canonical dual frame to {Fk , 1 ≤ k ≤ m}.
Then the minimum Frobenius norm estimate of X is given by the linear formula
Xest =

∑m
k=1 ykF̃k. The class x̂ is recovered using the spectral decomposition of

Xest,

Xest =

d∑
j=1

λr(j)Pj ,

where d denotes the number of distinct eigenvalues of Xest, λ1 ≥ λ2 ≥ · · · ≥ λn
are the eigenvalues of Xest, Pj is the orthogonal projection onto the eigenspace
associated to eigenvalue λr(j), and r(j + 1) = r(j) + rank(Pj), with r(1) = 1. The

least squares estimator xLS of x̂ from Xest minimizes ‖Xest − xx∗‖2. The solution is
unique when the top eigenvalue of Xest is simple, λ1 > λ2. In this case let P = ee∗

for some unit norm vector e. The least squares estimator xLS is given explicitly by

(5.1) xLS =

{ √
λ1e if λ1 ≥ 0
0 otherwise

.

In the case λ1 = λ2 > 0 there are infinitely many possible top eigenvectors. Unfor-
tunately any such choice produces an estimator that is discontinuous as a function
of y. On the other hand the following estimator

(5.2) xLip =

{ √
λ1 − λ2e if λ1 > λ2

0 otherwise

is an exact reconstruction scheme in the absence of noise and it is a Lipschitz
continuous map with respect to the measurement vector y. Its Lipschitz constant
and its performance with respect to additive noise are described in [BZ15b].

(ii) Higher Order Tensor Embeddings.
The idea of lifting into the space S1,0 of rank 1 matrices can be extended to

spaces of higher order tensors (see [Ba09]). Fix an integer d ≥ 1 and denote by
On,d = {γ ∈ Nd , 1 ≤ γ(1) ≤ · · · ≤ γ(d) ≤ n} the set of ordered d-tuples of positive
integers up to n. Let Pd,d(Z1, . . . , Zn) denote the real linear space of symmetric
homogeneous polynomials in n variables Z1, . . . , Zn of degree (d, d), meaning that
each monomial has degree d in variables Z1, . . . , Zn and degree d in conjugate
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variables Z1, . . . , Zn,

P =
∑

γ,δ∈On,d

cγ,δZγ(1) · · ·Zγ(d)Zδ(1) · · ·Zδ(d) , cγ,δ = cδ,γ ∈ C.

In the case d = 1, P1,1(Z1, . . . , Zn) is a linear R-space isomorphic to Sym(Cn). In
general, Pd,d(Z1, . . . , Zn) is isomorphic to the R-linear space of (d, d)-sesquilinear
functionals over Cn (denoted by Λd,d(Cn) in [Ba09]). For a given ordered d-tuple
γ ∈ On,d we denote by Π(γ) the collection of all permutations of d elements that
produce distinct d-tuples when applied to γ. Let d1, d2, . . . , dn denote, respectively,
the number of repetitions of 1, 2, . . . , n in γ. Then the cardinal of Π(γ) is given by
the multinomial formula Card(Π(γ)) = d!

d1!···dn! . On Pd,d(Z1, . . . , Zn) consider the

sesquilinear scalar product 〈〈·, ·〉〉 so that

{Z(γ,δ) := (Card(Π(γ)) Card(Π(δ)))
1/2

Zγ(1) · · ·Zγ(d)Zδ(1) · · ·Zδ(d) ; γ, δ ∈ On,d}

is an orthonormal basis. Let

κd,d : Ĉn×· · ·×Ĉn → Pd,d(Z1, . . . , Zn) , κd,d(x
1, . . . , xd) =

d∏
k=1

|xk1Z1+· · ·+xknZn|2.

Note x 7→ κd,d(x, x, . . . , x) is an embedding of Ĉn into Pd,d(Z1, . . . , Zn). Let P =
κd,d(x, x, . . . , x) and Qk1,...,kd = κd,d(fk1 , . . . , fkd). Then a little algebra shows that

(5.3) 〈〈P,Qk1,...,kd〉〉 = |〈x, fk1〉|2 · · · |〈x, fkd〉|2.

Now the phase retrieval problem can be restated as the problem of finding a homo-
geneous polynomial P of rank 1 (that is, of the form κd,d(x, . . . , x)) so that

(5.4) 〈〈P,Qk1,...,kd〉〉 = yk1 · · · ykd , ∀(k1, . . . , kd) ∈ Om,d.

The number of equations in (5.4) is

Mm,d = Card(Om,d) =

(
m+ d− 1

d

)
,

whereas the dimension of the real linear space Pd,d(Z1, . . . , Zn) is

Nn,d = dimR Pd,d(Z1, . . . , Zn) = (Card(On,d))
2 =

(
n+ d− 1

d

)2

.

If d is so that Mm,d ≥ Nn,d and the set of polynomials Q = {Qε ; ε ∈ Om,d} forms
a frame for Pd,d(Z1, . . . , Zn) then P can be obtained by solving a linear system
(albeit of dimension growing exponentially with n and m). In particular if the set
Q forms a d-design the reconstruction is particularly simple. The case d = 2 has

been also explored in [BE15]. In the absence of noise P ∈ κd,d(Ĉn) and thus x̂ is
found by solving a factorization problem. In the presence of noise, P is no longer of
rank 1 and a different estimation procedure should be used. For instance one can
find the “closest” rank 1 homogeneous polynomial in Pd,d(Z1, . . . , Zn) and invert
κd,d to estimate x.
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5.1.2. PhaseLift. Consider the noiseless case y = β(x). The main idea is
embodied in the following feasibility problem:

findsubject to:A(X)=y,X=X∗≥0,rank(X)=1X.

Except for the condition rank(X) = 1, the optimization problem would be convex.
However the rank constraint destroys the convexity property. Once a solution X is
found, the vector x can be obtained by solving the factorization problem X = xx∗.

The feasibility problem admits at most a unique solution and so does the fol-
lowing optimization problem:

(5.5) min
A(X)=y,X=X∗≥0

rank(X),

which is still non-convex. The insight provided by matrix completion theory and
exploited in [CSV12, CESV12] is to replace rank(X) by trace(X) which is convex.
Thus one obtains

(5.6) (PhaseLift) min
A(X)=y,X=X∗≥0

trace(X),

which is a convex optimization problem (a semi-definite program). In [CL12] the
authors proved that for random frames, with high probability, the problem (5.6)
has the same solution as the problem (5.5):

Theorem 5.1. Assume each vector fk is drawn independently from N (0, In/2)+
iN (0, In/2), or each vector is drawn independently from the uniform distribution on
the complex sphere of radius

√
n. Then there are universal constants c0, c1, γ > 0

so that for m ≥ c0n, for every x ∈ Cn the problem (5.6) has the same solution as
(5.5) with probability at least 1− c1e−γn.

As explained in [DH14] and [CL12], the minimization of trace is not necessary;
in the absence of noise it reduces to a feasibility problem.

The PhaseLift algorithm is also robust to noise. Consider the measurement
process

y = β(x) + ν,

for some ν ∈ Rm noise vector. Consider the following modified optimization prob-
lem:

(5.7) min
X=X∗≥0

‖A(X)− y‖1.

In [CL12] the following result has been shown:

Theorem 5.2. Consider the same stochastic process for a random frame F .
There is a universal constant C0 > 0 so that for all x ∈ Cn the solution to (5.7)
obeys

‖X − xx∗‖2 ≤ C0
‖ν‖1
m

.

For the Gaussian model this holds with the same probability as in the noiseless case,
whereas the probability of failure is exponentially small in n in the uniform model.
The principal eigenvector x0 of X (normalized by the square root of the principal
eigenvalue) obeys

D2(x0, x) ≤ C0 min(‖x‖2,
‖ν‖1
m‖x‖2

).
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5.2. Iterative Algorithms. We present two classes of iterative algorithms:
the Gerchberg-Saxton algorithm and mean-squares minimization algorithms.

5.2.1. The Gerchberg-Saxton Algorithm. Let c = (ck)1≤k≤m ∈ Cm denote a
sequence of the frame coefficients ck = 〈x, fk〉. Let E = {(〈x, fk〉)1≤k≤m , x ∈ Cn}
denote the range of frame coefficients. Assume the measurements are all nonneg-
ative, yk ≥ 0 for all k (otherwise rectify at 0). Denote by {f̃k , 1 ≤ k ≤ m} the
canonical dual frame of {f1, . . . , fm}. The Gerchberg-Saxton algorithm first intro-
duced in [GS72] iterates between two sets of constraints: |ck| =

√
yk, and c ∈ E.

Let x0 ∈ H be an initialization and set t = 0. The algorithm repeats the following
steps:

(1) Linear Analysis: ck = 〈xt, fk〉, 1 ≤ k ≤ m;
(2) Magnitude Adjustment: dk =

√
ykck/|ck|, 1 ≤ k ≤ m;

(3) Linear Synthesis: xt+1 =
∑m
k=1 dkf̃k;

(4) Increment t = t+ 1;

until a stopping criterion is achieved. The main advantage of this algorithm is its
simplicity. It can easily incorporate additional constraints on x or its transform
c. Unfortunately it suffers of a couple of disadvantages. Namely, the convergence
is not guaranteed, and furthermore, when it converges it only converges to a local
minimum. However, despite these shortcomings, the algorithm performs relatively
well when x is highly constrained, for instance when all of its entries are non-
negative (see e.g. [Fin82]).

5.2.2. Mean-Squares Minimization Algorithms. Consider again the measure-
ment process

yk = |〈x, fk〉|2 + νk , 1 ≤ k ≤ m.
The Least-Squares criterion

min
x∈Cn

m∑
k=1

||〈x, fk〉|2 − yk|2

can be understood as the Maximum Likelihood Estimator (MLE) when the additive
noise vector ν ∈ Rm is normal distributed with zero mean and covariance σ2Im.
However the optimization problem is not convex and has many local minima.

We present two algorithms that minimize the mean-squares error: the Wirtinger
flow and the Iterative Regularized Least-Squares.

(i) Gradient Descent Using the Wirtinger Flow
This algorithm has been introduced in [CLS14]. The idea is to follow the

gradient descent for the criterion

(5.8) f(x) =

m∑
k=1

|yk − |〈x, fk〉|2|2.

The initialization is performed using the spectral method. Specifically:
Step 1. Initialization. Compute the principal eigenvector of

Ry =
∑m
k=1 ykfkf

∗
k using, e.g., the power method. Let (e1, a1) be the eigen-pair

with e1 ∈ Cn, ‖e1‖ = 1, and a1 ∈ R. Initialize:

(5.9) x0 =

√
n

∑m
k=1 yk∑m

k=1 ‖fk‖
2 e1 , t = 0.

Step 2. Iteration. Repeat:
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2.1 Gradient descent:

(5.10) xt+1 = xt − µt+1

‖x0‖2

(
1

m

m∑
k=1

(|〈xt, fk〉|2 − yk)〈xt, fk〉fk

)
.

2.2 Update

(5.11) µt+1 = min(µmax, 1− e−τ/τ0).

Step 3. Stopping. Stop after a fixed number of iterations or an error criterion
is achieved.

The authors of [CLS14] showed that this algorithm converges with high prob-
ability to the exact solution in the absence of noise:

Theorem 5.3 ([CLS14]). Let x ∈ Cn and y = β(x) with m ≥ c0n log n, where
c0 is a sufficiently large constant. Then the Wirtinger flow initial estimate x0,
normalized to have squared Euclidean norm equal to 1

m

∑m
k=1 yk, obeys D2(x0, x) ≤

1
8‖x‖ with probability at least 1−10e−γn− 8

n2 , where γ is a fixed positive numerical
constant. Further, take a constant learning parameter sequence, µt = µ for all t ≥ 1
and assume µ ≤ c1

n for some fixed numerical constant c1. Then there is an event

of probability at least 1− 13e−γn −me−1.5m − 8
n2 , such that on this event, starting

from any initial solution x0 obeying D2(x0, x) ≤ 1
8‖x‖, we have

(5.12) D2(xt, x) ≤ 1

8

(
1− µ

4

)t/2
‖x‖.

(ii) The Iterative Regularized Least-Squares Algorithm
The iterative algorithm described next tries to find the global minimum using

a regularization term. Consider the following optimization criterion:

J(u, v;λ, µ) =

m∑
k=1

∣∣∣∣12(〈u, fk〉〈fk, v〉+ 〈v, fk〉〈fk, u〉)− yk
∣∣∣∣2(5.13)

+λ‖u‖22 + µ‖u− v‖22 + λ‖v‖22.
The Iterative Regularized Least-Squares (IRLS) algorithm presented in [Ba13] works
as follows.

Fix a stopping criterion, such as a tolerance ε, a desired level of signal-to-
noise-ratio snr, or a maximum number of steps T . Fix an initialization parameter
ρ ∈ (0, 1), a learning rate γ ∈ (0, 1), and a saturation parameter µmin > 0.

Step 1. Initialization. Compute the principal eigenvector of
Ry =

∑m
k=1 ykfkf

∗
k using e.g. the power method. Let (e1, a1) be the eigen-pair

with e1 ∈ Cn, ‖e1‖ = 1, and a1 ∈ R. If a1 ≤ 0 then set x = 0 and exit. Otherwise
initialize:

(5.14) x0 =

√
(1− ρ)a1∑m
k=1 |〈e1, fk〉|4

e1 , λ0 = ρa1 , µ0 = ρa1 , t = 0.

Step 2. Iteration. Perform:
2.1 Solve the least-squares problem:

xt+1 = argminuJ(u, xt;λt, µt)

using the conjugate gradient method.
2.2 Update:

λt+1 = γλt , µt = max(γµt, µmin) , t = t+ 1.
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Step 3. Stopping. Repeat Step 2 until

• The error criterion is achieved: J(xt, xt; 0, 0) < ε;

• The desired signal-to-noise-ratio is reached: ‖xt‖2
J(xt,xt;0,0) > snr; or

• The maximum number of iterations is reached: t > T .

The final estimate can be xT or the best estimate obtained in the iteration
path: xest = xt0 where t0 = argmintJ(xt, xt; 0, 0).

The initialization (5.14) is performed for the following reason. Consider the
modified criterion:

H(x;λ) = J(x, x;λ, 0) = ‖β(x)− y‖22 + 2λ‖x‖22

=

m∑
k=1

|〈x, fk〉|4 + 2〈(λIn −Ry)x, x〉+ ‖y‖22.

In general this function is not convex in x, except for large values of λ. Specifically
for λ > a1, the largest eigenvalue of Ry, x 7→ H(x;λ) is convex and has a unique
global minimum at x = 0. For a1−ε < λ < a1 the criterion is no longer convex, but
the global minimum stays in a neighborhood of the origin. Neglecting the 4th order
terms, the critical points are given by the eigenvectors of Ry. Choosing λ = ρa1

and x = se1, the optimal value of s for s 7→ H(se1; ρa1) is given in (5.14).
The path of iterates (xt)t≥0 can be thought of as trying to approximate the

measured vector y with A(Jxt−1, xtK), where A is defined in (3.8). The parameter
µ penalizes the unique negative eigenvalue of Jxt−1, xtK; the larger the value of
µt the smaller the iteration step ‖xt+1 − xt‖ and the smaller the deviation of the
matrix Jxt+1, xtK from a rank 1 matrix; the smaller the parameter µt the larger
in magnitude the negative eigenvalue of Jxt+1, xtK. This fact explains why in the
noisy case the iterates first decrease the matching error ‖A(xt(xt)∗ − y‖2 to some
t0, and then they may start to increase this error; instead the rank 2 self-adjoint
operator T = Jxt+1, xtK always decreases the matching error ‖A(T )− y‖2.

At any point on the path, if the value of criterion J is smaller than the value
reached at the target vector x, then the algorithm is guaranteed to converge near
x. Specifically in [Ba13] the following result has been proved:

Theorem 5.4 ([Ba13] Theorem 5.6). Fix 0 6= z0 ∈ Cn. Assume the frame F
is so that kerA ∩ S2,1 = {0}. Then there is a constant A3 > 0 that depends on F
so that for every x ∈ Cn with 〈x, z0〉 > 0 and ν ∈ Cn that produce y = β(x) + ν if
there are u, v ∈ Cn so that J(u, v;λ, µ) < J(x, x;λ, µ) then

(5.15) ‖Ju, vK− xx∗‖1 ≤
4λ

A3
+

2‖ν‖2√
A3

.

Moreover, let Ju, vK = a1e1e
∗
1 + a2e2e

∗
2 be its spectral factorization with a1 ≥ 0 ≥ a2

and ‖e1‖ = ‖e2‖ = 1. Set x̃ =
√
a1e1. Then

(5.16) D2(x, x̃)2 ≤ 4λ

A3
+

2‖ν‖2√
A3

+
‖ν‖22
4µ

+
λ‖x‖22

2µ
.

The kernel requirement on A is satisfied for generic frames when m ≥ 6n. In
particular this condition requires the frame F is phase retrievable for Cn.
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