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Abstract Time-varying graph signal processing generalizes scalar graph signals to
multivariate time-series data with an underlying graph structure. Important applica-
tions include network neuroscience, social network analysis, and sensor processing.
In this chapter, we present a framework for modeling the underlying graphs of these
multivariate signals along with a filter design methodology based on invariance to
the graph-shift operator. Importantly, these approaches apply to directed and undi-
rected graphs. We present three classes of filters for time-varying graph signals,
providing example application of each in design of ideal bandpass filters.

1 Introduction

The field of graph signal processing has seen rapid growth since its introduction just
five years ago in the works of Sandryhaila and Moura [33, 35] and Shuman et al.
[38]. Much of the graph signal processing work can be understood as migrating the
theoretical underpinnings of classical signal processing of time-series data to that
of scalar signals defined on the nodes of a graph. Not all of this work is within the
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scope of this chapter. For a comprehensive review of the developments, applications,
and open problems in graph signal processing more generally, see Ortega et al. [29].

In the present chapter, we consider the modeling and filtering time-varying graph
signals on possibly directed graphs. Time-varying graph signals can be understood
as multivariate stochastic processes for which the multivariate components have a
topology induced by a graph structure. Unlike conventional graph signal processing
with scalar signals on graphs, time-varying graph signals also incorporate a temporal
dimension. Here, we consider how to model the underlying directed (or undirected)
graph along with the design of filters for such signals. Our filtering construction is
motivated by covariance to the underlying graph shift operator. Target applications
for such modeling and filtering are network neuroscience, social network analysis,
and sensor array processing. Each of these applications has a physical topology
induced by an underlying graph, while the signals are revealed in time-series. For
example, the members of a social network comprise the nodes of a graph with edges
connecting friends or followers, and the recorded signal could be network activity
(e.g. sending messages or updating status) indexed by time.

One notable application of graph signal processing has been its use in deep learn-
ing architectures. Deep learning encompasses a diverse field of statistical models
and learning algorithms which have achieved state-of-the-art results in image, video,
speech, and language applications [22]. The seminal work by Mallat [26, 27] and
Bruna and Mallat [3] argued that the power of deep learning to achieve invariances
necessary for generalization could be understood as the result of composing con-
ventional wavelet filter banks with non-linear functions. This led to the first work to
generalize deep learning to graph signals by Bruna et al [4]. In this work, the convo-
lution operators in deep learning architectures are replaced with spectrally-defined
graph filters consistent with the graph Fourier transform of Shuman et al [38]. This
work inspired a thread of follow-on research [14, 6, 18] which is reviewed in detail
in Bronstein et al. [1].

At its foundation, the field of graph signal processing has had a fundamental
divide. The theory proposed by Sandryhaila and Moura [33, 35] advocates an alge-
braic construction of graph signal processing from the weighted adjacency matrix.
Importantly, this theory accommodates directed graphs. However, the theory pro-
posed by Shuman et al [38] advocates a construction of graph signal processing
from the definition of the graph Fourier transform by means of the graph Laplacian.
Importantly, the graph Laplacian for an undirected graph is symmetric and posi-
tive semi-definite. This yields an orthonormal basis in the definition of the graph
Fourier transform along with imparting a physical intuition for the eigenvectors.
Underlying this debate is the lack of a canonical definition for a graph-shift and
the consequences of choosing one over another [25]. Later work has advocated that
the graph-shift be an isometry [11, 9], a stochastic matrix [43], or have a uniquely-
defined orthonormal basis [36]. To add to the confusion, Deri and Moura point-out
the inherent ambiguity in choosing eigenvectors from the invariant subspaces of
matrices with semi-simple and degenerate eigenvalues [7].

Regarding extensions of graph signal processing to time-varying signals on
graphs, there are two primary thrusts. One follows from a desire to track random
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processes on graphs. Auto-regressive moving average models for tracking time-
varying signals on graphs are proposed in [24] and [16], and reconstruction tech-
niques for sub-sampled time-varying graph signals are proposed in [42, 31, 15, 32].
The other collection of works relates more closely to the proposed approach of this
chapter. These works consider multi-dimensional signals on graphs as factor graphs.
Sandryhaila and Moura first proposed this approach in [34] for a general factor graph
framework and discussed the application of time-varying signals on a graph. A sim-
ilar concept was proposed for a generalized analysis of multi-dimensional graph
signals recently in [21]. In the interim, Loukas and Foucard and Grassi et al. have
proposed a joint Fourier transform and associated analysis of time-varying signals
on graphs in [23] and [13] respectively.

Other works which address time-varying signals on graphs is that of Villafane-
Delgado et al. which considers the tensor decomposition of a Laplacian tensor de-
fined over all time [41]. In Yan et al. [43], a parameterized filter is defined which
allows the filtering of continuous time processes on graphs. Smith et al. [40] pro-
pose methods by which to define correlation, coherence, and phase-lag index for
time-varying signals.

The current chapter shares a common motivation with that of Bruna et al. [4]
with regard to designing filters for a machine learning application. It is also similar
in its state goals to the optimal filtering framework of Segarra et al. [37], but for
the focus on time-varying graph signals. The definition of shift-invariance used in
the current work first appeared in Sandryhaila and Moura [33] without the context
of time. The result of Theorem 2 is very similar to notions of graph stationarity
proposed in Girault [10] and Marques et al. [28], but stationarity is understood to
be a property of the graph signal and not a property of the filter as in the current
chapter. Romero et al. [32] propose an extended graph formulation very similar to
that introduced in Section 2 of the current chapter. The extended graph formulation
of Romero et al. is used to define regularization terms for recovering time-varying
signals on graphs. However, these works are not primarily concerned with analysis
and filtering as is the focus of this chapter. The works of Loukas and Foucard [23]
and Grassi et al. [13] are seen to be the most closely related in scope and purpose to
the current chapter. These works directly address the analysis and filtering of time-
varying signals on graphs. However, these works consider only undirected graphs
and use the factor graph approach which does not allow edges across multiple time
scales as in the current chapter.

In Sandryhaila and Moura [34], the authors propose a procedure for filtering
time-varying graph signals by modeling the underlying graph as one of the various
graph products between the circulant shift operator and the weighted adjacency ma-
trix of the graph nodes. This formulation allows the authors to apply both the tools
of discrete signal processing and of graph signal processing disjointly on the prob-
lem. Similar models have been proposed in Loukas and Foucard [23], Grassi et al.
[13], and Kurokawa et al. [21].

Implicit in the factor graph model is a strong Markov assumption about how
the nodes of a graph interact in time. The factor graph models only the interaction
among nodes at a fixed time-scale. This is not overly limiting, but it misses a more
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full modeling of the possible interactions among nodes in time. For instance, two
nodes could interact via an unmodeled process, such as a node that is not included
in the graph. This interaction may manifest over two, three, or more time-steps.
Simultaneously, other nodes may interact at a single time-step. Additionally, the
interaction between nodes may be cumulative or history-dependent. Neither of these
cases fit into the factor graph model of time-series graph signals.

This chapter aims to address this gap by modeling stationary interactions be-
tween nodes in time. We propose a theoretical framework for linear filtering of
time-varying graph signals on directed or undirected time-invariant graphs. This
framework yields a family of filter design methods of decreasing design complexity
(see Table 1). The proposed filter design methods will be motivated by a common
example application of bandpass filtering.

Section 2 covers some preliminaries which establish the extended graph frame-
work and the function spaces in which time-varying graph signals exist. Section
3 adapts linear and time-invariant systems theory to a graph geometry. Using this
framework, filter design procedures are derived which yield quadratic complexity.
Section 4.2 derives shift-invariant filters and design procedures. Shift-invariance is
a graph signal processing concept proposed in Sandryhaila and Moura [33], and it
is used here to impart the statistical properties of the graph onto filters. The de-
sign complexity of shift-invariant filters is shown to be linear. Section 5 defines
shift-invariant filters which have constant learning complexity. Functional calculus
is used to define filters which are functions of a given graph-shift operator. In Sec-
tion 6, the previous classes of filters are discussed for the case in which the graph is
undirected.

Table 1 Summary of filter design results for A ∈B
(
`2 (Z×V )

)
Filter Type Complexity Design Parameters

Linear and time-invariant O
(
n2
) {

â j,k ∈ L∞ ([0,1])
}

j,k∈V
Linear and shift-invariant O (n) {âk ∈ L∞ ([0,1])}k∈V
Function of graph-shift operator O (1) φ : U → C, holomorphic

2 Preliminaries

Let G = (V ,E ) be a graph with nodes V = {0, . . . ,n−1} such that n = |V | < ∞

and E ⊆ V ×V . A weight function assigns a relationship between any two nodes
with an edge connecting them w : E →R. The function, w, defines the entries of the
adjacency, or weight matrix, W ([W] j,k = w( j,k)). If w is symmetric (i.e. w( j,k) =
w(k, j)), then the graph is undirected, otherwise it is directed. The degree of each
node follows from the definition of W, di = ∑ j∈V w(i, j), and the diagonal degree
matrix is D = diag(d0, . . . ,dn−1). The Laplacian of G is L = D−W. If the weight
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matrix is undirected, then the Laplacian is positive semi-definite. Other matrices
of interest are the normalized Laplacian, Ln = D−1/2LD−1/2, and the random walk
Laplacian, Lr = D−1L.

We consider time-varying graph signals which can be represented as functions of
time supported on the nodes of a fixed graph. This can be incorporated into the above
graph notation by considering an extended graph G̃ = (Ṽ , Ẽ ) where Ṽ =Z×V and
Ẽ ⊆ Ṽ × Ṽ . An example extended graph is depicted in Figure 1.

t0 t3t2t1
Fig. 1 An example extended graph G̃ . Each time t ∈Z is associated with the node set V = {v0,v1}
so that each node is indexed by time and space, (v, t). The extended graph admits edges between
any two nodes regardless of proximity in time and space.

Thus, time-varying graph signals are functions on G̃ , equivalently vector-valued
sequences indexed by time {x[t] ∈ Cn}t∈Z or scalar functions on Ṽ , x : Z×V →C.
We use both notations, the vector-valued sequence and scalar-valued function, as is
convenient in context. Some knowledge of function spaces is assumed, namely the
definitions and norms of `p (Z) and Lp ([0,1]) for 1 ≤ p ≤ ∞. The Lebesgue mea-
sure is used throughout on Lp-spaces. Some of the analysis will take place in finite
dimensions on a function space `2 (V ) which is isomorphic to Cn with the usual Eu-
clidean norm, but the primary analysis will occur in two Hilbert spaces, `2 (Z×V )
and L2 ([0,1]×V ), the time and frequency domain of time-varying graph signals.

Definition 1. The `2 (Z×V )-norm is defined as

‖x‖`2(Z×V ) =

(
∑
t∈Z

∑
v∈V
|x(t,v)|2

)1/2

=

(
∑
t∈Z
‖x[t]‖2

`2(V )

)1/2

,

for a function x : Z×V → C, and it defines the function space

`2 (Z×V ) =
{

x : Z×V → C | ‖x‖`2(Z×V ) < ∞

}
.

Moreover, ‖·‖`2(Z×V ) is induced by an inner product

〈x,y〉`2(Z×V ) = ∑
t∈Z

∑
v∈V

x(t,v)ȳ(t,v) = ∑
t∈Z
〈x[t],y[t]〉`2(V )
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where x,y ∈ `2 (Z×V ).1

Definition 2. The L2 ([0,1]×V )-norm is defined as

‖x‖L2([0,1]×V ) =

(∫
[0,1]

∑
v∈V
|x(ω,v)|2 dω

)1/2

=

(∫
[0,1]
‖x(ω)‖2

`2(V ) dω

)1/2

for x : [0,1]×V → C a measurable function and dω is the Lebesgue measure. It
defines the function space

L2 ([0,1]×V ) =
{

x : [0,1]×V → C | ‖x‖L2([0,1]×V ) < ∞

}
.

Moreover, ‖·‖L2([0,1]×V ) is induced by an inner product

〈x,y〉L2([0,1]×V ) =
∫
[0,1]

∑
v∈V

x(ω,v)ȳ(ω,v)dω =
∫
[0,1]
〈x[t],y[t]〉`2(V ) dω

where x,y ∈ L2 ([0,1]×V ).

Fourier analysis plays a central role in signal processing of time-series signals,
and it will play an important role in the design and analysis of filters on `2 (Z×V ).
Fundamental results from Fourier analysis on `2 (Z) and L2 ([0,1]) for 1≤ p≤∞, in-
cluding Plancherel’s theorem and the convolution theorem carry over to `2 (Z×V )
and L2 ([0,1]×V ) with the following definitions of the Fourier and inverse Fourier
transform (see e.g. [20] for reference).

Definition 3. The Fourier transform F of x ∈ `2 (Z×V ) is defined as

(F x)(ω,v) = x̂(ω,v) = ∑
t∈Z

e2πiωtx(t,v),

where ω ∈ [0,1].

Definition 4. The inverse Fourier transform F ∗ of x ∈ L2 ([0,1]×V ) is defined as

(F ∗x)(t,v) =
∫
[0,1]

e−2πiωtx(ω,v)dω,

where t ∈ Z and dω is the Lebesgue measure.

In the discrete signal processing setting, filtering builds on linear system theory
and finite-dimensional linear algebra. These concepts need to be generalized for
signals in `2 (Z×V ).

Definition 5. The operator norm of A : `2 (Z×V )→ `2 (Z×V ) is defined as

1 ȳ denotes the complex conjugate of y.
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‖A‖B(`2(Z×V )) = sup
x∈`2(Z×V )

‖Ax‖`2(Z×V )

‖x‖`2(Z×V )

= sup
‖x‖

`2(Z×V )
=1
‖Ax‖`2(Z×V ) .

A is said to be bounded if ‖A‖B(`2(Z×V )) < ∞. The set of bounded linear transfor-

mations is denoted B
(
`2 (Z×V )

)
.

Bounded operators are more amenable to analysis than unbounded operators in
general, and for practical filtering applications, it is presumed that filtered graph
signals should be bounded. Moreover, the set of bounded linear transformation
B
(
`2 (Z×V )

)
with identity E and composition is a Banach algebra [5].

Definition 6. For A ∈ B
(
`2 (Z×V )

)
and x,y ∈ `2 (Z×V ), the adjoint, A∗ ∈

B
(
`2 (Z×V )

)
satisfies

〈Ax,y〉`2(Z×V ) = 〈x,A
∗y〉`2(Z×V ) .

An operator A ∈B
(
`2 (Z×V )

)
is said to to be self-adjoint if A= A∗.

There is a natural generalization of finite-dimensional linear operators to infinite-
dimensional multiplication operators. Let x∈ `2 (Z×V ), then for each A∈B

(
`2 (Z×V )

)
,

there exists a unique kernel K : Z×Z→B
(
`2 (V )

)
such that

(Ax) [t] = lim
N→∞

(
N

∑
s=−N

K(t,s)x[s]

)
. (1)

Note that K is a finite-dimensional linear operator, and recall that `2 (V ) is isomor-
phic to Cn. It follows that K acts like a matrix on Cn. This intuition then informs the
matrix-vector representation of the action of A, a bi-infinite block matrix acting on
a bi-infinite vector.

Ax =



. . .
...

...
...

· · · K(−1,−1) K(−1,0) K(−1,1) · · ·
· · · K(0,−1) K(0,0) K(0,1) · · ·
· · · K(1,−1) K(1,0) K(1,1) · · ·

...
...

...
. . .





...
x[−1]
x[0]
x[1]

...

 (2)

In linear systems theory, matrix decompositions and the spectra of matrices play
an important role. The canonical decomposition in finite dimensions is the Jordan
spectral representation which follows (for a proof of the theorem, see e.g. [17]).

Theorem 1 (Jordan spectral representation). Let A∈B
(
`2 (V )

)
. Then, there ex-

ists m≤ n= |V | distinct eigenvalues {λk ∈ C}1≤k≤m, projections
{
Pk ∈B

(
`2 (V )

)}
1≤k≤m,

and nilpotents
{
Nk ∈B

(
`2 (V )

)}
1≤k≤m such that

A=
m−1

∑
k=0

λkPk +Nk (3)
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with the following properties:

1. P jPk = PkP j = δ jkPk
2. PkNkPk = Nk
3. (Nk)

n = 0
4. ∑

m−1
k=0 Pk = E (the identity operator on `2 (V )).

Properties 1–4 of Theorem 1 imply additionally that

PkNk = NkPk = Nk (4)

and
P jNk = NkP j = δ jkNk. (5)

The Jordan spectral representation is perhaps less familiar than the equivalent Jordan
normal form, but the projections and nilpotents will be important for the analysis of
Sections 4 and 5.

In the following, filter design will rely heavily on spectral theory which extends
the notion of matrix decomposition to infinite-dimensional linear operators on Ba-
nach spaces. This theory deals with the spectrum of an operator in place of the
eigenvalues of a matrix. Some pertinent definitions follow.

Definition 7. The resolvent set of A ∈B
(
`2 (Z×V )

)
is

ρ (A) =
{

z ∈ C | (A− zE)−1 ∈B
(
`2 (Z×V )

)}
.

where E denotes the identity operator on `2 (Z×V ).

Definition 8. The spectrum of A ∈B
(
`2 (Z×V )

)
is σ (A) = C\ρ (A).

Definition 9. The resolvent of A ∈B
(
`2 (Z×V )

)
is the operator-valued function

R : ρ (A)→B
(
`2 (Z×V )

)
,

RA (z) = (A− zE)−1 .

The relationship between the spectrum of an operator and an eigenvalue of a matrix
can be seen from the above definitions. The spectrum is the subset of C such that A−
zE is not bijective, equivalent to an eigenvalue in finite dimensions. The spectrum of
a bounded operator is closed, bounded, and never empty [5], and the resolvent set is
everything except the spectrum. As opposed to the eigenvalues of a matrix, which
are a finite set of elements in C, the spectrum of a bounded operator in general has
in addition to a point spectrum, a continuous and a residual spectrum [5]. As the
eigenvalues of a matrix are a special case of the spectrum of a bounded operator, the
spectrum of A ∈ `2 (V ) will also be denoted σ (A).



A Filtering Framework for Time-Varying Graph Signals 9

3 Linear and Time-Invariant Filters on `2 (Z×V )

Linear, time-invariant systems theory underlies much of signal processing. With
respect to filtering operations, linear time-invariant filters are amenable to anal-
ysis and yield well-understood behavior. As discussed in Section 2, operators in
B
(
`2 (Z×V )

)
naturally generalize matrices. It remains only to extend the notion

of time-invariance.

3.1 Definition of Time-Invariance in `2 (Z×V )

Generalizations of time-invariance exist for signal processing on spatial data (e.g.
translation invariance in image processing), but this chapter concerns graph signals
with both spatial and time dimensions. Therefore, time-invariance in `2 (Z×V )
should simply extend the definition of time-invariance from `2 (Z) to `2 (Z×V ).
Time-invariant filters by convention means that the entries of the matrix are not
functions of time. Then, there is a certain invariance to when the filter is applied.
If this definition is deconstructed, it depends first on a notion of time-evolution and
second on an invariant action of the operator.

Let time-evolution of a discrete signal x∈ `2 (Z) be associated with the time-shift
operator, T ∈B

(
`2 (Z)

)
,

(Tx) [t] = x[t−1]. (6)

For finite-dimensional signals, T is a circulant matrix with ones on the sub-diagonal,
and it is diagonalized by the discrete Fourier transform [33]. The same opera-
tion can be defined for time-varying graph signals for T ∈ B

(
`2 (Z×V )

)
and

x ∈ `2 (Z×V ), which acts like the shift operator except for being infinitely block
circulant with the multiplicative identity E ∈ `2 (V ) on the sub-diagonal,

T=



. . .
E

E
E

. . .


. (7)

Note that for for T ∈B
(
`2 (Z)

)
, E= 1. Thus, the time-shift operation advances not

just a scalar signal but the scalar graph signal one step in time.
Consider the action of a linear filter A ∈B

(
`2 (Z)

)
on x ∈ `2 (Z). When we say

time-invariant filtering, we mean

(ATx) [t] = (TAx) [t], (8)
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which is also understood as covariance (or equivariance) to time-shift. If x ∈
`2 (Z×V ) and T ∈B

(
`2 (Z×V )

)
, then the same condition should define time-

invariance for graph signals. Thus, for a filter A∈B
(
`2 (Z×V )

)
, it must commute

with the cyclic group generated by the time shift operator T, T = 〈T〉.

Definition 10. A∈B
(
`2 (Z×V )

)
is called time-invariant if A is in the commutant

of T ,
{
A ∈B

(
`2 (Z×V )

)
| AT = T A

}
.

3.2 Laurent Operators on `2 (Z×V )

In finite dimensions, Toeplitz matrices commute with the circulant shift matrix be-
cause both are diagonalized by the discrete Fourier transform. These matrices define
scalar convolutions. The matrix representation of Eq. (2) makes possible the gener-
alization of Toeplitz operators, and also convolution, to operators on `2 (Z×V ).

Definition 11. Let A ∈B
(
`2 (Z×V )

)
with kernel K : Z×Z→B

(
`2 (V )

)
. Then,

A is said to be Laurent if K(s, t) = K(s+d, t +d) for all d ∈ Z.

Denote Ks = K(s,0). Laurent operators generalize convolution operators as can be
seen from the action of a Laurent operator,

(Ax) [t] = lim
N→∞

(
N

∑
t=−N

Kt−sx[s]

)
, (9)

which has a block Toeplitz matrix representation,

Ax =



. . . . . . . . .
· · · K1 K0 K−1 · · ·
· · · K1 K0 K−1 · · ·
· · · K1 K0 K−1 · · ·

. . . . . . . . .





...
x[−1]
x[0]
x[1]

...

 . (10)

Time-invariant filters are inherently Laurent, and vice-versa, as the following
theorem shows.

Theorem 2. A ∈B
(
`2 (Z×V )

)
is time-invariant if and only if A is Laurent.

Proof. ⇐
First, let A be Laurent. It is sufficient to show that ATd = TdA for some d ∈ Z.
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ATdx

)
[t] = lim

N→∞

N

∑
s=−N

Kt−s

(
Tdx

)
[s]

= lim
N→∞

N

∑
s=−N

Kt−sx[s−d]

= lim
N→∞

N

∑
s′=−N

Kt−(s′+d)x[s′]

= Td

(
lim

N→∞

N

∑
s′=−N

Kt−s′x[s′]

)
=
(
TdAx

)
[t]

⇒
Now, let A be time-invariant. By Def. 10, A commutes with T . Without loss of

generality, choose Td ∈ T for some d ∈ Z. It is necessary to show that K(t,s) =
K(t +d,s+d). Let x ∈ `2 (Z×V ).(

ATdx
)
[t +d] =

(
TdAx

)
[t +d]

lim
N→∞

N

∑
s=−N

K(t +d,s)
(
Tdx

)
[s] = Td

(
lim

N→∞

N

∑
s=−N

K(t +d,s)x[s]

)

lim
N→∞

N

∑
s=−N

K(t +d,s)x[s−d] = lim
N→∞

N

∑
s=−N

K(t,s)x[s]

lim
N→∞

N

∑
s′=−N

K(t +d,s′+d)x[s′] = lim
N→∞

N

∑
s=−N

K(t,s)x[s]

By the uniqueness of K, A is Laurent. ut

3.3 Design of Linear and Time-Invariant Filters on `2 (Z×V )

Next, we exploit Theorem 2 to develop a filter design procedure. Consider the fol-
lowing.

Theorem 3. Let A∈B
(
`2 (Z×V )

)
be Laurent with ∑t∈Z ‖Kt‖B(`2(V ))<∞. Then,

σ (A) = ∪ω∈[0,1]σ
(
Â(ω)

)
and

(FAx)(ω) = Â(ω)x̂(ω) (11)

for x ∈ `2 (Z×V ) where
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Â(ω) = ∑
t∈Z

e2πiωtKt . (12)

Moreover,
‖A‖B(`2(Z×V )) = max

ω∈[0,1]
smax

(
Â(ω)

)
(13)

where smax (·) is the maximum singular value.2

Proof. Let x ∈ `2 (Z×V ).

(FAx)(ω) = ∑
t∈Z

e2πiωt

(
lim

N→∞

(
N

∑
s=−N

Kt−sx[s]

))

= lim
N→∞

∑
t∈Z

N

∑
s=−N

e2πiω(t−s)Kt−se2πiωsx[s]

=

(
lim

N→∞

N

∑
t ′=−N

e2πiωt ′Kt ′

)(
∑
s∈Z

e2πiωsx[s]

)

=

(
lim

N→∞

N

∑
t ′=−N

e2πiωt ′Kt′

)
(Fx)(ω)

The limit exists by absolute summability of the kernels. Moreover, Â is norm-
continuous for ω ∈ [0,1]. This leads to the convention that Â is diagonalized by
the Fourier transform, A = F ∗ÂF . The spectrum identity is established next. It
follows that

A− zE= F ∗ (Â(ω)− zE
)
F .

If z ∈ ρ (A), then there exists a B ∈B
(
`2 (Z×V )

)
such that (A− z)B= E.

(A− zE)B= E

F ∗ (Â(ω)− zE
)
FB= E(

Â(ω)− zE
)
B̂(ω) = E

Let S = ∪ω∈[0,1]σ
(
Â(ω)

)
. For z /∈ S, Â(ω)− zE is invertible on `2 (V ), and for

z ∈ S, Â(ω)− zE is not invertible, S⊆ σ (A)⊆ S. Thus, σ (A) = S. Lastly, the norm
identity is proved.

2 σ (·) here denotes the spectrum of an infinite-dimensional linear operator and the spectrum
(eigenvalues) of a finite-dimensional matrix.
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‖A‖B(`2(Z×V )) =
∥∥Â∥∥

B(L2([0,1]×V ))

= sup
‖x̂‖L2([0,1]×V )

=1

∥∥Âx̂
∥∥
`2(Z×V )

≤ sup
‖x̂‖L2([0,1]×V )

=1
esssup
ω∈[0,1]

∥∥Â(ω)x̂(ω)
∥∥

B(`2(V ))

≤ esssup
ω∈[0,1]

sup
‖x̂‖L2([0,1]×V )

=1

∥∥Â(ω)x̂(ω)
∥∥

B(`2(V ))

= esssup
ω∈[0,1]

smax
(
Â(ω)

)
So far, this has only established an inequality, but the equality can be shown to be
attained for a particular x ∈ `2 (Z×V ). The goal is to find a unit norm function
which lumps its mass on the measurable set at which smax

(
Â
)

attains its essential
supremum while also being in the invariant subspace associated with the maximum
singular value on that set. Let Ω ⊂ [0,1] be the set on which smax

(
Â
)

achieves
its essential supremum. Then, Â∗(Ω)Â(Ω) has an eigenvector u(ω) for ω ∈ Ω . u
will certainly not be a continuous function of ω ∈ [0,1], but it is possible to find a
sequence of continuous functions {xk}k∈N which converge to u on Ω and are zero
otherwise, for which the equality is achieved. Lastly, since [0,1] is a closed set and
Â is norm-continuous for ω ∈ [0,1], smax

(
Â(ω)

)
is attained on [0,1].

esssup
ω∈[0,1]

smax
(
Â(ω)

)
= max

ω∈[0,1]
smax

(
Â(ω)

)
ut

As a result of Theorem 3, linear and time-invariant operators on `2 (Z×V ) are
Laurent, these operators A have a spectral form given by Eq. 12, where Â : [0,1]→
`2 (V ) is a finite-dimensional operator-valued function of ω ∈ [0,1]. The action of
A on a signal x ∈ `2 (Z×V ) is

(Ax) [t] =
(
F ∗ [Â(ω)x̂(ω)

])
[t] (14)

where x̂ ∈ L2 ([0,1]×V ). This action also admits a matrix-vector representation

(Ax) [t] =

F ∗


 â0,0(ω) · · · â0,n−1(ω)

...
. . .

...
ân−1,0(ω) · · · ân−1,n−1(ω)


 x̂0(ω)

...
x̂n−1(ω)



 [t]. (15)

Here, Â acts as a transfer function on a vector space `2 (V ).
The significance of Theorem 2 and Eq. (14) is that the design of linear and time-

invariant filters can be carried out in the frequency domain where the action of the
operator is a matrix-vector product. Equation (15) shows that there are O

(
n2
)

pa-
rameters in the filter, of which each is a function

{
â j,k : [0,1]→ C

}
j,k∈V . In fact, a

stronger statement can be made about the functions â j,k, that they must be bounded.
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Theorem 4. Let Â : [0,1]→B
(
`2 (V )

)
be a a finite-dimensional operator-valued

measurable function with entries â j,k : [0,1]→ C for j,k ∈ V . Then, A = F ∗ÂF
defines a Laurent operator, and A ∈B

(
`2 (Z×V )

)
if and only if â j,k ∈ L∞ ([0,1])

for j,k ∈ V . Furthermore,

max
j,k∈V

∥∥â j,k
∥∥

L∞([0,1]) ≤ ‖A‖B(`2(Z×V )) ≤

(
∑
j∈V

∑
j∈V

∥∥â j,k
∥∥

L∞([0,1])

)1/2

. (16)

Proof. By Theorem 2, A = F ∗ÂF is Laurent. Eq. (16) will be proved next. From
there, the remainder of the theorem follows easily. It is known that for A ∈ `2 (V ),
max j,k∈V

∣∣a j,k
∣∣≤ smax (A)≤ ‖A‖F (see e.g. [12]). Now, consider A= F ∗ÂF .3

max
j,k∈V

‖â‖2
`∞([0,1]) = esssup

ω∈[0,1]
max
j,k∈V

∣∣â j,k(ω)
∣∣2

≤ esssup
ω∈[0,1]

smax
(
Â(ω)

)
= ‖A‖2

B(`2(Z×V ))

= esssup
ω∈[0,1]

smax
(
Â(ω)

)
≤ esssup

ω∈[0,1]
∑
j∈V

∑
k∈V

∣∣â j,k(ω)
∣∣2 ≤ ∑

j∈V
∑

k∈V

∥∥â j,k
∥∥2
`∞([0,1])

This establishes Eq. (16). Now, if â j,k ∈ L∞ ([0,1]) for j,k ∈ V , then ‖A‖B(`2(Z×V ))
is bounded. ut

3.4 Example

We aim to implement a bandpass filter on a signal x ∈ `2 (Z×V ) using the frame-
work of Section 3.3. A bandpass filter passes a signal at a specific range of fre-
quencies and attenuates the signal at frequencies outside of the specified range.
Implementing a bandpass filter in this construction looks very similar to a band-
pass filter on a scalar time-series signal `2 (Z). On `2 (Z×V ), the transfer function
should be approximately equal to the multiplicative identity E for the desired range
of frequencies and close to the multiplicative zero element 0 for those frequencies
outside. Let a measurable subset Ω ⊂ [0,1] be the desired frequency range. Then,
an ideal bandpass filter A= F ∗AF would be

3 Unlike in Theorem 3, Â : [0,1]→ `2 (V ) is not necessarily norm continuous. F ∗ : L∞ ([0,1])→
`1 (Z) is not bijective, and K may not be absolutely summable. Thus, ‖A‖B(`2(Z×V )) =

esssupω∈[0,1] smax
(
Â(ω)

)
.
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Â(ω) =

{
E ω ∈Ω

0 o.w.
. (17)

This would correspond to choosing â j,k(ω) = δ j,kχΩ (ω) for all j,k ∈ V , where

χΩ (ω) =

{
1 ω ∈Ω

0 o.w.
. (18)

Since χΩ ∈ L∞ ([0,1]), this defines a bounded operator A ∈B
(
`2 (Z×V )

)
by The-

orem 4. The action of A on x would be

(Ax) [t] =
∫

Ω

e−2πiωt x̂(ω)dω. (19)

In the limit as dω(Ω)→ 0 so that Ω = {ω0}, this would implement an ideal band-
pass,4

(Ax) [t] = e−2πiω0t x̂(ω0). (20)

4 Linear and Shift-Invariant Filters on `2 (Z×V )

To this point, the graph geometry has not informed the design procedure. As argued
in Sandryhaila and Moura [33], the weighted adjacency matrix describes the spa-
tial evolution of a signal. It captures the flow rate between nodes or the conditional
probabilities between random variables. These are relationships between distinctly
spatial and non-temporal elements of the signal. A similar intuition follows from the
random walk Laplacian as is claimed in [43], which propagates probability mass be-
tween the nodes through a Markov process. Requiring that linear and time-invariant
filters additionally be invariant to this spatial evolution offers one way to incorporate
the information from the underlying graph. This shift-invariance connotes a spatial
meaning as opposed to the temporal one of time-invariance.

4.1 Definition of Shift-Invariance in `2 (Z×V )

This section will investigate the design of filters that are invariant to a spatial graph
evolution that is also time-invariant. As time-invariance is defined in Section 3, shift-
invariance can be defined as commuting with a given graph-shift operator. This sec-
tion will consider an arbitrary graph-shift operator, S ∈ B

(
`2 (V )

)
that could be

an adjacency matrix or Laplacian and potentially be self-adjoint, unitary, sparse,
or any other desired property. Then, shift-invariance would mean commuting with

4 This converges only in the distribution sense as it amounts to â j,k(ω)→ δ (ω −ω0), a non-
measurable function.
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the cyclic group generated by S, S = 〈S〉. Since by Theorem 2, any linear and
time-invariant filter must be Laurent, considering time-invariant graph-shift oper-
ators (i.e. Laurent) ensures that any shift-invariant filter is also time-invariant (i.e.
Laurent). This section proceeds with the following definition for shift-invariance.

Definition 12. A ∈B
(
`2 (Z×V )

)
is called shift-invariant to S ∈B

(
`2 (Z×V )

)
Laurent if A is in the commutant of S = 〈S〉,{

A ∈B
(
`2 (Z×V )

)
| AS = SA

}
.

Laurent graph-shift operators convey a special physical significance. If the graph-
shift operator S represents the weighted adjacency matrix or random walk matrix,
then the kernel Ks−t captures the weights or transition probabilities for nodes at a
temporal distance s− t. That is [Ks−t ] j,k is the weight or transition probability from
node v j at time s to node vk at time t, and because the kernel depends only on the
temporal distance between nodes, S captures a special stationary process as in Fig.
1.

4.2 Theoretical Results on Shift-Invariant Filters in `2 (Z×V )

The first results on the design of shift-invariant filters follow from standard results
on simultaneous diagonalization of matrices [12].

Theorem 5. Let A,S ∈B
(
`2 (Z×V )

)
be Laurent operators with Jordan spectral

representations given pointwise for a.e. ω ∈ [0,1] by

Ŝ(ω) =
m(ω)

∑
k=0

λk(ω)Pk(ω)+Nk(ω) (21)

and

Â(ω) =
p(ω)

∑
j=0

ν j(ω)Q j(ω)+M j(ω) (22)

respectively. Then, A is shift-invariant with respect to S if and only if

Pk(ω)Q j(ω) = Q j(ω)Pk(ω) (23)
Pk(ω)M j(ω) =M j(ω)Pk(ω) (24)
Nk(ω)Q j(ω) = Q j(ω)Nk(ω) (25)
Nk(ω)M j(ω) =M j(ω)Nk(ω) (26)

for all k ∈ {0, . . . ,m(ω)}, j ∈ {0, . . . , p(ω)}, and ω ∈ [0,1].

Proof. It will help to begin with an intermediate result: if A,S∈B
(
`2 (Z×V )

)
are

Laurent, then A commutes with S if and only if
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Â(ω)Ŝ(ω) = Ŝ(ω)Â(ω) (27)

almost everywhere for ω ∈ [0,1].
⇐
First, assume that Eq. (27) is true. Then,

Â(ω)Ŝ(ω)x̂(ω) = Ŝ(ω)Â(ω)x̂(ω)(
F ∗Â(ω)Ŝ(ω)x̂(ω)

)
[t] =

(
F ∗Ŝ(ω)Â(ω)x̂(ω)

)
[t]

(ASx) [t] = (SAx) [t]

It also follows from Eq. (27) that Â(ω)Sd(ω) = Sd(ω)Â(ω) for any d ∈ Z. From
that, it can be shown that A commutes with any Sd ∈S by the same argument as
for S.
⇒
Now, assume that A commutes with any Sd ∈S .(

ASdx
)
[t] =

(
SdAx

)
[t]

F
(
ASdx

)
[t] = F

(
SdAx

)
[t]

Â(ω)Ŝd(ω)x̂(ω) = Ŝd(ω)Â(ω)x̂(ω)

The intermediate result is proven.
Now, it suffices to prove that Â(ω) commutes with Ŝ(ω) almost everywhere on

ω ∈ [0,1] if and only if Eqs. (23), (24), (25), and (26) hold for all k ∈ {0, . . . ,m(ω)},
j ∈ {0, . . . , p(ω)}, and a.e. ω ∈ [0,1].
⇐
First, assume that the respective projections and nilpotents commute. To make it

more readable, the dependence on ω is dropped, but it is to be understood that this
condition must hold pointwise almost everyone for ω ∈ [0,1].

ÂŜ=

(
p

∑
j=0

ν jQ j +M j

)(
m

∑
k=0

λkPk +Nk

)

=
p

∑
j=0

m

∑
k=0

ν jλkQ jPk +ν jQ jNk +λkM jPk +M jNk

=
p

∑
j=0

m

∑
k=0

ν jλkPkQ j +ν jNkQ j +λkPkM j +NkM j

=

(
m

∑
k=0

λkPk +Nk

)(
p

∑
j=0

ν jQ j +M j

)
= ŜÂ

⇒
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Now, assume that Â(ω) and Ŝ(ω) commute almost everywhere on ω ∈ [0,1].
Then, the resolvents commute: Let z1 ∈ ρ

(
Â(ω

)
and z2 ∈ ρ

(
Ŝ(ω)

)
.(

Â(ω)− z1E
)(

Ŝ(ω)− z2E
)
= Â(ω)Ŝ(ω)− z2Â(ω)− z1Ŝ(ω)+ z1z2E(

Â(ω)− z1E
)(

Ŝ(ω)− z2E
)
= Ŝ(ω)Â(ω)− z2Â(ω)− z1Ŝ(ω)+ z1z2E(

Â(ω)− z1E
)(

Ŝ(ω)− z2E
)
=
(
Ŝ(ω)− z2E

)(
Â(ω)− z1E

)
Now, by taking the inverse of both sides, it follows that the resolvents commute.[(

Â(ω)− z1E
)(

Ŝ(ω)− z2E
)]−1

=
[(
Ŝ(ω)− z2E

)(
Â(ω)− z1E

)]−1(
Ŝ(ω)− z2E

)−1 (
Â(ω)− z1E

)−1
=
(
Â(ω)− z1E

)−1 (
Ŝ(ω)− z2E

)−1

RŜ (z2,ω)RÂ (z1,ω) = RÂ (z1,ω)RŜ (z2,ω)

Let γ1 ∈ ρ
(
Â(ω)

)
be a closed curve that encloses only ν j(ω) and γ2 ∈ ρ

(
Ŝ(ω)

)
be

a closed curve that encloses only λk(ω). Let f1(z1) and f2(z2) be two holomorphic
functions on an open set which includes the curves γ1 and γ2 respectively. Then(

− 1
2πi

)2 ∮
γ1

∮
γ2

f1(z1) f2(z2)RŜ (z2,ω)RÂ (z1,ω)dz1dz2

=

(
− 1

2πi

)2 ∮
γ1

∮
γ2

f1(z1) f2(z2)RÂ (z1,ω)RŜ (z2,ω)dz1dz2

The order of integration can be interchanged by Fubini’s theorem.5 This allows the
integrals to factor.(

− 1
2πi

∮
γ2

f2(z2)RŜ (z2,ω)dz2

)(
− 1

2πi

∮
γ1

f1(z1)RÂ (z1,ω)dz1

)
(28)

=

(
− 1

2πi

∮
γ1

f1(z1)RÂ (z1,ω)dz1

)(
− 1

2πi

∮
γ2

f2(z2)RŜ (z2,ω)dz2

)
Recall the functional definition of the projection [17],

Pk(ω) =− 1
2πi

∮
γk

RS (z,ω)dz, (29)

and of the nilpotent

Nk(ω) =− 1
2πi

∮
γk

(z−λk(ω))RS (z,ω)dz. (30)

where γk is a closed curve around λk(ω).
For f1 = f2 = 1, Eq. (28) produces PkQ j = Q jPk, that is Eq. (23).

5 The resolvent is an analytic function on the resolvent set [8], which means that the integrals are
bounded on γ1 and γ2.
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For f1(z1) = z1−ν j(ω), f2 = 1, Eq. (28) yields PkM j =M jPk, that is (24).
Similarly, the choice f1 = 1 and f2(z2) = z2−λk(ω) turns Eq. (28) into Eq. (25),

whereas the choice f1(z1) = z1−ν j(ω) and f2(z2) = z2−λk(ω) turns Eq. (28) into
Eq. (26). ut

Theorem 5 does not provide a constructive means by which to design shift-
invariant filters. It provides a geometric constraint. For practical purposes, Thm 5
is trivially satisfied by fixing the projections of A to match those of S,

Â(ω) =
m(ω)

∑
k=0

âk(ω)Pk(ω)+Nk(ω). (31)

This leaves O (n) design parameters, the eigenvalues of Â(ω) for each ω ∈ [0,1].
More precisely, the design parameters correspond to the simple eigenvalues of Ŝ.6

However, the complications begin here. In the proof of Theorem 5, the Jordan
spectral representation only holds pointwise for ω ∈ [0,1]. In general, not much
can be said about the form of the eigenvalues, projections, and nilpotents for the
Jordan spectral representation of an arbitrary graph-shift operator. As was shown
in Theorem 4, the entries of Ŝ can be any function L∞ ([0,1]), and the eigenvalues,
projections, and nilpotents are functions of the entries of â j,k, which can be drawn
from a large class of functions that includes many poorly behaved functions. How
the eigenvalues and invariant subspaces of an operator-valued function change as
a function of some argument falls into the study of perturbation theory [17]. Most
results deal in the realm of inequalities and special cases. The effect of perturbations
on eigenvalues is better understood, but even for the case in which Ŝ(ω) is a contin-
uous function of ω , there is no guarantee of unique continuous eigenfunctions. The
algebraic and geometric multiplicity of eigenvalues can change with perturbations.
Moreover, projection operators can blow-up as invariant subspaces collapse and re-
appear. For further reading, see e.g. [17]. All of this is to say that further analysis on
the design of shift-invariant operators must be very deliberate and cautious.

Stronger assumptions about the form of S can lead to more well-behaved eigen-
values, projections, and nilpotents for Ŝ, namely holomorphicity. These results are
captured in the following theorem.

Theorem 6. Let S∈B
(
`2 (Z×V )

)
be a Laurent operator such that for ε > 0 there

exist constants c1,c2 > 0 such that

‖Kt‖B(`2(V )) ≤
c1

(1+ ε)t (32)

for all t > 0, and
‖Kt‖B(`2(V )) ≤ c2(1− ε)t (33)

for all t < 0. Then, the analytic continuation of Ŝ(ω),

6 If Ŝ is degenerate, then there could be greater flexibility in the design of shift-invariant filters.



20 Addison W. Bohannon, Brian M. Sadler, and Radu V. Balan

ˆ̂S(z) =
∞

∑
t=0

ztKt , (34)

is a holomorphic matrix-valued function on U = {z ∈ C | 1− ε < |z|< 1+ ε}. More-
over, there are n holomorphic functions {λk : U → C}k∈V with at most algebraic
singularities such that

det
(

ˆ̂S(z)−λk(z)E
)
= 0 (35)

for all k ∈ V and z ∈U.

Proof. Convergence will be shown element-wise in ˆ̂S, which yields sequences{
[Kt ] j,k

}
k∈N

. The Laurent expansion converges to a holomorphic function on an

annulus z ∈ {z ∈ C | r < |z|< R} where.

R−1 = limsup
t→∞

∣∣∣[Kt ] j,k

∣∣∣1/t
(36)

for t > 0, and

r = limsup
t→−∞

∣∣∣[Kt ] j,k

∣∣∣1/t
(37)

for t < 0 for all j,k ∈ V . For the stated decay rate of the kernels, this condition is
satisfied on 1− ε < |z| < 1+ ε . The holomorphicity of the spectrum and nature of
the singularities follows from Eq. (35), an algebraic equation for which the solutions
vary analytically as a function of the elements of ˆ̂S (see e.g. [19]). ut

Theorem 6 states that for operators with kernels that decay sufficiently fast, Ŝ :
[0,1] → B

(
`2 (V )

)
can be analytically continued on an annulus that includes

the torus ({z ∈ C | |z|= 1}). This guarantees holomorphicity of Ŝ(ω) = ˆ̂S(e2πiω),
which is the restriction of ˆ̂S to the torus. That is to say that Ŝ is a holomorphic func-
tion of ω ∈ [0,1]. The significance of this result owes to the considerably stronger
results on analytic perturbations of operators [17].

For analytic perturbations of finite-dimensional linear operators, the eigenvalue
functions form λ -groups. These groups of eigenvalues are the multi-valued complex
functions in the spectrum. For the purposes of this chapter, each λ -group along with
any other λ -group it intersects in the complex plane has an associated total projec-
tion. Let Â(ω) ∈B

(
`2 (V )

)
. A projection associated with an eigenvalue λk(ω) is

defined functionally for a closed curve Γk,ω ⊂ C as

Pk(ω) =− 1
2πi

∮
Γk,ω

RÂ(ω) (z)dz. (38)

For total projections, the closed curve is drawn so as to include the entire λ -group
and any other intersecting λ -group. The total projection corresponds to the sum
of the constituent projections, but the total projection is bounded and holomorphic
on the annulus of holomorphy to include exceptional points. See Fig. 2 for further
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explanation of total projections. These results can be found in [17] and are reviewed
here because the next theorem will require the concept of total projections. In the
next section, this theory will be adapted for the practical design of filters.

Im[z]

R
e
[z
]

Γ

λ0

λ1

Fig. 2 Total projection of connected components of the spectrum. The spectrum of a bounded
operator is the union of compact sets. Multi-valued functions (e.g. ±√z) and odd period functions
form λ -groups. The eigenvalues λ0(ω) = e2πiω + 2e3πiω (solid line) and λ1(ω) = e2πiω − 2e3πiω

(dashed line) are plotted in the above figure. λ0 and λ1 together form a λ -group. This means that
they cannot be partitioned by non-intersecting closed sets and require a single total projection
represented by the closed curve Γ (dotted line). The intersections λ0(ω) = λ1(ω) for ω ∈ [0,1]
correspond to algebraic multiplicities.

4.3 Design of Linear and Shift-Invariant Filters on `2 (Z×V )

As in Section 3, the design of shift-invariant filters can be carried-out in the fre-
quency domain where the action of the operator is the usual matrix-vector product.
Â acts like a transfer function as in Eq. (14). However, in the case of shift-invariant
filters, there are O (n) parameters because the invariant subspaces are fixed by the
graph-shift operator as in Eq. (31),

(Ax) [t] =

(
F ∗

[(
m(ω)

∑
k=0

âk(ω)Pk(ω)+Nk(ω)

)
x̂(ω)

])
[t]. (39)
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As discussed above, Eq. (39) is in general very difficult to compute. This section
will investigate two special cases of graph-shift operators for which concrete results
can be stated: Ŝ(ω) constant and analytic.

For the case of Ŝ(ω) constant, it will help to proceed under the assumption that
Ŝ(ω) = Ŝ has simple eigenvalues.

Ŝ= ∑
k∈V

λkPk (40)

Extending the following results to the more general cases of semi-simple and degen-
erate eigenvalues is straight-froward but requires greater precision in the statement
of theorems and proofs. Before proceeding with the theorem, consider the action of
such a filter S= F ∗ŜF :

(Sx) [t] = Ŝx[t]. (41)

S is an infinite-dimensional block diagonal operator with Ŝ on the main diagonal. It
has kernel function, K0 = Ŝ and Kt = 0 for t 6= 0.

Sx =



. . .
Ŝ

Ŝ

Ŝ
. . .





...
x[−1]
x[0]
x[1]

...

 (42)

This would correspond to a graph-shift operator which acts only in space, and it can
be modeled as a factor graph, S= IZ⊗ Ŝ.

Theorem 7. Let Ŝ ∈B
(
`2 (V )

)
be a constant-valued operator with a Jordan spec-

tral representation given by Eq. (40) and S= F ∗ŜF . Then, for

Â(ω) = ∑
k∈V

âk(ω)Pk, (43)

A = F ∗ÂF is shift-invariant to S, and A ∈ B
(
`2 (Z×V )

)
if and only if âk ∈

L∞ ([0,1]) for all k ∈ V . Moreover, σ (A) = ∪ω∈[0,1] {âk(ω) | k ∈ V }.

Proof. A is shift-invariant to S by Theorem 5.7

⇐
Let âk ∈ L∞ ([0,1]) for all k ∈ V . It is necessary to show that A is bounded.8

7 Note that Â could be degenerate as in Theorem 5 by making â(ω) = 0 for some k ∈ V and ω ∈
[0,1], and this would still be a shift-invariant operator. Also, algebraic multiplicity (i.e. â j(ω) =
âk(ω) for j 6= k ∈ V ) would not pose a problem as the geometric multiplicity would match that of
the algebraic multiplicity.
8 It is tacitly assumed that the projections of a bounded operator Ŝ are bounded.
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‖A‖B(`2(Z×V )) = esssup
ω∈[0,1]

∥∥Â(ω)
∥∥

B(`2(V ))

= esssup
ω∈[0,1]

∥∥∥∥∥∑
k∈V

âk(ω)Pk

∥∥∥∥∥
B(`2(V ))

≤ esssup
ω∈[0,1]

∑
k∈V
|âk(ω)|‖Pk‖B(`2(V ))

≤ ∑
k∈V
‖âk(ω)‖L∞([0,1]) ‖Pk‖B(`2(V ))

< ∞

⇒
Now, suppose that A is bounded and shift-invariant to S. It is necessary to show

that ‖âk(ω)‖`∞([0,1]) < ∞ for all k ∈ V , but suppose instead that it is not true for
some k′ ∈ V . The goal is to find a ‖x̃‖`2(Z×V ) = 1 for which ‖Ax̃‖`2(Z×V ) = ∞. This
can be done by choosing ˆ̃x in the invariant subspace of Pk′ and supported only on
the set on which âk′ achieves its essential supremum, Ω ∗ ∈ [0,1] as shown below.

‖A‖B(`2(Z×V )) ≥

∥∥∥∥∥∑
k∈V

âkPk ˆ̃x

∥∥∥∥∥
L2([0,1]×V )

= ‖âk′‖L∞([0,1])

∥∥Pk′ ˆ̃x
∥∥

L2([0,1]×V )

Since ˆ̃x was selected arbitrarily in the invariant subspace associated with Pk′ , let it
be chosen to maximize the operator norm. Then,

‖A‖B(`2(Z×V )) ≥ ‖âk′‖L∞([0,1]) ‖Pk′‖B(L2([0,1]×V )) ,

which is not bounded. Then, it is possible to define a sequence of functions which
converge to such a x̃ which contradicts the assumption. The spectrum of A follows
immediately from Theorem 3. ut

Consider the operator A from Theorem 7. Following Eq. (14), its action on a
signal x ∈ `2 (Z×V ) takes a special form.
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(Ax) [t] =
(
F ∗ [Â(ω)x̂(ω)

])
[t]

=
∫
[0,1]

e−2πiωt Â(ω)x̂(ω)dω

=
∫
[0,1]

e−2πiωt

(
∑

k∈V
âk(ω)Pk

)(
∑
s∈Z

e2πiωsx[s]

)
dω

= ∑
k∈V

∑
s∈Z

(∫
[0,1]

e2πiω(s−t)âk(ω)dω

)
Pkx[s]

= ∑
k∈V

(
∑

s∈V
ak[s− t]Pkx[s]

)
= ∑

k∈V
(ak ∗Pkx) [t]

Here, ak[t] = (F ∗âk) [t]. If âk ∈ L2 ([0,1])∩L∞ ([0,1]), then ak ∈ `2 (Z).9 The action
of A in the time-domain first projects the time-indexed signal x[t] ∈ `2 (V ) onto
subspaces defined by the projection operators, Pk and then convolves the signal with
a function ak ∈ `2 (Z). Here, âk acts as transfer function on the projected signal.

Now, shift-invariance with respect to holomorphic operators is considered.

Theorem 8. Let S ∈ B
(
`2 (Z×V )

)
satisfy the conditions of Theorem 6, and let

Ŝ : [0,1]→ `2 (V ) have total projection operators {Pk(ω) | k = 0, . . . ,m(ω)} where
0 < m(ω)≤ n = |V |. Then, for

Â(ω) =
m(ω)

∑
k=0

âk(ω)Pk(ω), (44)

A = F ∗ÂF is shift-invariant to S and A ∈ B
(
`2 (Z×V )

)
if and only if âk ∈

L∞ ([0,1]) for all k ∈ V . Moreover, σ (A) = ∪ω∈[0,1] {âk(ω) | k = 0, . . . ,m(ω)}.

Proof. The proof follows that of Theorem 7 by the boundedness of the total projec-
tions [17]. ut

How realistic is it to expect a graph-shift operator which admits an analytic con-
tinuation? In almost all practical applications, it would in fact be the case. When
modeling the weighted edges of an extended graph from a real-world process, it
would be realistic to assume that the impact of events would decay to a negligible
effect within finite time or that the conditional probabilities across time would be
negligible for large enough time. This would satisfy the conditions of Theorem 6.

9 Since F : `1 (Z)→ L∞ ([0,1]) is not surjective, F ∗âk may not exist for some âk ∈ L∞ ([0,1]).
However, F : `2 (Z)→ L2 ([0,1]) is bijective.
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4.4 Example

We aim to implement a bandpass filter on a signal x ∈ `2 (Z×V ) using the frame-
work of Section 4.3. In Sandryhaila and Moura [35], bandpass filtering on graph
signals is defined according to the eigenvectors of the weighted adjacency matrix
W and ordered by the so called graph total variation. A low-pass filter allows the
projections of the signal onto the subspaces associated with small total variation
eigenvectors to pass, and a high-pass filter the projections associated with high total
variation eigenvectors. As in Section 3.4, a bandpass filter can attenuate unwanted
frequencies of the time-series graph signal, but now, a bandpass filter can also atten-
uate subspaces of the graph signal.

Consider the example of Fig. 1, and let the kernel function be defined as follows:

K0 =

[
0 1
1 0

]
K1 =

[
− 2

5 0
0 − 2

5

]
K2 =

[
0 0
4
5 0

]
K3 =

[
0 2

5
0 0

]
(45)

and Kt = 0 otherwise, i.e. we assign weights to the edges of Fig. 1. By Theorem 3,
this results in a spectral representation of the graph-shift operator,

Ŝ(ω) =

[
− 2

5 e2πiω 1+ 2
5 e6πiω

1+ 4
5 e4πiω − 2

5 e2πiω

]
, (46)

which is holomorphic on ω ∈ [0,1] by Theorem 6. The spectral operator has eigen-
values,

λ±(ω) =−2
5

e2πiω ±

√(
1+

4
5

e4πiω

)(
1+

2
5

e6πiω

)
, (47)

projection operators,

P±(ω) =±1
2

 1 ±
√

5+2e6πiω

5+4e4πiω

±
√

5+4e4πiω

5+2e6πiω 1

 , (48)

and nilpotents N±(ω) = 0 respectively.
Now consider the bandpass filter. Suppose that we are to pass the frequency con-

tent on Ω ∈ [0,1], and that the graph signal component associated with P−(ω) is to
be attenuated. Then, an ideal bandpass filter A= F ∗ÂF is defined by

Â(ω) =

{
P+(ω) ω ∈Ω

0 o.w.
. (49)

This would correspond to choosing â+(ω) = χΩ (ω) and â−(ω) = 0, which are
bounded functions on [0,1]. Therefore, A ∈ B

(
`2 (Z×V )

)
by Theorem 8. The

action of A would be
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(Ax) [t] =
∫

Ω

e−2πiωtP+(ω)x̂(ω)dω. (50)

In the limit as dω(Ω)→ 0 so that Ω = {ω0}, this would implement an ideal band-
pass,10

(Ax) [t] = e−2πiω0tP+(ω0)x̂(ω0). (51)

5 Functions of Graph-Shift Operators on `2 (Z×V )

Shift-invariant filters enable the incorporation of prior information in the form of
graph-shift operators into the design process. However, linear scaling of the design
parameters does not take advantage of sparsity, nor does it scale to large graphs with
|V | � 0. This begs for an alternative filter design method with greater control on
the design complexity.

This section will present the theory for designing filters which are themselves
functions of graph-shift operators. In the context of graph signal processing, this
concept emerges as defining filters which are polynomials of a given graph-shift
operator. Sandryhaila and Moura [33] observed that in finite-dimensions, all shift-
invariant filters can be realized as finite degree polynomials of the graph-shift op-
erator. The concept of defining filters as polynomials of a given graph-shift oper-
ator arose also in Shuman, et al. [38] and again in Defferrard, et al. [6]. Defining
filters as polynomials of graph-shift operators brings with it a strong physical inter-
pretability as graph operators act only on a neighborhood of each node. Thus, each
polynomial order connotes a different physical scale of the action of an operator.
Moreover, choosing only the coefficients of polynomials gives the designer much
greater control on the complexity of the design problem and allows much of the
computationally intensive portions of filtering to be computed offline.

5.1 Functional Calculus

In spectral theory, polynomials of finite-dimensional matrices is only a subset of a
more comprehensive theory of functional calculus. The intuition is straight-forward.
Power series allow one to arbitrarily approximate scalar functions with infinite poly-
nomials, and polynomials of matrices act on the eigenvalues. In the case of matrices,
the Cayley-Hamilton theorem states that for a matrix A ∈ Cn×n, all matrices Ak for
k ≥ n are in the span of

{
Ak | k = 0, . . . ,n−1

}
. Thus, it is unnecessary to consider

polynomials of degree greater than n− 1 [12]. However, infinite-dimensional op-
erators are not constrained by this result, and admit full power series. Polynomials
are dense in the space of continuous functions, so arbitrary degree polynomials of

10 Again, this converges only in the distribution sense as it amounts to â+(ω)→ δ (ω −ω0), a
non-measurable function.
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operators can potentially yield a much larger class of functions. Functional calculus
provides the theory by which to define operators that are functions (to include poly-
nomials) of other operators. In general, there is the holomorphic functional calculus.
For a proof, see e.g. [8].

Theorem 9 (Holomorphic functional calculus). Let S ∈B
(
`2 (Z×V )

)
, U ⊂ C

be an open set such that σ (S) ⊂U, φ : U → C be holomorphic, and Γ ⊂U be a
closed curve enclosing σ (S). Then, there exists a φ(S) ∈B

(
`2 (Z×V )

)
such that

φ(S) :=− 1
2πi

∫
Γ

φ(z)RS (z)dz. (52)

Moreover, σ (φ(S)) = φ(σ (S)), φ 7→ φ(S) is a continous map from supγ∈Γ |φ(γ)| to
‖·‖B(`2(Z×V )), and if ψ :C→C is holomorphic on U, then φ(S)ψ(S) = (φ ◦ψ)(S).

Hidden in the statement of the theorem is that the open set can be the union of
finitely many disjoint open sets so that each connected component of the spectrum
could have its own open set U = ∪m

k=0Uk. Moreover, φ : U → C only needs to be
holomorphic on U . That is to say that it must admit a power series representation at
all points z∈U , but the power series representations need not correspond on disjoint
open sets. The restriction of φ to U0 could be one holomorphic function and another
for the restriction of φ to U1. Moreover, it need not have an analytic extension on
C\ (U0∪U1). See Fig. 3 for further explanation.

5.2 Theoretical Results on Filters that are Functions of
Graph-Shift Operators

Ultimately, the goal of this chapter is to design linear and time-invariant filters for
time-varying graph signals. In Section 4, it was shown that shift-invariance incor-
porates spatial information in the form of a graph operator into the design of filters.
In this section, the goal is to maintain that information through shift-invariance to a
given graph-shift operator.

Theorem 10. Let S ∈ B
(
`2 (Z×V )

)
be Laurent, U ⊂ C be an open set such

that σ (S) ⊂ U, and φ : U → C be a holomorphic function. If A = φ(S), then
A ∈B

(
`2 (Z×V )

)
is shift-invariant to S where φ(S) is defined according to The-

orem 9.

Proof. We begin with shift-invariance. It will help to first prove that S commutes
with RS (z) for all z ∈ ρ (S).

S(S− zE) = (S− zE)S

RS (z)S(S− zE)RS (z) = RS (z)(S− zE)SRS (z)

RS (z)S= SRS (z)



28 Addison W. Bohannon, Brian M. Sadler, and Radu V. Balan

Re[z]

Im
[z
]

0

1

Γ0

Γ1

U0

U1

Fig. 3 Example domain for holomorphic functional calculus. Here, the spectrum comprises two
disjoint sets {λ0(ω) ∈ C : ω ∈ [0,1]} (solid line) and {λ1(ω) ∈ C : ω ∈ [0,1]} (dashed line). A
holomorphic function φ : U → C must be holomorphic on an open set U ⊂ C, but that set can be
the union of open sets, i.e. U = U0 ∪U1 (long dashed line) in the figure. Moreover, φ only needs
to be holomorphic on U , which means that the restriction of φ to U0 and the restriction of φ to
U1 can be different holomorphic functions, and they do not have to be holomorphic on C\U . The
integration is done on an arbitrary curve Γ ⊂U that can be the union of curves Γ = Γ0∪Γ1 (dotted
line).

Now, consider shift-invariance

AS= φ (S)S

=

(∮
Γ

φ(z)RS (z)dz
)
S

=
∮

Γ

φ(z)(RS (z)S)dz

=
∮

Γ

φ(z)(SRS (z))dz

= S

(∮
Γ

φ(z)RS (z)dz
)

= Sφ (S)

= SA

Lastly, it is necessary to show that ‖A‖B(`2(Z×V )) < ∞.
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‖φ (S)‖B(`2(Z×V )) =

∥∥∥∥∮
Γ

φ(z)RS (z)dz
∥∥∥∥

B(`2(Z×V ))

≤ sup
z∈Γ

|φ(z)|
∥∥∥∥∮

Γ

RS (z)dz
∥∥∥∥

B(`2(Z×V ))

≤M sup
z∈Γ

|φ(z)|

< ∞

φ is bounded by the maximum modulus theorem [2], and the third equality comes
from Prop. 4 of Theorem 1. ut

This shows that filters defined as functions of graph-shift operators are indeed
shift-invariant; however, Theorem 10 is not constructive. The following theorem
provides that.

Theorem 11. Let S ∈B
(
`2 (Z×V )

)
be Laurent, U ⊂ C be an open set such that

σ (S)⊂U, and φ : U → C be a holomorphic function. Further, let Ŝ have a Jordan
spectral representation given pointwise by

Ŝ(ω) =
m(ω)

∑
k=0

λk(ω)Pk(ω)+Nk(ω) (53)

for ω ∈ [0,1] and 0 < m(ω)≤ n. Then, for x ∈ `2 (Z×V ) and A= φ(S),

(Ax) [t] =

(
F ∗

{
m(ω)

∑
k=0

[
(φ ◦λk)(ω)Pk(ω)+

(
φ
′ ◦λk

)
(ω)Nk(ω)

]
x̂(ω)

})
[t].

(54)
Moreover, σ (A) = ∪ω∈[0,1] {(φ ◦λk)(ω) | k = 0, . . . ,m(ω)}.

Proof. The Jordan spectral representation of the resolvent for Eq. (53) has the fol-
lowing form:

RŜ (z,ω) =
m(ω)

∑
k=1

(z−λk(ω))−1Pk(ω)+(z−λk(ω))−2Nk(ω) (55)

for z∈ ρ
(
Ŝ(ω)

)
and ω ∈C [17]. It is helpful to first establish the following identity.

(Fφ(S)x)(ω) =

(
F

[
− 1

2πi

∮
Γ

φ(z)RS (z)dz
]

x
)
(ω)

=

(
− 1

2πi

∮
Γ

φ(z)
(
F (S− zE)−1 x

)
(ω)dz

)
=

(
− 1

2πi

∮
Γ

φ(z)
[(
Ŝ(ω)− zE

)−1 x̂(ω)
]

dz
)

=
[
φ
(
Ŝ
)]
(ω)x̂(ω)
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The implication here is that φ(S) = F ∗φ(Ŝ)F . Then, this along with the following
can be used with Eq. (55) to derive the desired result.

φ
(
Ŝ
)
=

1
2πi

∮
Γ

φ(z)RŜ (z,ω)dz

=
1

2πi

∮
Γ

φ(z)

(
m(ω)

∑
k=1

(z−λk(ω))−1Pk(ω)+(z−λk(ω))−2Nk(ω)

)
dz

=
m(ω)

∑
k=1

1
2πi

∮
Γ

[
φ(z)

z−λk(ω)
Pk(ω)+

φ(z)
(z−λk(ω))2Nk(ω)

]
dz

=
m(ω)

∑
k=0

(φ ◦λk)(ω)Pk(ω)+
(
φ
′ ◦λk

)
(ω)Nk(ω)

The spectrum identity follows from Theorem 9, and it is known as the spectral
mapping theorem [8]. ut

5.3 Design of Filters that are Functions of Graph-Shift Operators

Although constructive, actually computing φ(S) requires explicit calculation of the
spectrum. As discussed in Section 4.2, explicit calculation of the spectrum can be
prohibitively difficult in all but special cases. Therefore, this section will proceed as
in Section 4.3 with Ŝ(ω) constant.

Theorem 12. Let Ŝ(ω) = Ŝ∈B
(
`2 (V )

)
be a constant-valued operator with a Jor-

dan spectral representation given by

Ŝ(ω) = Ŝ= ∑
k∈V

λkPk, (56)

and S= F ∗ŜF . Further, let U ⊂C be an open set such that σ (S)⊂U, φ : U →C
be a holomorphic function, A= φ(S). Then, for x ∈ `2 (Z×V ),

(Ax) [t] = φ
(
Ŝ
)

x[t] = ∑
k∈V

φ(λk)Pkx[t], (57)

and σ (A) = {φ(λk)}k∈V .

Proof. This is a straightforward application of Theorem 11.

Theorem 12 indicates that φ(S) acts independent of time for a graph-shift opera-
tor S that acts independent of time as can be seen from the matrix representation.
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φ(S)x =



. . .
φ
(
Ŝ
)

φ
(
Ŝ
)

φ
(
Ŝ
)

. . .





...
x[−1]
x[0]
x[1]

...

 (58)

The design of filters through functions of graph-shift operators admits only O (1)
parameter, the holomorphic function φ : U→C. Such operations on graph-shift op-
erators also induce a physical meaning as actions on local neighborhoods. Graph-
shifts induce local neighborhoods and pathways on a graph, and higher degree
polynomials induce larger neighborhoods and pathways of correspondence between
nodes on a graph. The class of holomorphic function allows the realization of fully
local to fully connected operations on the graph to influence the filter.

5.4 Example

Again, we would like to implement a bandpass filter. However, in the case of func-
tion calculus, the design parameter φ : U → C is a function on the spectrum, and it
cannot act explicitly on the frequency domain as in the filters of Sections 3.4 and
4.4. Therefore, more care is required to implement a bandpass filter according to
Section 5.3.

Consider again the example of Fig. 1 with kernel function given in Section 4.4.
The first step in designing a filter according to Theorem 11 will be defining an open
set U ⊂C such that σ (S)⊂U . From Section 4.4, σ (S) =∪ω∈[0,1] {λ+(ω),λ−(ω)}.
As seen in Fig. 4, λ+(ω) and λ−(ω) are disjoint on C. This allows us to define U =
U+∪U− to satisfy U+∩U− = /0 and ∪ω∈[0,1]λ+(ω)⊂U+ and ∪ω∈[0,1]λ−(ω)⊂U−.

Let U be defined as in Fig. 4 and suppose that as in Section 4.4, the goal is to
attenuate the signal in the subspace of P−. This can be done by letting, φ |(U+)c = 0,
a holomorphic function on U−. Now, consider a complex circular Gaussian,

ν(z; µ,σ) =
1

2πσ
exp

(
−|z−µ|2

2σ2

)
, (59)

with µ ∈ C and σ > 0 ∈ R [30]. This also defines a holomorphic function, so let
φ |U+ = ν(z; µ,σ), and let A= φ(S). Then, A ∈B

(
`2 (Z×V )

)
by Theorem 11 and

has the following action

(Ax) [t] =
∫ 1

0
e−2πiωt

ν(λ+(ω); µ,σ)P+(ω)x̂(ω)dω. (60)
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U+U-

Γ-

Γ+

λ- λ+

Fig. 4 Spectrum of example S of Fig. 1. The spectrum comprises two disjoint sets,
{λ+(ω) ∈ C : ω ∈ [0,1]} (solid line) and {λ−(ω) ∈ C : ω ∈ [0,1]} (dashed line). As a result, we
can define an open set U = U− ∪U+ (long dashed line) and closed contour Γ = Γ− ∪Γ+ (dotted
line). Any holomorphic function φ : U → C need only be holomorphic on U .

In the limit, for µ = λ+(ω0) with ω0 ∈ [0,1] and σ→ 0, A has the following action11

(Ax) [t] = e−2πiω0tP+(ω0)x̂(ω0). (61)

In principle, it is observed that near ideal bandpass is possible using functional cal-
culus.

6 Special Theory for Self-Adjoint Filters

As graphs can be either directed or undirected, methods that work for either enjoy
an advantage in terms of universality; however, the analysis of self-adjoint matrices
admits significantly stronger results and has led much of the work on graph signal
processing to be done on undirected graphs. Thus far, the proposed approach works
whether the graph is directed or undirected (or equivalently the graph-shift opera-
tor is self-adjoint). This section will briefly discuss the implications of self-adjoint
graph-shift operators for Sections 4 and 5.

The key advantage to analysis of self-adjoint graph-shift operators is the exis-
tence of an orthonormal basis from an eigendecomposition. In Section 4.2, this will

11 This is not strictly admissible, but holds only in the distribution sense, since φ is no longer a
measurable holomorphic function.
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yield semi-simple real-valued eigenvalues. In Section 5.2, this will yield a larger
class of functions, namely all Borel measurable functions.

It is a common result in matrix analysis that a finite-dimensional self-adjoint
operator can be diagonalized by a unitary operator [12]. It then follows that the
Jordan spectral representation of a self-adjoint graph-shift operator Ŝ ∈B

(
`2 (V )

)
can be written

Ŝ= ∑
k∈V

λkuku∗k (62)

where λk ∈ R and ‖uk‖`2(V ) = 1 for all k ∈ V .12 Additionally, the eigenvalues and
operator norm of a self-adjoint operator A ∈B

(
`2 (Z×V )

)
are related as follows:

‖A‖B(`2(Z×V )) = max
λ∈σ(A)

|λ | . (63)

The maximum of the spectrum is known as the spectral radius, and this follows
from Gelfand’s theorem [5]. This means that the norm for a shift-invariant fil-
ter A ∈ B

(
`2 (Z×V )

)
designed according to Section 4.3 for a graph-shift S ∈

B
(
`2 (Z×V )

)
is

‖A‖B(`2(Z×V )) = max
ω∈[0,1],k∈V

|âk(ω)| . (64)

In Shuman et al. [38], the authors propose that the orthogonal projections defined
by the Laplacian substitute as the Fourier basis in a graph Fourier transform. The
authors make use of the fact that one can find eigenvectors of the Laplacian L that
form an orthonormal basis in `2 (V ). Moreover, the basis vectors correspond to real-
valued eigenvalues that can be ordered, from which the basis vectors can in turn be
ordered. These results underlie the intuition behind the graph Fourier transform.

Additionally, for self-adjoint operators, there is the Borel functional calculus,
which includes an even larger set of functions than the holomorphic functional cal-
culus. For more detail on the Borel functional calculus, see e.g. [39]. The Borel
functional calculus admits any Borel measurable function for self-adjoint opera-
tors. In addition to allowing a larger set of functions, the Borel functional calculus
provides a control on the operator norm of the resultant operator. For a Borel mea-
surable function φ ,

‖φ(A)‖B(`2(Z×V )) = max
λ∈φ(σ(A))

|λ | . (65)

12 Eq. (62) is no longer strictly unique as it can include repeated eigenvalues and requires the
choice of an appropriate basis for any geometric multiplicity.
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7 Conclusion

This chapter addressed the filtering of time-varying graph signals for time-invariant
extended graphs. The theoretical framework proposed yields three families of design
methods for time-invariant and shift-invariant filters. Bandpass filtering was used as
a design example. Future work will explore the implications of finite sampling in
the time domain and pursue applications in statistical inference for social networks
and brain imaging.
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