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Abstract

The goal of this article is to investigate and suggest tech-
niques for health condition monitoring and diagnosis using
machine learning from sensor data. In particular, this arti-
cle overview and discusses support vector machines meth-
ods such as hard margin and soft margin problems. In or-
der to investigate the abnormalities and classify a large set
of data an iterative Support Vector Machine algorithm was
constructed. However, similar techniques could be applied
to analyze or monitor for abnormality various other com-
plex devices or even computer methods.
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1. Introduction
Support vector machines methods represent a powerful
paradigm for classification and regression problems. For
these reasons the support vector machines were success-
fully applied in domains such as data mining, fault and
novelty detection problems, health condition monitoring
for engines, bioinformatics (protein homology detection,
functional interpretation of gene expression data), detection
of anomalous windows registry (Krysta Svore, Katherine
Heller, Angelos Keromytis, Salvatore Stolfo). The central
problem in bioinformatics is predicting the functional and
structural features of a protein based on its amino-acidic
sequence. The task is to identify the protein homologies
so that proteins can be clustered in families. From the sta-
tistical perspective, Jaakkola and Haussler construct a gen-
erative probabilistic model in order to analyze the protein
sequence. For each protein sequence, a probability is as-
signed. In order to assess the similarity between protein
sequences, they used the kernel functions. For extracting
features from protein sequences, the model maps all protein
sequences to points in a Euclidean feature space of fixed di-
mension. In order to classify the new points representing the

protein sequences Jaakkola and Haussler used a discrimina-
tive statistical method(kernel methods). The SVM approach
has been successfully applied also to the categorization of
gene expression data from DNA microarrays.

2 Problem description

In order to assess a machine learning approach for faulty
detection and health condition monitoring of a gas tur-
bine, we consider a short description of the problem.
For a gas turbine, we consider two types of measure-
ments: the measurement of the external parametersZ(t) =
{zi(t) = zi, i = 1, 2....n} done by using a gas turbine
sentry system, and the measurement of the internal pa-
rametersX(t) = {xj(t) = xj , j = 1, 2....m} wheret ∈
{0, T0, 2T0, 3T0, ...} by using a digital audio recorder sys-
tem. With all these measurements, we want to build the
following model state:

X(t) = F (Z(t), σ, ν(t)) where (1)

ν(t) represents the statistical fluctuations or combustion dy-
namics,X(t) the input space of the internal parameters,
Z(t) the input space of the external parameters andF the
model state function. The measurement model that we have
assumed is given by:

y(t) = x(t) + n(t) = F (z(t), σ, ν(t) + n(t)) (2)

wherey(t) andn(t) represent the measurements affected
by noise and respectively the noise that influences the mea-
surement process. The goal of the model state function is to
infer the stateσ , which can be ’1’ - good state or ’-1’ -bad
state, based on data measurements y and z.

3 Temporal Feature Extraction

In the present section, we analyze the methods that we use
for processing the data set and how we construct the feature
vectors for the training and testing steps of the classifica-
tion problem. At the initial stage, we apply a filter bank
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of k order to the internal measurements. In other words, for
each signal vectoryi we apply a window function and trans-
forms it into frequency domain by FFT. The first step of the
method takes a part of the vector signal of dimension M (in-
ternal measurements), applies a window function (Hanning,
Chebyshev, Hamming, etc) and transforms it into frequency
domain by Fast Fourier Transform so that the transformed
data is given by:

Yk,l(ω) =
M
∑

j=1

e2πi ω

M
(j−1) · f(j)yk(l − 1) · b + j)

wherek = 1, 2, ...32, l = 1, 2, ..NTF, ω = 0, 1, ...
M

2
. (3)

For the external measurements, we transform the data into
frequency domain and consider the DC component only, be-
cause these measurements are slowly time varying signals:

zk 7→ Zk,l(ω)|ω=0

wherek = 1, 2, ...25, andl = 1, 2, ...NTF (4)

With all this procesing we prepare two vectorYk,l andZk,l:

Yl =









Yk,l(0)
Yk,l(1)

....
Yk,l(

M
2 )









zl =









Z1,l(0)
Z2,l(1)

....
z25,l(

M
2 )









. (5)

From the FFT instance, we transform theY and Z pa-
rameters according a predefined set of frequeciesΩ =
Ω1,Ω2, ...ΩK and using filterbank principle obtaining the
following vectorYl:

Yl =









∑

ω∈Ω1
|Yk,l(ω)|

∑

ω∈Ω2
|Yk,l(1)|

....
∑

ω∈ΩNF=10
|Yk,l(

M
2 )|









. (6)

Due to the sumation
∑

ω∈Ωi
|Yk,l(ω)|, this step represents

the nonlinear filtering of the measurements. At the end of
this method, we compute a least square filterΦ which is the
solution of the minimization problem:

Φ := argminΦ∈Class

∑

t

‖u(t) − Φ(z(t))‖2

= argminΦ∈Class

∑

segment

∑

t∈segment

‖u(t) − Φ(z(t))‖2

= argminΦk∈Class

∑

t

‖Uk,l(t) − Φk(z)‖2

= argminΦk

NTF
∑

l=1

‖Uk,l(n) − ΦT
k Zl‖

2. (7)

wheren = 1, 2, ...NF = 10 andk = 1, 2, ...32. The fea-
ture vector at frame l after applying the linear predictor has

the following form:

Fl =





































∑

ω∈Ω1
|Y1,l(ω)| − φT

1 Zl
∑

ω∈Ω2
|Y1,l(1)| − φT

2 Zl

...
∑

ω∈ΩNF
|Y1,l(1)| − φT

NF Zl
∑

ω∈Ω1
|Y2,l(1)| − φT

NF+1Zl
∑

ω∈Ω2
|Y2,l(1)| − φT

NF+2Zl

...
∑

ω∈ΩNF
|Y2,l(1)| − φT

2NF Zl
∑

ω∈Ω1
|Y32,l(1)| − φT

31NF+1Zl

...
∑

ω∈ΩNF=10
|Y32,l(

M
2 )| − φT

32Zl





































. (8)

In the above mentioned derivations, NTF designates the to-
tal number of frames, NTS designates the number of total
samples and NF designates the number of frequencies.

4 Support Vector Machines

In many classification problems, the task is reduced to the
mere identification of object classes. Therefore, the ar-
ticle will approach the problem of One Class Classifica-
tion and will propose an algorithm focused on large size
data classification. For the beginning, we will define the
context and the requirements of the One Class Classifi-
cation problem. Hence, we will consider a set of mea-
surementsX =

{

xj ∈ Rd, j = 1, 2....m
}

entitled input
space, to which we want to assign a label from output space
Y = {yi = ±1, i = 1, 2...m} . In other words, we want to
design a decision or discriminant function which performs
the classification:f(x) = y. If we suppose the data set
is separable, the above mentioned requirement is equivalent
with the construction of a hyperplane given by the equation:

〈w, x〉 + b = 0 (9)

The vectorw has the role of indicating the orientation of
the hyperplane and the parameterb represents the offset re-
spective to the origin that was considered. As there is no
additional constraint concerning the data set there is an in-
finity of possibilities for defining the separation hyperplane:

H = {〈w, x〉 + b = 0| x ∈ X} (10)

The construction of the hyperplane gives us the opportunity
of taking a Bayesian decision invariant to the positive scal-
ing of the decision function argument :

f : X → Y , f(x) = sgn {〈w, x〉 + b} (11)

As the decision is invariant at the level of positive scaling
we can define the canonical hyperplane which leads to the
following conclusions:

〈w, x1〉 + b = 1, thenx1 ∈ TargetClass

〈w, x2〉 + b = −1, thenx2 ∈ OutlierClass (12)
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The w vector of the canonical hyperplane is the result of
the relationw/ ‖w‖

2
2 and the margin is given by1/ ‖w‖

2
2 .

We have observed judging by the above mentioned data that
there is an infinity of possibilities for the construction ofthe
separating hyperplane. Taking into account that we want the
misclassification error to be minimized as much as possible,
the hyperplane needs to be as far away as possible from
both convex data sets. This is equivalent to the following
optimization problem(Hard Margin Problem):

minimize
1

2
〈w,w〉

subject to yi(〈w, xi〉 + b) ≥ 1, i = 1, 2..m. (13)

The maximization problem of the margin is translated
through the minimization of the quantity and leads to the
support vector machines learning rule. As it is an optimiza-
tion problem of a convex criterion we can resort to a La-
grangian treatment which leads to a dual approach of the
primal formulation. The dual problem is obtained by con-
structing the Lagrangian function:

L(w, b, α) =
1

2
〈w,w〉−

m
∑

i=1

αi[yi((〈w, xi〉)+b)−1] (14)

where α are called Lagrangian multipliers. Setting the
Karush-Kuhn-Tucker conditions

∂L

∂w
= w −

m
∑

i=1

yiαixi = 0 (15)

and
∂L

∂b
=

m
∑

i=1

yiαi (16)

and re-substituting in the Lagrangian function the relation
becomes :

L(w, b, α) =

m
∑

i=1

αi − (1/2)

m
∑

i,j=1

yiyjαiαj〈xi, xj〉. (17)

Taking into consideration the result of the MinMax theorem
we reach the following optimization problem:

minimize −
1

2

∑

i

∑

j

yiyjαiαj〈xi, xj〉 +
∑

i

αi

subject to
∑

i

yiαi = 0 αi ≥ 0. (18)

As it can be noticed in the expression of the optimization
problem, the objectsxi andxj data appear in the context of
a scalar product. This aspect corroborated with the case in
which the initial data set is not linearly separable leads usto
the conclusion that the idea of projecting the data in a new
space that allows for a better representation. Such a space is

called feature space and the function that performs the pro-
jection of the data is called feature map. The Reproducing
Kernel Hilbert space concept permits the definition of the
kernel function on the basis of the relation between objects
Φ(xi) andΦ(xj). Thus, given the adequate choice of the
kernel function, the data can be classified linearly in feature
space and this aspect provides benefits as the map function
does not need to be explicitly known. With the help of the
kernel function, the optimization problem can be re-written
in the following way:

maximize
1

2

∑

i

∑

j

yiyjαiαjK(xi, xj) +
∑

i

αi

subject to
∑

i

yiαi = 0 αi ≥ 0. (19)

By analogy the decision function becomes:

f(xj) = sgn

{

nSV
∑

i=1

αiyiK(xi, xj) + b

}

. (20)

The maximization problem of the margin hyperplane is
equivalent to finding the closest points to the separating
surface having the Lagrange multipliersαi > 0 and being
called support vectors. These points are interpretated as the
most informative pattern vectors in the data set. If the data
set is not linearly separable or equivalently the two convex
hulls are intersecting we need to penalize the criterion by
a quantity that represents these points of intersection. Vap-
nik introduces the slack variables for these trouble objects.
These slack variables stand for an error resulting from the
classification process. Adding this error to the objective cri-
terion the problem becomes(Soft Margin Problem):

minimize
1

2
〈w,w〉 + C

∑

i

ξi

subject to yi(〈w, xi〉 + b) ≥ 1 − ξi. (21)

or in terms of the kernel functions:

minimize
1

2

m
∑

i,j

αiαjyiyjK(xi, xj) −

m
∑

i

αi

subject to 0 ≤ αi ≤ C,
m

∑

i

αiyi = 0. (22)

The difference between the initial form and the above men-
tioned expression is that the Lagrange multipliers are upper
bounded by a parameter C ranging from 0 to 1.

4.1 Iterative SVM approach

The IterativeSVM algorithm is dedicated to processing
large data sets and finding a fixed number of support vec-
tors according to limited computational conditions. The
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proposed SVM method requires two stages: one stage is
dedicated to training in which we try to solve a quadratic
optimization problem in order to find the desired support
vectors, and the second stage that implies computing the
decision function for each testing pattern. The algorithm
can summarized as follows:

Algorithm IterativeSVM(Given a large training data
set the algorithm finds the desired support vectors, the
Lagrange multipliers corresponding to each support vector,
the bias parameter rho used for classification of the testing
data set)
1.Training Step
1.1.Initialization
1.1.1.m:number of maximum support vectors from each
step
1.1.2.label=1 all training vectors are considered true
positive points
1.2.For each bunch of data
1.2.1.Prepare the new problem
1.2.1.1.Old part of the size equal to the number of its
support vectors
1.2.1.2.Load new bunch of data from the data set
1.2.2.Call the SVM code for finding the support vectors
1.2.3.Selectm support vectors at most, based on the
alpha-rule
2.Testing Step
2.1.Compute for each pattern the decision function and
classify it

As it can be noticed, we have introduced in the above
algorithm analpha rule which permits us to select a de-
sired number of support vectors. In other words we will se-
lect the most informative support vector based on the large-
ness of the Lagrange multipliers. For solving the quadratic
optimization problem, we can use the conjugated gradient
method, the quasi-Newton method or the interior points
method.

5. Summary and Conclusions

The support vector machines methods present important
features like the use of kernels in order to obtain a better rep-
resentation of the data, the sparseness of the solution and the
capacity control obtained by acting on the margin. Since the
criterion that should be minimized is convex, the optimiza-
tion solution is unique and we will not experience prob-
lems concerning the local minimum. We can easily observe
that the dimensionality of feature space does not interfere
with the solution of the minimization problem. The only
problem that arises at this stage is represented by the kernel
choice which should offer more information about the data.
For the optimization task, there exist well established algo-
rithms like gradient ascent or sequential minimal optimiza-

tion. Also the support vector machines method turned out
to be robust to the noise measurements. Even if the support
vector machines approach is a powerful technique for clas-
sification, regression and novelty detection problems, many
issues are still debateble. One of these issues is represented
by the desired number of support vectors which should per-
form similar results on different datasets. Another issue is
represented by the adequate choice of kernel function and
well parametriztion of this function.

References

[1] Bernhard Scholkopf -Kernel Learning MethodsCambridge
Press, 1999.

[2] Paul Hayton, Bernhard Scholkopf, Lionel Tarassenko, Paul
Anuzis -Support Vector Novelty Detection Applied to Jet En-
gine Vibration Spectra,, Neural Information Processing Sys-
tems, 2000.

[3] Colin Cambell, Kristin P. Bennet -A Linear Programming Ap-
proach to Novelty Detection, Neural Information Processing
Systems, 2000.

[4] Elzbieta Pekalska, David Tax, Robert Duin -One class LP
classifier for Dissimilarity representation, Neural Information
Processing Systems, 2002.

[5] David Tax, Robert Duin -Uniform object generation for opti-
mizing one class classifiers, Journal of Machine Learing Re-
search, 2001

[6] David Crisp, Christopher Burges -A geometric interpretation
of nu - SVM classifiers, 2000

4


