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Abstract—The objective of this paper is the linear recon-
struction of a vector, up to a unimodular constant, when all
phase information is lost, meaning only the magnitudes of frame
coefficients are known. Reconstruction algorithms of this type
are relevant for several areas of signal communications, including
wireless and fiber-optical transmissions. The algorithms discussed
here rely on suitable rank-one operator valued frames defined
on finite-dimensional real or complex Hilbert spaces. Examples
of such frames are the rank-one Hermitian operators associated
with vectors from maximal sets of equiangular lines and maximal
sets of mutually unbiased bases. We also study erasures and show
that in addition to loss of phase, a maximal set of mutually
unbiased bases can correct up to one lost frame coefficient
occurring in each basis except for one without loss.

I. INTRODUCTION

Maximizing bandwidth is a high priority in today’s digital
communications. Analog transmissions, whether wireless or
via optical fibers, have to exhaust what is physically possible
for the given medium. To this end, transmissions send parallel
streams of data, e.g., from antenna arrays through a number
of links to the receiver, or through multiple electromagnetic
modes in an optical fiber. The benefit of using analog chan-
nels in parallel comes, however, at the cost of an increased
susceptibility to oscillator instabilities and of a resulting loss
of coherence in the transmission.

The purpose of this paper is to investigate linear encoding
and decoding strategies for analog signals that use redundancy
to overcome the dependence on phase information. In other
words, we are concerned with the question of reconstructing
a vector in a finite-dimensional real or complex Hilbert space
when only the magnitudes of the coefficients of the vector
under a linear map are known. In a previous paper [BCEO6],
part of the authors discussed this problem in the context of
signal processing, in particular the analysis of speech. It was
shown that the magnitudes of inner products with a generic set
containing a sufficient number of (frame) vectors characterize
each vector, up to a unimodular constant. However, at least in
the complex case, reconstruction algorithms were difficult to
implement.

To obtain the linear algorithms presented here, we use that
characterizing a vector x in a Hilbert space, up to a unimodular
factor, is equivalent to reconstructing the rank-one Hermitian
operator x ® x*. After “squaring” the vector, we rely on
operator-valued frames which provide linear reconstruction
formulas. The same strategy appears under the name of state
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tomography in quantum theory, see e.g. [RBSCO04] or [Sco06].
While the quantum literature emphasizes the design of min-
imal measurements (smallest number of frame coefficients)
to characterize an unknown operator x ® x* with x of unit-
norm ([Fin04], [FSCO05]), we focus on efficient reconstruction
algorithms once the frame coefficients are known. This paper
presents a linear reconstruction algorithm which requires at
least N = d? linear coefficients in the complex case and
N =d(d+1)/2 in the real case.

In addition, we consider the situation when coefficients
are lost, e.g. in the course of a data transmission ([GKKO1],
[KDGO02], [CKO03], [BPO5], [Bod07]). We investigate which
of the encoding strategies provide a correction mechanism for
erasures. To correct up to d erasures in the complex case or
d/2 in the real case, in addition to loss of phase information,
we require N = d(d 4+ 1) or N = d(d/2 4+ 1) transmitted
coefficients, respectively. Moreover, we require that for a given
partition of the coefficients in subsets of size d, at most one
loss occurs within each subset.

The organization of the paper is as follows. Section
introduces the notion of operator-valued frames. Section
presents examples of frames which provide a linear recon-
struction algorithm from the magnitudes of frame coefficients,
described in Section Finally, Section discusses the
correction of erasures.

II. FROM FRAMES TO OPERATOR-VALUED FRAMES

In this section we introduce the main idea in this paper:
Reconstructing a vector in a Hilbert space, up to a unimodular
constant, from the magnitudes of its frame coefficients, is
equivalent to reconstructing the rank-one Hermitian operator
x ® x* from its expansion with respect to an operator-valued
frame.

Definition 2.1: Let H be a d-dimensional real or com-
plex Hilbert space. A finite family of vectors F =
{f1, fay--- fn} € HY is called a frame, if there are non-
zero constants A; and A, such that for all z € H,

N
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With each frame, we associate its Grammian G =

((fj: f l>)§v,l:1, the matrix formed by the inner products of the
frame vectors.



If we can choose A; = A; = A in the above chain of
inequalities, then the frame is called A-tight. If, in addition,
there is b > 0 such that ||f;|| = b for all j € {1,2,... N},
then we call the family {f;}}_, a uniform A-tight frame
Such frames are also called equal norm tight frames.

A family of vectors F is a frame for a finite-dimensional
Hilbert space H if and only if it spans H, because then it
contains a linearly independent, spanning subset, and thus it
is straightforward to verify the norm inequalities in Defini-
tion 2.1}

If F is an A-tight frame, then any vector x € H can
be reconstructed from the sequence of frame coefficients

{(x, f;)}_, according to

a:fj

an

The reconstruction identity is equivalent to the matrix %G
being an orthogonal rank-d projection. Thus, d = % tr[G] =
v Z;Vd || f;]1? implies that all the frame vectors in an A-tight
uniform frame have the same norm
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With a frame F = {f;}¥ j=1, We associate the set of rank-one
Hermitian operators S = { fj ® fF } _, on H.

Definition 2.2: Let { fJ 1 be a frame for a Hilbert space
H.Let Sj = f; @ f} denote the rank-one Hermitian operator
associated with each f;. Let X be the span of the family S =
{S; W j=1. equipped with the Hilbert-Schmidt inner product.
We say that {S;}Y -1 is the operator-valued frame for X
associated with { f]} ;. The Grammian H of S has entries
Hie = t[8;54] = |(fy. fi) 2

In the following, we want to find conditions which guarantee
that &’ contains all rank-one Hermitian operators. We then say
that the operator-valued frame S has maximal span.

Proposition 2.3: Let {f;}"_, be a frame for a real or
complex Hilbert space H and S the associated operator-valued
frame with span X. The rank of the Grammian H is at most
d(d+1)/2 in the real case or d? if H is complex. Moreover, the
rank of H is maximal if and only if X contains all rank-one
Hermitian operators on H.

Proof: We note that the space Q spanned by all rank-
one Hermitian operators has dimension d(d+1)/2 or d? in the
real or complex case, respectively. Since S contains only such
rank-one operators, X C Q and the rank of H as well as the
dimension of X' can be at most d(d+1)/2 or d?, respectively.
Moreover, if the rank of H, and thus the dimension of X, is
maximal, then X = Q. [}

Corollary 2.4: If { f] —; is a frame for a real or complex
Hilbert space ‘H and S the associated operator-valued frame
with linear span &', which contains all rank-one Hermitian
operators, then N > d(d + 1)/2 in the real case and N > d>
in the complex case

Proof: By the preceding theorem, we require the rank
of H to be d(d + 1)/2 or d? in the real or complex case,

b=

respectively. This provides the desired lower bound for N,

because the rank of the N x N matrix H can be at most V.

|

If the operator-valued frame {S; } , associated with F

has maximal span, then we can reconstruct any operator

x®ax* from its Hilbert-Schmidt inner products with the family
{S;}0C,. Since the values of these inner products are

trlr @ 2*8;] = [{z, f;)]*,

and z ® z* determines x up to a unimodular constant, this
amounts to reconstructing x from the magnitudes of its frame
coefficients with respect to the frame F = {f; j-\le

III. OPERATOR-VALUED FRAMES WITH MAXIMAL SPAN

In this section we discuss types for frames for which the
associated operator-valued frame has maximal span.

For this purpose, we consider uniform tight frames with the
property that the magnitudes of the inner products between
frame vectors form a small set. If this set has size one, we
call the frame 2-uniform [HPO04], [BPOS5] or (equal-norm)
equiangular tight frame [vLS66], [LS73], [SHO3], [VWO05].
Another type of frame, for which this set has size two, is
obtained from a number of bases for a Hilbert space which
are chosen in such a way that, between basis vectors belonging
to different bases, their inner products have a fixed magnitude.
These frames are referred to as sets of mutually unbiased
bases.

Definition 3.1: A family of vectors F = {f;}_, is said
to form a 2-uniform or equiangular A-tight frame if it is
uniform and if there is ¢ > 0 such that for all pairs of frame
vectors f; and fi, j # k, we have |(f;, fiu)| = c.

Using that G is a scaled projection, we obtain d =
54 tr[G] = 47 tr[G?] = 43 ngzl |(f, frx)|? which, together
with the known value for the diagonal of G, determines the
constant ¢ in Definition

A [d(N=aq)
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An observation of Lemmens and Seidel [LS73] charac-
terizes when the operator-valued frame associated with an
equiangular tight frame has maximal span.

Proposition 3.2: Let 'H be a real or complex Hilbert space,
and F = {fi1, fa,... fn} an equal-norm equiangular tight
frame. Then operator-valued frame S associated with F has
maximal span if and only if the frame consists of N =
d(d+1)/2 or N = d? vectors in the real or complex case,
respectively.

Proof: We observe that the Grammian H of the associ-
ated operator-valued frame, H; ; = |(fj, fx)|%, is of rank N
because H = (b — ¢2)I + ¢?J, the matrix J containing all
1’s is non-negative and b > c. Thus, the span of S is maximal
if and only if N = d(d+1)/2 or N = d? vectors, depending
on whether H is real or complex. [ ]

For examples of such frames, see [WF89], [HP04], [BPO5],
[App05], [GRO5]. We quote a simple example for a two-
dimensional real or complex Hilbert space.



Example 3.3: Let {e1,ea} denote the canonical basis for
either R? or C2.

We first consider the Hilbert space R?. Let R be the rotation
matrix such that R?> = I and R # I. Choose f| = ey, fo =
Rey and f3 = R2e;. Then {fi, f2, f3} is a 2-uniform 3/2-
tight frame with |(f;, f;)| = 1/2 for ¢ # j. This frame is
sometimes called the Mercedes-Benz frame.

For the case of C2, we introduce the unitary Pauli matrices

0 1 1 O
X=(7 o)miz=(y 2 )
Let f; = ae; + Oes where o = %(1—7) and B =

(55 /%(14_ %), and let fo

= Xfi, fs = 2N fu =
XZf1. Then {f1,...,f4} is an equal-norm equiangular 2-
tight frame with |(f;, f;)| = = for all i # j.

Mutually unbiased bases form another type of frame which
has an associated operator-valued frame with maximal span.
This type of frame contains vectors from a number of or-
thonormal bases for a Hilbert space which are chosen in such
a way that, between basis vectors belonging to different bases,
their inner products have a fixed magnitude.

Definition 3.4: Let H be a real or complex Hilbert space
of dimension d. A family of vectors {e } in H indexed by
keK=1{1,2,...d}andj € J ={1,2,...m} is said to form
m mutually unbiased bases if for all j,j’ € J and k, k' € K
the magnitude of the inner product between e,(j ) and e(j ) is
given by

(e, 9 = 6y, 08550 +

1
7 (1 =055,
where Kronecker’s § symbol is one when its indices are equal
and zero otherwise.

Proposition 3.5 (Delsarte, Goethals and Seidel [DGS77]):
Let H be a real or complex Hilbert space, and F = {f1, fa,

. fn} a frame formed by m = d/2+1orm = d+ 1
mutually unbiased bases, respectively. Then the operator-
valued frame S associated with F has maximal span.

Proof: The Grammian H of the operator-valued frame
associated with m mutually unbiased bases has the form H =
L, @1+ (Jpm — Im) @ Jg/d, where I, and I; are the m x m
and d x d identity matrices, respectively, and J,,, and J; denote
the m x m and d x d matrices containing only 1’s. The kernel
of the Grammian matrix is the space of vectors a ® b such
that J;b = db and J,,a = 0, so it is m — l-dimensional.
Consequently, the rank of H and thus the dimension of the
span of S is md —m+ 1. This shows that the maximal rank is
achieved when there are m = d + 1 mutually unbiased bases
in a d-dimensional complex Hilbert space H and m = % +1
in the real case. For an alternative proof, see [WF89]. [ |

Example 3.6: The simplest example of a set of mutually
unbiased bases in a complex Hilbert space is the standard
basis, together with the basis of eigenvectors of the Pauli

matrices X and Y =X 7 =

0 —2
(¢
This example and others can be found in [BBRVO02]. If d is
prime, then there exists a maximal set of mutually unbiased
bases called discrete chirps, see [CF06], [HCMO06].

Example 3.7: Let d be a prime number, and w a primitive
d-th root of unity. Denote the canonical basis of C¢ by
{el}4_, then for j € {2,3,...d+1},

d
() 1 — (=112 4kl (1)

(& = w e
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defines together with the canonical basis a family of d + 1
mutually unbiased bases called the discrete chirps.

To see that these vectors form bases, we first consider inner
products between vectors of same j. For j = 1, this is clear.
Ifj>1,

<€§€7,) ;7)

dzwkl kl_(skk/

The bases are mutually unbiased because if j # 7', and one
of them is equal to one, then |<ek, ,e,(j)>| = 1/+/d. If neither

basis index is equal to one, then
14
CONNE) —j P41+ k' 1—kl
(eps 7ek>—dZwJ j
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and by completing the square and using cyclicity

Zw

Now squaring this expression yields

5 2 2
‘<el(cj/)7 k d2 Z ro

1LI'=1
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(el e =

Remark 3.8: A similar construction applies when d is a
power of a prime [WF89]. If d is not prime, then the maximal
number of mutually unbiased bases is generally unknown
([GROS5]). In the real case, even in the case of prime dimen-
sions, the construction of maximal sets of mutually unbiased
bases is more difficult ((BSTW]), but at least for d a power
of 4 this is possible, see [CS73], [CCKS97].

IV. RECONSTRUCTION OF A VECTOR FROM ABSOLUTE
VALUES OF ITS FRAME COEFFICIENTS

The main motivation for this paper is to find a reconstruction
formula for vectors in a finite-dimensional Hilbert space H
equipped with a frame {f; }j 1 such that only the absolute
values of the frame coefficients {(x, f;)}}_, are needed to
determine each vector z up to a unimodular constant. This
is equivalent to identifying the self-adjoint rank-one operator
x ® z*, given by z ® z*y = (y,z)z, y € H, from its
Hilbert-Schmidt inner products with {S;}2,. For this reason,
our computations are mostly formulated in terms of operator-
valued frames.

Theorem 4.1: Let 'H be a d-dimensional real or complex
Hilbert space and F' = {f1, fo,... fn} an N/d-tight frame



such that the associated operator-valued frame S has maximal
span. Let M be the pseudo-inverse of the Grammian H, so
HMH = H, and denote the canonical dual of S as R,
containing operators R; = chv:l M; . Si. Given a vector
x € 'H, then

T®a" *Z|$fJ|R

Proof: Instead of derlvmg the claimed identity, we show
that both sides coincide after taking their Hilbert-Schmidt
inner product with any operator y ® y*, y € H. Inserting
the expression for [?; means we have to prove the identity

N
(@) * = > 1w )P Myl (fis )P

k=1

for all y € M. Using that = ® z* = ;U eify ® f; with
some coefficients {¢;} by the maximality of the span of
S and similarly y ® y* = leyzl ey fr @ fp, the matrix
identity HMH = H yields that both sides are equal to
Zl]?[l’:l Clcngu/. | ]

After this general result, we consider the examples of
equiangular frames and of mutually unbiased bases.

Corollary 4.2: Let H be a complex Hilbert space. If F
is an equal-norm equiangular N/d-tight frame or a tight
frame formed by mutually unbiased bases, and the associated
operator-valued frame S has maximal span, then the recon-
struction identity becomes

Al Z| e )P © f —1/(d+ 1)),
Proof: This result follows from the preceding theorem by
proving that the canonical (Hilbert-Schmidt) dual of {S;} is
{R;} with R; = d(d+1)S,;/N—dI/N.Let0 < c = |(f;, fx)|
for any j # k if the frame is equiangular and a non-orthogonal
pair if it consists of mutually unbiased bases. Since the frame

vectors are normalized in either case, it is straightforward to
verify that tr[S;R;] = dQ/N. If j £k,

LCha A AT

If F is equiangular, then |(f;, fx)|* = ¢ = (N —d)/d(N —
1) =1/(d + 1) and consequently tr[S;Ry] = 0.

In the case of mutually unbiased bases, we have either
tr[S;Ri] = —d/N if the indices j and k belong to two vectors
from the same basis, or |(f;, fx)|> = 1/d and tr[S;Ry] =
1/N. Thus, the matrix K with entries K, = tr[S;Ry] has
the form K = U1, @1 — L ((d+1) a1 — Jar1) ® Ja,
where the first component specifies the basis and the second
refers to the index within each basis. Since N = d(d + 1),
K can be identified as a rank-d? orthogonal projection with
the same range as H. This shows that in both cases, whether
equiangular tight frame or mutually unbiased bases, {R; }Y
is the canonical dual of the operator-valued frame {S;} j=1

|

From a practical point of view, the above corollary gives
an algorithm that allows us to reconstruct x, up to an overall

P A

tr[Sj Rk]

unimodular constant, by considering one non-vanishing row
of the d X d matrix z ® z*.

V. L0OSS OF PHASE AND ERASURES

In this section, we show that a maximal set of mutually
unbiases bases admits the reconstruction from magnitudes of
frame coefficients even if some of these coefficients are lost.
Since we want to reconstruct linearly from the remaining co-
efficients, the operator-valued frame must retain maximal span
after removing elements corresponding to erased coefficients.

Definition 5.1: Let {ej * , be a frame for a real or com-
plex Hilbert space H and S = {S; }j:1 the associated
operator-valued frame. We call an erasure of coefficients
indexed with L. ¢ J = {1,2,... N} correctible if the set
{S;j}jenw is a frame for the span of all rank-one Hermitian
operators.

By rank considerations, it is clear that an equiangular tight
frame cannot admit erased coefficients. However, since the
number of frame vectors coming from a maximal family of
mutually unbiased bases is larger than the dimension of the
space spanned by all Hermitian rank-one operators, we expect
that possibly, lost coefficients are correctible. This is indeed
the case for at most one lost coefficient in each basis, as long
as the coefficients belonging to at least one basis are not lost.

Theorem 5.2: Let H be a real or complex Hilbert space of

dimension d. Let {eg) ckeK,jell, K={1,2,...d},

={1,2,...m}, be a family of m mutually unblased bases

for H such that the associated operator-valued frame {S } jel

has maximal span. If for each j € [, L; C K is of size at

most one, and for at least one j, L; = @, then {S,(Cj) NS
J.ke{1,2,...d} \ L;} has maximal span.

Proof: As before, the span of the operators {S(] )
J.k € K\ L;} is maximal if and only if the rank of the
Grammian H is.

We consider the equation Ha = 0, where we view H as
a block matrix with blocks labeled by the basis indices such
that HU:9) = Iy, for diagonal blocks and HGYD = de,dl/d
for the off-diagonal blocks. '

Collecting the entries of the vector a belonging to one basis
index j in a\), we deduce from a9 = 37, Jy; 4,0V that all of
its entries are identical, a,(j) = a;, for each j € {1,2,...m}.

This means for each solution a of Ha = 0, there is a
corresponding solution H'« = 0, where each diagonal block
H(9) in the matrix H has been replaced by the eigenvalue 1
of a¥) and each off-diagnal block HUY) by 6 = 1 — |IL;|/d
to obtain H'.

We assume that we have ordered the blocks in such a way
that {d;}]", is increasing. Since at least one IL; is empty, there
is 7 > 0 such that 6; = 1 for all § > r. Thus, the last m —r
columns of H' contain 1’s. Moreover taking the difference
between consecutive rows of H' gives the equation H” o« = 0



with

1 52 6 ... & 1 .01
-1 1-6, 0 ... 0 0 ... 0
0 d—-1 1-635 ... 0 0 ... 0
H" =
0 . 0 6-10 ... 0
R N
0 .0 0 0 ... 0

Since we assumed 9, # 1, we conclude o, = 0. Now using
the identity (6;_1—1)a;—1 = (6;—1)c; fromrows 2 < j <,
it can be verified that oy = ay = - -- = «a,. = 0. This means,
H"”a = 0 if and only if the first r entries of « vanish and
>_j>r@; = 0, which is a space of solutions of dimension
m—r—1.

Since we assumed m—r empty sets among the family {L; },
the Grammian H is an (md — r) X (md — r) matrix of rank
md—r—(m—r—1)=m(d—1)+ 1

In the real case, the rank is (d/2+1)(d—1)+1 = d(d+1)/2,
in the complex case, (d+1)(d—1)+1 = d?. This means, the
rank of H is maximal. [ ]

VI. CONCLUSION

Maximal equal-norm equiangular tight frames and maximal
sets of mutually unbiased bases provide simple reconstruction
algorithms that only use the magnitudes of frame coefficients.
We have linked the reason for the existence of these algo-
rithms to the associated rank-one operator valued frames with
maximal span. In addition, we have seen that using mutually
unbased bases provides an error-correction mechanism for up
to one erasure per basis, with one basis without losses.
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