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Optimal Stochastic
Approximations and Encoding
Schemes using
Weyl�Heisenberg Sets

Radu Balan and Ingrid Daubechies

ABSTRACT In this chapter we study two classes of optimization problems
concerning the interaction between stochastic processes and coherent Weyl�
Heisenberg sets� One class involves approximation of stochastic signals� the
other class refers to signal encoding for transmission in noisy channels�
Both problems are studied in continuous and discrete time setting� Explicit
solutions are found in Zak transform domain� The optimizers turn out to
be generically ill�localized similar to the no�go Balian�Low theorem�

Keywords� stochastic signals� approximation� encoding� amalgam space

� Introduction

Let �g� b� a� � fgmn�b�a � m�n � Zg denote a Weyl�Heisenberg �WH� set
with window g and parameters b � � �frequency modulation� and a � �
�time translation�� where

gmn�b�a�x� � e��imbxg�x� na�� ��	��

When there is no danger of confusion� we denote gmn�b�a by gmn	 Our
normalization of the Fourier transform is�


f ��� �
�p
��

Z �

��
e�i�xf�x� dx � ��	��

and of the Zak transform�

F �t� s� �
p
a
X
k�Z

e��iktf�a�s � k��� ��	
�

For two WH sets� �g�� b� a� and �g�� b� a�� we use the shorthand nota�
tion �g�� g�� b� a�	 Thus �g�� g�� b� a� � ��g�� b� a�� �g�� b� a�� is the WH pair
composed of �g�� b� a� and �g�� b� a�	 Throughout this paper we implicitly
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assume that all the WH sets under consideration are at least Bessel se�
quences	 Furthermore� in particular instances� we shall require the WH set
is either a Riesz basis for its span �shorthanded by s�Riesz basis�� or a frame	
We formally de�ne the analysis operator Tg� �b�a � f �� fhf� g�m�n�b�aig�m�n��
the synthesis operator T �g� �b�a � c �� P

m�n cm�ng
�
m�n�b�a� the frame operator

Sg��g� �b�a � T �g� �b�aTg��b�a and the Gram operator Gg��g��b�a � Tg��b�aT
�
g� �b�a	

The Bessel sequence property guarantees these operators are well�de�ned
in L��R� and l��Z��	 We call �g�� g�� b� a� a dual pair of WH frames when
both WH sets are frames and Sg��g� �b�a � � �the identity in L��R��� and
we call �g�� g�� b� a� a biorthogonal pair of WH s�Riesz bases when both are
s�Riesz bases and Gg��g��b�a � � �the identity in l��Z���	 When g� � g� � g�
we call �g� g� b� a� a WH iso�pair	
For �g�� g�� b� a� a WH pair of Bessel sequences and for f � L��R�� the

following series�

h �
X

m�n�Z
cmng

�
mn ��	��

cmn � hf� g�mni ��	��

converges strongly in L��R��sense to an element h of L��R�	
We shall consider two sets of situations	 In the �rst case� the signal

encoding problem� we work with dual pair of WH frames� we assume f �
L��R� is �xed� and the cmn�s coe�cients are perturbed by noise� i	e	 ��	��
is replaced by cmn � hf� g�mni � �mn� we are then interested in studying
how close �in mean�square sense� h� de�ned by ��	��� is to f for optimally
chosen dual pairs	 In the second case� the signal approximation problem� we
work with pairs of WH s�Riesz bases and consider f itself is a realization of
a stochastic process� we are again interested in studying how well h� de�ned
by ��	��� approximates in mean�square sense the original signal f 	

To make sense of the whole setting� we have to de�ne the right func�
tional spaces where the stochastic processes can be realized� and also to
make sure expansions of the type ��	�� converge in those functional spaces	
Some non�stationary processes can be realized on spaces of �nite energy�
either L��R�� in the approximation problem case� or l��Z��� in the encoding
problem case	 Yet� stationary processes on the whole line R� or index space
Z� cannot be realized in spaces of �nite energy	 Instead� the Wiener amal�
gam space W �L�� l�� is best suited for such stochastic processes	 Hence we
need to check convergence properties of the series ��	�� inW �L�� l��	 Once
all these objects are well�de�ned in the corresponding functional spaces� we
explicitly compute the mean�square error e � E�kh� fk��� where the norm
k�k is context�dependent	 Our goal is to optimize this error� �rst over g� for
a given g� �the so called semi�optimization problem�� and then over both
g� and g� �the optimization problem�	 In section �� we show the optimizers
are ill�localized in a sense similar to the well�known Balian�Low �BL�� or
amalgam BL theorems �see �BeHeWa����	 To obtain explicit closed�form
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solutions� we use the Zak transform� this requires that we restrict our at�
tention to the case when ba is a rational number	 We assume ba � p

q
� where

p� q are relatively prime integers	
The statements presented so far apply to continuous�time signals	 They

have similar counterparts in the discrete�time signal setting	 More speci��
cally� consider �g�� g�� b� a� a WH pair of Bessel sequences and c � l��Z��	
Then the following sequence�

d � hf� g�mni � ��	��

f �
X

m�n�Z
cmng

�
mn ��	��

is well�de�ned in l��Z��	 Now consider the case where �g�� b� a�� �g�� b� a�
are frames and some disturbance perturbs additively f 	 Such a context
corresponds to a transmission channel a�ected by noise� where the carrier
waves are g�mn�s� and the symbols are cmn�s	 The noise signal is modeled as
a stochastic process over the space of �nite power signals� W �L�� l��	 By
using a convenient measure of the reconstructed coe�cient error kd�ck� we
evaluate the average distortion of the discrete�time signal encoding scheme
just described� ede � En�kc�dk��	 The semi�optimal and optimal problems
for this case are stated in section �	�	 The second case of interest covers
the case when the input signal itself� c � �cmn�� is stochastic� and �g�� b� a��
�g�� b� a� are s�Riesz bases	 The natural input signal representation space is
l����Z��	 With a proper reconstruction error measure kc�dk in l����Z���
the approximation distortion eda � Es�kc�dk�� is used in the optimization
problems associated to the discrete�time signal approximation scheme	

Several papers in the literature have dealt with the interaction between
stochastic signals and Weyl�Heisenberg coherent sets	 In �Munch���� the
continuous�time signal encoding problem was considered	 The author stud�
ied only integral redundant frames �namely p � � and q � �� and his
numerical examples exhibit a discontinuous behavior of the optimal win�
dows� he did not consider this issue further� nor did he look to obtain sub�
optimal but better localized solutions	 In �BaDaVa���� the continuous�time
signal approximation problem was considered	 There� the authors applied
the solution to a multiple description encoding scheme	 The approximation
analysis revealed the non�localization phenomenon of the optimal solution	
A context�dependent method was proposed to design a sub�optimal solu�
tion that is well�localized at the expense of a slight increase in distortion	

In the context of signal modulation analysis� the author of �Koz��� looked
at the e�ect of noise on the discrete�time signal encoding scheme	 Since the
main issue was the unknown channel transfer function� the analysis was
mainly restricted to the case of white noise	 The design procedure to select
a desirable solution follows a trial�and�error type approach	

An ill�localization phenomenon of some optimal dual windows has been
remarked in �Strohmer���	 There� the author notices that for minimal sup�
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port analysis windows� the minimal supported dual window exhibits a
Balian�Low type e�ect	 To avoid this problem� the author proposes dif�
ferent optimization criteria for the dual window design	

Even though we state and develop a one�dimensional theory� all the re�
sults can be easily carried to the higher dimensional case virtually without
modi�cation	 Since the notations would become slightly more complicated�
for the convenience of the exposition we preferred to stick to the simpler
one dimensional notations	

� Stochastic Processes and Statement of the
Problems

��� Stochastic Processes and Gabor Analysis on l����Z�� and
W �L�� l��

����� The W �L�� l�� �continuous�time� case�

Consider a continuous�time stochastic signal f 	 This assumes the existence
of a probability space ����� �� so that realizations of this process are mea�
surable functions f� � R � C	 Statistics of f are obtained by integrating
over � with the probability measure �	 To simplify the notation� the expec�
tation symbol E��� is used instead of explicit integration	 Thus the average
of f is de�ned through�

E�f�t�� ��

Z
�

f��t�d���� ��	��

and the autocovariance function�

E�f�t�f�s�� ��

Z
�
f��t�f��s�d���� ��	��

Throughout this paper we assume the stochastic signals are zero�mean�
wide�sense�stationary and have known autocovariance function R�� �	 In
other words� E�f�t�� � � and E�f�t�f�s�� � R�t � s�	 Inspired by the real�
world situation� we assume all realizations have �nite power	 In this case�
a natural representation space is the Wiener amalgamW �L�� l�� de�ned
by

W �L�� l�� �� ff � R� C j kfk�W �L��l�� �� sup
n�Z

Z n��

n

jf�x�j� dx ��g
��	���

First we make a remark about the necessity of this amalgam space	 Note
that �wide sense� stationary processes cannot be realized in the space of
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�nite energy	 Indeed� the average energy of such a signal is�

E�kfk��� �
Z
R

R��� ��dt � �

On the other hand� every stationary covariance function R � �L��R� �
F���L��R�� can be found to correspond to a stochastic process inW �L�� l��
as shown in the following example ��Balan�����

Example ��� Assume R is a covariance function �i	e	 
R � ��	 Then de�ne
the following probability space�

� � R� f��� �g� d���� q� �
�

�
p
��R���


R�qj�j�d�

�

�
�

�
p
��R���


R�j�j�� q � ���
�

�
p
��R���


R��j�j�� q � ��� ��	���

and the stochastic signal�

f � � �W �L�� l�� � f��q�x� � R���eiqj�jx�i
�
�
sgn ��� ��	���

Then direct computations show that�

E�f�x�� �
X

q�f����g

Z �

��
d���� q�f��q�x� � �

E�f�t�f�s�� �
X

q�f����g

Z �

��
d���� q�f��q�t�f��q�s� � R�t� s�

Consider now �g� b� a� a WH set	 We want to decompose a stochastic sig�
nal f � representable in W �L�� l��� into a space of coe�cients	 For this
amalgam space� the natural space of coe�cients is the �amalgam� �or
mixed�norm� space l����Z�� de�ned by�

l����Z�� � fc � �cmn�m�n�Z j kck�l����Z�� �� sup
n

X
m

jcmnj� ��g ��	�
�

Thus we want the analysis operator� T � W �L�� l�� � l����Z��� T �f� �
fhf� gmnig�m�n��Z� to be bounded and well�de�ned	 The standard Gabor
analysis started on L��R� and then continued with the modulation spaces
theory �see �Feich�����Gr�och����	 The analysis operator on modulation spaces
�and implicitly L��R�� is bounded when the window g belongs to the space
M��� �also called the Feichtinger algebra S��R�� de�ned by

M��� � ff � L��R� j kfkM���
��

Z
d�

Z
dt jhf� g�t��ij ��g ��	���
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where g�t���x� � e��i�xe��x�t�
��� �see �FeiZimm���� Chapter 
�	 Using com�

plex interpolation techniques� one can easily derive the boundedness of the
analysis operator on amalgam spaces� as desired here	 Yet� it has been long
observed that on L��R�� a su�cient and weaker condition of boundedness
is that g � W �L�� l�� ��Waln����	 In �Balan��� the author shows a simi�
lar condition is su�cient for the boundedness of the analysis operator T �
between W �L�� l�� and l����Z��	 Note that extra care has to be paid to
de�ne the convergence of the synthesis operator properly	 To make things
more precise� let us �rst introduce the de�nition of Wiener amalgam space
W �Lp� lq�

W �Lp� lq� � ff � R� C j kfkqW �Lp �lq� �
X
n�Z

�

Z n��

n

jf�x�jp dx�q�p ��g

��	���

for � 	 p� q �� and the usual change for the limiting case p � � or q � �	
Now the following result gives su�cient conditions for boundedness�

Theorem ��� Assume g�� g� � W �L�� l��� b� a � � and let f �W �L�� l���
Then�

�� The sequence

Tg��b�af �� fhf� g�mnigm�n�Z ��	���

belongs to l����Z��� Moreover� there is a constant C�
b�a such that

kTg� �b�afkl��� �Z�� 	 C�
b�akg�kW �L��l��kfkW �L� �l�� ��	���

�� The series

Sg� �g� �b�af ��
X
m�n

hf� g�mnig�mn ��	���

converge unconditionally in the L�
loc topology� that is for every 	 � �

and compact set K there are N��M� � � such that for every �nite set
S 
 Z� n ���M��M��� ��N�� N����

k
X

�m�n��S
hf� g�mnig�mnkL��K� � 	

Moreover� ������ converges also in weak�	 topology of W �L�� l��� i�e�
for every h �W �L�� l�� and 	 � � there are M�� N� � � such that for
every N � N��M � M�������hh� f �

X
jmj�M�

X
jnj�N�

hf� g�mnig�mni
������ � 	
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� The function de�ned in ������ is in W �L�� l�� and there is a constant
Cb�a � � such that�

kSg��g��b�afkW �L� �l�� 	 Cb�akg�kW �L��l��kg�kW �L��l��kfkW �L� �l���
��	���

Remark ��� Note that both Sg��g��b�a � T �g� �b�aTg��b�a � W �L�� l�� �
W �L�� l��� the frame operator� and Tg��b�a � W �L�� l�� � l����Z�� are
well�de�ned and bounded operators	 These results will be useful for the
continuous�time signal approximation and discrete�time signal encoding
problems	 In the former case� the data is modeled as a stochastic signal
in W �L�� l��� whereas in the encoding problem� the channel noise is as�
sumed to be realized in W �L�� l��	

Remark ��� In general the series ��	��� is not strongly convergent in the
W �L�� l���norm	 Indeed consider the following example �from �Balan�����

Example ��� Consider g� � g� � �����	� the characteristic function of
��� ��� b � a � � and f � �R� the constant function � on the entire real line	
Note that kfkW �L��l�� � �	 Then� for each N � ��

X
jnj�N

X
m

hf� g�mnig�mn � ���N�N��	 �

Therefore kf �Pjnj�N
P

mhf� g�mnig�mnkW �L��l�� � � for all N 	
Summing �rst over n and then overm still does not lead to strong conver�

gence of the series as can be checked with h�x� �
P

m�Z e
��imx��m�m��	�x�	

Remark ��	 As mentioned before� if g�� g� � W �L�� l��� then Sg��g��b�a
is also bounded between L��R� and L��R�	 However� in general� even if
Sg��g� �b�a is well�de�ned and bounded on L��R�� it does not need to be
bounded on W �L�� l��� as the following example �from �Balan���� shows�

Example ��
 Consider In � ��
n��
�n � �

n����
�n�� �� for n � �	 De�ne the set

E � �n���n � In� and the functions g� � �E �the characteristic func�
tion of E� and g� � �����		 For b � a � �� one can easily check that
�g�� b� a� and �g�� b� a� are both orthonormal bases of L��R�� hence Bessel
sequences	 Therefore Sg��g��b�a is bounded �in fact unitary� on L��R�	 Con�

sider now f �
P

n�� �
�n������n�In and� additionally the function  f �P

n�� �
�n������In 	 Note that f � W �L�� l��� kfkW �L� �l�� � �� moreover�

for p � �� f�  f � Lp� however f�  f �� L��R�	 The coe�cients of f with
respect to �g�� b� a� are�

cmn � hf� g�mi � 
n��

Z �

�

e���imx  f �x�dx
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ThereforeX
jmj�M

X
jnj�N

cmng
�
mn � �

X
jmj�M

e��my
Z �

�

e���imx  f �x�dx������	

By Plancherel�s theorem we have�

k
X

jmj�M

X
jnj�N

cmng
�
mnk�L������	�

�
X

jmj�M
j
Z �

�

e���imx  f �x�dxj� M��� k  fk�L������	� � ��

Thus Sg��g��b�af can be de�ned in distributional sense �note �cmn�m�Z � lp
�

�

n and p� � ��� �

p �
��� but will not be in W �L�� l�� �in fact it is not even

in L�
loc�	

Remark ��� The previous example shows that one can have WH Bessel
sequences even if g�� g� �� W �L�� l��	 In fact� one can even �nd g�� g� �
W �L�� l�� for which Sg��g� �b�a is a bounded operator on W �L�� l��� as
shown in the example below �from �Balan����	 The condition g�� g� �
W �L�� l�� in Theorem �	� is therefore not necessary	

Example ��� Consider the same partitions as before� in Example �	�	 Set

g� �
X
n��

�

�n� ����
�
�

�n�In g� � �����	

where � � � 	 �
� 	 Note that g� � W �L�� l��� but g� �� W �L�� lp� for any

p 	 ��� �
��
�� � �� in particular g� �� W �L�� l��	 We analyze now Sg��g��b�a

for b � a � �	 Let us consider an arbitrary f � W �L�� l�� and denote by
cmn � hf� g�mni	 They are �nite and bounded by kfkW �L��l��	 On the other
hand

k�Sg��g� �b�af� � ��N�N��	k�L���N�N��	� �
X
m�Z

jcmN j�

But cmn � hf� g�mni �
R �
� e

���imx�
P

l f�x � l � n�g��x� l��dx	 There�

fore
P

m jcmnj� �
R �
� j
P

l f�x � l � N �g��x � l�j�dx	 Note jPl f�x � l �

N �g��x� l�j� �P
l�� jf�x� l � N �j� �

�l������� �Il�x�� thusX
m

jcmnj� �
X
l��

�

�l � ������

Z
Il

jf�x � l �N �j�dx

	
X
l��

�

�l � ������
kfk�W �L��l���

so that kSg��g��b�afkW �L��l�� 	 C�kfkW �L��l��� which proves that Sg��g��b�a
is bounded on W �L�� l��	
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Although the converse of Theorem �	� is not true� the following result
o�ers a necessary condition to have a bounded analysis� and frame operator
on W �L�� l��	 First we give a de�nition	

De
nition ���� A function f � R � C is said to have persistency length
a if there is a 
 � � and a compact set K congruent to ��� a�moda� such
that for every x � K� jf�x�j � 
�

Theorem ���� ��Balan���� A� Let �g� b� a� be a WH set such that the
analysis operator Tg�b�a � f �� fhf� gmnig�m�n��Z is well�de�ned and bounded
between W �L�� l�� and l����Z��� Then g �W �L�� l���
B� Let �g�� g�� b� a� be a WH pair such that the following hold true�

�� For every f �W �L�� l��� the series
P

mnhf� g�mnig�mn converges un�
conditionally in L�

loc�

�� The frame operator Sg��g� �b�a is bounded on W �L�� l���


� g� has persistency length �
b
�

Then g� �W �L�� l���

The proof of Theorem �	� is fairly standard� and is based on carefully
estimation of the partial sums	 First the summation over the frequency
index is performed using Parseval identity	 Then triangle inequality and
Cauchy�Schwarz are used in the second summation over the time index
�see �Balan��� for details�	 Instead� the proof of Theorem �	�� seems more
interesting and therefore we are going to present it here	

Proof of Theorem ����
A	 We know there exists a constant C � � such that for every f �
W �L�� l���

P
m jhf� gmnij� 	 Ckfk�W �L� �l��	 Take f � e�i arg g 	 Obvi�

ously f � W �L�� l�� and kfkW �L��l�� � �	 For m � n � �� hf� gmni �R�
�� f�x�g�x�dx �

R�
�� jg�x�jdx 	 C	 Therefore g � L��R�	

Next we show g � L��R�	 Suppose the contrary� that for every D � �
there is a measurable subset J of an interval of the form �N�

b
� N���

b
� such

that jJ j � � and jg�x�j � D for every x � J 	 Take f � �p
jJje

�i arg g�J 	

Note that kfkW �L��l�� 	 kfkL��R� � � and for n � ��

hf� gmni � �p
jJ j

Z
J

jg�x�je���imbxdx�

Then�X
m�Z

jhf� gmnij� � �

b
k �pjJ jg � �Jk

�
L��N�

b
�
N���

b
	
�

�

bjJ j
Z
J

jg�x�j�dx � D�

which contradicts
P

m jhf� gmnij� 	 Ckfk�W �L��l��	 Therefore g � L��R�	
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Using Parseval identity we obtain�

X
m

jhf� gmnij� � �

b

Z �
b

�

j
X
l�Z

f�x � na�
l

b
�g�x�

l

b
�j�dx

For n � � we need to check thatZ ��b

�

j
X
l

f�x �
l

b
�g�x �

l

b
�j�dx 	 Ckfk�W �L��l���

To avoid messy computation� we may take without loss of generality b � �	
For each n � Z denote by Jn the measurable subset of �n� n � �� de�ned
by Jn � fx � �n� n � �� j jg�x�j � �

�kgkL��n�n��
�
	g	 If jJnj 	 	� de�ne

Jn�� � Jn� if jJnj � 	� then take a subset Jn�� of Jn with jJn��j � 		
Note that� by the de�nition of Jn� jJn��j � � for all n	 Let N� be an
integer such that for every jnj � N�� jJn��j � �

� 	 Obviously lim���N� �
�	 Take f �

P
jnj�N�

�Jn��e
i arg g	 Then kfk�W �L��l�� 	 	 and jPl f�x �

l�g�x � l�j� �P
jnj�N�

jg�x� n�j��Jn���x� n� which implies
R �
�
jPl f�x �

l�g�x � l�j�dx � �



P
jnj�N�

kgk�L��n�n��	j	 Using now the boundedness of

the analysis operator Tg�b�a� we obtain that
P
jnj�N�

kgk�L��n�n��	 	 �C	

Since lim���N� � we get
P

n�Z kgk�L��n�n��	 	 �C which means g �
W �L�� l��	 �
B	 We know that f ��P

m�nhf� g�mnig�mn is bounded on W �L�� l�� and the

series converges unconditionally in L�
loc	 We claim that f ��P

mhf� g�mnig�mn
is uniformly bounded on W �L�� l�� for every n	 To see this we prove
�rst for every compact K there is a constant C�K� such that for every
n� kPmhf� g�mnig�mnkL��K� 	 C�K�kfkW �L��l��	

Indeed� for every �xed f � the sequence
PM

m��M hf� g�mnig�mn converges
in L�

loc� for M � �	 Thus it is bounded	 On the other hand the partial

sums of operators SM�n ��
PM

m��M h�� g�mnig�mn are bounded operators�
therefore by the uniform boundedness principle they are also uniformly
bounded� i	e	 for every M � kSM�nkB�W �L��l���L��K�� 	 Cn for some Cn � �
�here B�W �L�� l��� L��K�� denotes the Banach space of bounded operators
from W �L�� l�� to L��K�� endowed with operator norm�	 Next� for every
	 � � and for every f � W �L�� l�� with kfkW �L� �l�� � �� there is a M�

such that kPjmj�M�
hf� g�mnig�mnkL��K� � 		 Hence

k
X
m

hf� g�mnig�mnkL��K� 	 k
X

jmj�M�

hf� g�mnig�mnkL��K� �

� k
X

jmj�M�

hf� g�mnig�mnkL��K� � 	 �Cn�

Since 	 was arbitrary� we get that f �� Sn�f� ��
P

mhf� g�mnig�mn is
a bounded operator in B�W �L�� l��� L��K��	 Next we apply again the
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uniform boundedness principle to the sequence of operators Sn	 Each is
bounded from W �L�� l�� to L��K� as we have seen	 For every �xed f �
W �L�� l��� the series

P
n Sn�f� converges in L��K� therefore each term is

bounded by the same constant	 Thus we obtain a constant C�K� such that
kSnkB�W �L��l���L��K�� � C�K� for every n	

Now we return to the operator f �� P
mhf� g�mnig�mn on W �L�� l��	

Notice that

kSnkB�W �L� �l���L��K�a�� � kSn��kB�W �L��l���L��K�� � C�K�

Thus if we take K � ��� a� we get immediately that

k
X
m

hf� g�mnig�mnkW �L��l�� 	 CkfkW �L��l�� for every n	

Let K� and 
 � � be the compact set� respectively the positive constant
from the de�nition of persistency for g�� remember that K� is congruent
to ��� �b � modulo �

b 	 Then� for every n�

k
X
m

hf� g�mnig�mnkL��K��na� � kg����
X
m

hf� g�mnie��imb���na�kL��K��

� 
�
X
m

jhf� g�mnij�����

and thus �
P

m jhf� g�mnij����� 	 C
�
kfkW �L� �l�� for every f � W �L�� l��

and n � Z	 Now we apply the result at point A� and obtain the conclusion	
�

Remark ���� Similar results have been obtained independently in �GrHeOk���	
There� the authors extend these results to the general �weighted� amalgam
space W �Lp� lq��	 Again a su�cient condition for boundedness is that the
window belongs to W �L�� l��	 Whereas boundedness on W �Lp� l�� �to�
gether with unconditionally convergence and persistency of g�� implies g�

is in W �L�� lp�	

Remark ���� The norm on W �L�� l�� is often hard to compute and op�
timize	 Instead we look at weighted�L� norms de�ned by some nonneg�
ative weight w	 Speci�cally we assume w � � has persistency a and is
in W �L�� l��	 Typical models for such weights are characteristic functions	
With such a slight change of the continuous norm�we denote byWa�L�

w� l
��

the Wiener amalgam space�

Wa�L
�
w� l

�� �
�
f � R� C jkfkWa�L�w�l

�� �� sup
n�Z

Z �

��
w�x�jf�x� n��j�dx�

��	���

One can easily show �see �Balan���� that for such weights� Wa�L�
w� l

�� is
a Banach space norm�equivalent to W �L�� l��	
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����� The l����Z�� �discrete�time� case�

Consider now a stochastic process � over the coe�cient index space Z�	
The natural representation space is l����Z�� � l��Z�� which is simply
the space of bounded sequences over Z�	 Thus the stochastic process �
corresponds to a map � � � � l����Z�� over the probability space ����� ��
so that the statistics of � are de�ned similarly to ��	�� and ��	��	We convene
to denote by �� a particular realization� that is a complex�valued sequence
over Z�	 The synthesis operator T �g�b�a maps l����Z�� into a distribution
space� in general� unless g is trivial	 The right distribution space is M �

����
where the modulation space M��� was de�ned in ��	���	 Indeed this is the
case because the analysis operator associated to the Gaussian g��x� �

e�x
��� and su�ciently small b� a� maps M��� into l����Z�� � l��Z��	 Then�

by duality� the synthesis operator T �g� �b�a maps l����Z�� � l����Z��
�
into

M�
���	 More generally� the Gaussian window g� can be replaced by any

function of M��� without changing the space	 In this case� one obtains
merely an equivalent norm	

We are now interested to know when the synthesis operator T �g�b�a and
Gram operator Gg��g��b�a �� Tg��b�aT

�
g� �b�a are bounded when acting on

l����Z��	 Unlike theW �L�� l�� space for continuous�time stochastic signal
case� here the following results solve this problem completely�

Theorem ���� A� Let �g� b� a� be a WH set� Then the synthesis operator
T �g�b�a � l����Z�� �M �

��� is bounded if and only if g �M����

B� Let �g�� g�� b� a� be a WH pair� If g�� g� �M��� then the Gram operator
Gg��g� �b�a � l

����Z��� l����Z�� is bounded�

Proof A The �rst part of the statement was proved by Feichtinger �see
�FeiZimm���� Theorem 
	
	� and Corollary 
	
	��	 In particular� if g �M����
Tg�b�a �M��� � l����Z�� is bounded by kTg�b�akB�M����l����Z��� 	 Cb�akgkM���

�
and then� by duality� T �g�b�a � l����Z�� � M �

��� is bounded by the same
bound as well	

The interesting part is the converse	 This seems to be new and is proved
by the following argument	 First we prove that if T �g�b�a � l����Z�� �M �

���

is bounded� then T �g�b�P�a�Q � l����Z�� �M��� is bounded as well	 To show
this note �rst that�

T �g�b�P�a�Qc �
X
m�n

cmngm�n�b�P�a�Q �

�
P��X
l��

Q��X
k��

X
m��n�

cm�P�l�n�Q�ke
��iln� ba

P gl�km��n��b�a� ��	���

where gl�k�x� � e��ilbx�Pg�x � k a
Q
�	 Then the boundedness of T �g�b�a on
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l����Z�� implies�

jhT �g�b�ad� hij � j
X
m�n

dm�nhgm�n�b�a� hij 	 CgkhkM���
kdkl����Z��

for every d � l����Z�� and h �M���	 In particular set

dm�n � cm�P�l�n�Q�ke
��i�m�� l

P
� ba
Q

and
h�x� � e���il

b
P
xf�x � k

a

Q
��

Since the M��� norm is invariant to time�frequency shifts� the previous
inequality turns into�

j
X
m�n

cm�P�l�n�Q�ke
��iln� ba

P hgl�km� �n��b�a� fij 	 CgkfkM���
kckl����Z��

which shows that each of the PQ terms in ��	��� de�nes a bounded operator
from l����Z�� into M �

���	

Consider now the Gaussian window g��x� � e�x
���	 There are b�� a� � �

such that for every � � b� � b� and � � a� � a�� Tg� �b��a� �M��� � l����Z��
is bounded	 Moreover� by Theorem 
	�	�� in �FeiZimm���� Chapter 
� if
g � L��R� and Tg� �b��a�g � l����Z��� then g �M���	 Choose P�Q � � so that
b
P � a� and a
Q � a�	 Now� for every c � l����Z���

Cgkckl����Z�� � j
X
m�n

cm�nhgm�n�b�P�a�Q� g�ij � j
X
m�n

c�m�nhg� g�m�n�b�P�a�Qij

with c�m�n�cm�ne
��imn ba

PQ 	 Thus fhg� g�m�n�b�P�a�Qigm�n has to be in l����Z��	

Hence Tg��b�P�a�Qg � l����Z�� which shows g �M���	
B	 The second statement comes immediately from Corollary 
	
	�� i�c��

combined with Theorem 
	
	�� i� c� from �FeiZimm���� Chapter 
	 These
show that T �g� �b be � l����Z�� � M �

��� and Tg� �b�a � M �
��� � l����Z�� are

both bounded� hence their composition� Gg��g��b�a � l����Z�� � l����Z��
is bounded as well	

Remark ���� An explicit computation shows that Gg��g��b�a is bounded
if and only if� X

m�n

jhg�� g�m�n�b�aij �� ��	���

The condition g�� g� � M��� guarantees just that	 Naturally� one can ask
whether the converse is true	 In general the answer is negative� as the
following example shows	 Take g� � g� � �����	 and b � a � �	 Then the
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Gram operator is identity on l��Z��� and therefore is identity on l����Z��
as well �hence bounded�	 Yet� �����	 is not in M���	 It fails to be in M���

because its Fourier transform decays like �
�
� too slowly to be integrable	 But

it does not fail to be in M������ for any 	 � �	 Note that g� � g� � �����	
satis�es ��	��� because of exact cancellations that occur at integer values	
Should we take b � � these cancellation no longer occur� and the Gram
operator becomes unbounded on l����Z��	

��� Models and Statement of Problems

This rather long introduction of function spaces allows us to present the
stochastic optimization problems we study here	 To �x the notations� de�
note by ��� d�� a probability space	 The expectation operator E replaces the
integration operator over � with measure d�	 By continuous�time stochas�
tic signal we mean a function f of L����W �L�� l��� d��	 We use f also
to denote a realization f� � when no confusion can arise	 By discrete�time
stochastic signal we mean a function c of L���� l����Z��� d��	 Again� when
there is no danger of confusion� c would also denote a realization c�	 This
choice of de�nition for stochastic signals implies the autocovariance func�
tion for continuous�time signals� t �� R�t� t� �� E�jf�t�j��� is in W �L�� l���
and for discrete�time signals� n �� Rm�n�m�n �� E�jcm�nj�� is in l����Z���
because�

kR��� ��kW �L��l�� �� sup
n

Z n��

n

dx

Z
�

jf��x�j�d����

	
Z
�

d�����sup
n

Z n��

n

jf��x�j�dx� � kfk�L����W �L��l���d	� ��	�
�

and

kR���kl����Z�� � sup
m�n

Z
�

jc��m�nj�d����

	
Z
�

sup
m�n

jc��m�nj�d���� � kck�L����l����Z���d	�� ��	���

����� Continuous�Time Signal Approximation �CTSA�

Assume f a stationary continuous�time stochastic signal into W �L�� l�� of
zero average and autocovariance function R���	 Thus�

E�f�t��f�t��� � R�t� � t�� ��	���

E�f�t�� � � ��	���

We want to approximate f by a coherent expansion of the form Sg��g��b�af 	
To distinguish among di�erent approximation solutions� we consider a mea�
sure of the approximation error	 Obviously this question is trivial when
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�g�� b� a� is a frame and �g�� b� a� is a dual �in other words� when �g�� g�� b� a�
is a dual pair of WH frames�	 In general we are interested in the case when
both �g�� b� a� and �g�� b� a� are incomplete sets� such as s�Riesz bases	 When
g�� g� � W �L�� l��� f and Sg� �g��b�af are both in W �L�� l��� by Theo�
rem �	��	 Consider now a nonnegative bounded summable weight w � ��
w � L��R� � L��R�	 Typical such weights are characteristic functions of
intervals	 Then the weighted L��R� norm of the approximation error mea�
sures how well Sg��g��b�af approximates f and its expectation is a measure
of the stochastic approximation of the continuous�time signal f by the WH
pair �g�� g�� b� a��

Jca�g
�� g�� b� a� w�R� �

Z �

��
E�jf�x�� Sg� �g��b�af�x�j��w�x� dx ��	���

The optimization of Jca concerns the set of problems termed as continuous�
time stochastic signal approximation problems	 These are as follows	 As�
sume b� a � � so that ba � � are given	

�	 �Semi�optimization Problems� For a �xed g� � W �L�� l�� such that
�g�� b� a� is a s�Riesz basis� �nd the best g� � W �L�� l�� that mini�
mizes Jca so that �g�� b� a� is s�Riesz basis�

inf
�g�� b� a� s� Riesz basis

g� �W �L�� l��

Jca�g
�� g�� b� a� w�R� � given �g�� b� a�

��	���

Conversely� for a �xed g�� �nd the best g� that minimizes Jca	

�	 �Optimization Problem� Find the best WH pairs of s�Riesz bases
�g�� g�� b� a��

inf
�g�� g�� b� a� pair of s� Riesz bases

g�� g� �W �L�� l��

Jca�g
�� g�� b� a� w�R� ��	���

Remark ���	 These approximation problems are very much of the same
type as the standard Karhunen�Loeve approximation problems	 In fact the
measure we use is merely an extension of the mean�square measure used
in KL decompositions	 What is non�trivial is the structure of the approx�
imation	 While it is true that in �nite dimensional spaces� or for compact
domains �and therefore periodic signals�� the KL problem turns into an
eigenproblem for the covariance operator� it is not a priori clear what con�
straint the WH set structure imposes on the solution	 In fact it is not
obvious that any of these problems have minimizers �i	e	 solutions that
satisfy the constraints�	
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Remark ���
 Theorem �	�� allows us to perform freely the usual alge�
braic manipulations� permutation of summations symbols and commuta�
tion of bounded operators and summations	 Moreover� Jca is bounded
above by the Wa�L�

w� l
���norm from ��	���� and in turn� by a constant

timesW �L�� l���norm of f 	 More speci�cally� the criterion ��	��� is always
bounded by�

Jca�g
�� g�� b� a� w�R� 	 Ca�� �Cb�akg�kW �L��l��kg�kW �L��l���

� �
� kwkL�kfk�L����W �L��l���d	�� ��	
��

Remark ���� All the derivations we perform here� apply equally well to
non�stationary signals as well	 For the sake of simplicity of notation we
consider only the stationary case	 An interesting non�stationary case is
when R�t�� t�� � E�f�t��f�t��� is in L��R�� and w � �	

Remark ���� An alternate measure of the approximation error is given
by the average power�

Pca � lim
T��

�

�T

Z T

�T
E�jf�x� � Sg��g��b�af�x�j��dx ��	
��

As we prove later� this criterion is equivalent to ��	��� for w � �
a
����a		

The equivalence can be carried over even for non�stationary signals	 In
that case Pca turns out to be equivalent to Jca associated to a �ctitious
cyclostationary process whose covariance function is given by Rc�t�� t�� �

limK�� �
�K��

PK
k��K R�t� � ka� t� � ka� and weight w � ����a		

����� Discrete�Time Signal Approximation �DTSA�

Consider the following scenario� Assume we are given a stochastic signal
over l����Z��� c� and we want to approximate it using a synthesis�analysis
pair of WH sets� �g�� g�� b� a�	 More speci�cally we want to approximate it
by Gg��g� �b�ac� the Gram operator associated to the WH pair �g�� g�� b� a�	
The problem is nontrivial for the case when �g�� b� a� and �g�� b� a� are
overcomplete sets	 To �x the notations� assume b� a � � are given so that
ba � �	 Assume c is a stationary stochastic signal of zero average and
known covariance function�

E�cmn� � � ��	
��

E�cm�n�cm�n� � � Rm��m��n��n� ��	

�

Choose nonnegative summable weights wmn � ��
P

m�nwmn � � and
de�ne the approximation error as�

Jda�g
�� g�� b� a� w�R� �

X
m�n�Z

E�jcmn �Gg��g� �b�acmnj��wmn ��	
��

The set of problems we consider in this paper are the following�
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�	 �Semi�Optimal Pairs� For a given frame �g�� b� a�� with g� � M����
�nd the frame �g�� b� a� that minimizes ��	
��� that is

inf
�g�� b� a� frame

g� �M���

Jda�g
�� g�� b� a� w�R� � given �g�� b� a� ��	
��

and conversely� for a given frame �g�� b� a�� g� � M���� �nd the best
frame �g�� b� a�� g� �M��� that minimizes Jda	

�	 �Optimal Pair� Find the best WH pairs of frames �g�� g�� b� a��

inf
�g�� g�� b� a� pair of frames

g�� g� �M���

Jda�g
�� g�� b� a� w�R� ��	
��

Remark ���� The same remarks as in the continuous�time case� apply
here	 Again Theorem �	�� allows us to freely perform the usual alge�
braic manipulations� permutation of summations symbols� commutation
of bounded operators and summations	 Moreover� Jda is bounded above
by�

Jda�g
�� g�� b� a� w�R� 	 Ca�� � Cb�akg�kM���

kg�kM���
�� �

� kwkl����Z��kck�L����l����Z���d	�� ��	
��

An alternate measure of the approximation error is given by the average
power�

Pda � lim
M�N��

�

��M � ����N � ��

X
jnj�N

X
jmj�M

E�jcmn � �Gg��g��b�ac�mnj��

��	
��

As we prove later� this criterion is equivalent to ��	
�� for wmn � �
q for
m � � and � 	 n 	 q � �� and wmn � � otherwise	

����� Continuous�Time Signal Encoding �CTSE�

Consider now the following scenario �see Figure ��	 A continuous�time ��
nite energy signal f � L��R� is encoded using a WH frame �g�� b� a�	 The
coe�cients cmn � hf� g�mni are sent through a communication channel and
received perturbed by additive noise  cmn � cmn��mn	 For reconstruction�
a dual frame �g�� b� a� is used and the obtained signal is  f �

P
mn  cmng

�
mn	

Because �g�� g�� b� a� is a dual frame pair� the decoded signal becomes�

 f � f �
X
mn

�mng
�
mn
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and the transmission error is then�

	 ��  f � f �
X
mn

�mng
�
mn ��	
��

In general� when �mn is a stationary process� thus in l����Z��� 	 is not a
function� but a distribution inM �

���	 We introduce a convenient measure on
the error ��	
��	 Assume only a �nite number of coe�cients are perturbed
by noise� say those for jnj 	 N � jmj 	 M 	 Then we compute the average
mean square error per coe�cient and then we take the limit forM�N ��	
More speci�cally� consider �dmn� a zero average and �wide�sense� stationary
discrete signal over Z��

E�dmn� � � E�dmndm�n� � � Rm�m��n�n� ��	���

Then assume�

�MN
mn �

�
�p

��N�����M���
dmn for jmj 	 M� jnj 	 N

� otherwise�
��	���

and de�ne the transmission error measure�

Jce�g
�� g�� b� a�R� � lim

M�N��
E�k f �  f k�L��R�� ��	���

We are interested in minimizing Jce under a series of constraints�

�	 �Semi�Optimization Problem� For a given encoding window g�� �nd
the best dual frame pair �g�� g�� b� a� that minimizes Jce� i	e	

inf
g���g��g� �b�a� dual pair

Jce�g
�� g�� b� a�R� ��	�
�

�	 �Iso�Pairing Problem� Find the best dual frame pair of the form
�g� g� b� a�� i	e	

inf
g��g�g�b�a� dual pair

Jce�g� g� b� a�R� ��	���


	 �Optimization Problem� Find the best norm�constrained encoder g�

and its associated optimal decoder� i	e	

inf
g��kg�k��

inf
g���g��g��b�a� dual pair

Jce�g
�� g�� b� a�R� ��	���

Remark ���� �	 Note that
P

mn dmng
�
mn is in general not a function	

It is a distribution in M �
��� because of Theorem �	��� but the series is not

convergent in any other way �pointwise or locally on a compact in Lp�sense�	
On the other hand� using only a weighted L� norm instead of L��norm to
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FIGURE �� Continuous�Time Signal Encoding Scheme

measure the error� would not solve the problem	 Hence the need of using
�nite set of coe�cients through �mn and then taking the average	

�	 We consider dual frame pairs because we want unbiased estimators of
the original signal f 	 In general� given more information about the source�
one can search the solution over arbitrary pairs of frames	


	 The iso�pairing problem can be equivalently stated as the optimal
normalized tight frame problem for the criterion Jce	

�	 In the optimal problem a norm constraint is required	 Indeed� if no such
constraint is posed� the optimal solution would correspond to an in�nite
energy encoding window g�� and a zero energy decoding window g� which
would make Jce � �	 But this is not relevant from a practical point of view	

�	 Note the covariance operator of ��M�N
mn �mn is trace�class with trace

independent of �hence uniformly bounded over� M�N 	 Hence it is su�cient
to assume �g�� b� a� is Bessel sequence to obtain�

Jce�g
�� g�� b� a�R� 	 Cb�akSg��b�akL��R�kdk�L����l����Z���d	� ��	���

����� Discrete�Time Signal Encoding �DTSE�

Similar to the Continuous�Time Signal Encoding scheme� consider now
the discrete version of that problem	 The Discrete�Time Signal Encod�
ing scheme� pictured in Figure �� assumes the following scenario	 The
input data is given by the sequence �cmn�mn in l��Z��� it is encoded us�
ing the synthesis operator associated to a s�Riesz basis �g�� b� a�� into the
continuous�time signal f �

P
mn cmng

�
mn� next f passes through a com�

munication channel where is perturbed additively by the continuous�time
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noise ��  f � f � �� and it is decoded using the biorthogonal window g��
 cmn � h  f � g�mni	 Because �g�� g�� b� a� is a biorthogonal pair� the recon�
structed signal is�

 cmn � cmn � h�� g�mni
The transmission error is then�

	mn �  cmn � cmn � h�� g�mni ��	���

We consider two measures of the transmission error� and we show later
they are equivalent	 First we assume a disturbance model similar to the
continuous�time case� namely

�T �t� �
�p
�T

���T�T 	d�t� ��	���

where d��� is a continuous�time zero�mean� �wide sense� stationary stochas�
tic signal with autocovariance function R�

E�d�t�� � � E�d�t�d�t��� � R�t� t�� ��	���

The average transmission error is de�ned by�

Jde�g
�� g�� b� a�R� � lim

T��

X
m�n

E�j cmn � cmnj�� ��	���

a second measure of the transmission error is given by the average distortion
per coe
cient de�ned as follows	 Assume the channel perturbation is � � d
and de�ne now the distortion by�

Pde�g
�� g�� b� a�R� � lim

M�N��
�

�N � �

X
jmj�M

X
jnj�N

E�j cmn � cmnj�� ��	���

Remarkably� the two transmission error measures are identical� as we prove
later	

We state now the optimization problems in terms of Jde	

�	 �Semi�Optimization Problem� For a given encoder �g�� b� a�� �nd the
best decoder g�� so that �g�� g�� b� a� is a biorthogonal s�Riesz basis
pair� i	e	

inf
g���g��g��b�a� biorthogonal pair

Jde�g
�� g�� b� a�R� ��	���

�	 �Iso�Pair Problem� Find the best biorthogonal pair �g� g� b� a�� i	e	

inf
g��g�g�b�a� biorthogonal pair

Jde�g� g� b� a�R� ��	�
�
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FIGURE �� Discrete�Time Signal Encoding Scheme


	 �Optimization Problem� Find the best norm�constrained encoder�
that is �g�� g�� b� a� biorthogonal s�Riesz basis pair and kg�k � � that
minimizes Jde�

inf
g� �kg�k��

inf
g���g� �g��b�a� biorthogonal pair

Jde�g
�� g�� b� a�R� ��	���

Remark ���� �	 As discussed in subsection �	� we assume the stationary
signal d is realized in W �L�� l��� and for g� � W �L�� l�� the decoder
always produces an output in l����Z��	 In the �rst case� � � �p

�T
���T�T 	d

has �nite average energy� E�k�k�L�� � R��� �� and thus Jde is well de�ned
for every T 	 In the latter case� for � � d� the output has �nite power and
thus the average distortion ��	��� makes perfect sense	

�	 The iso�pair obviously corresponds to an orthogonalWH set	 Thus� the
iso�pair problem asks for the best orthogonal WH set �g� b� a� with respect
to the criterion ��	���	

Table �	� summarizes the class of problems we have introduced	

� Semi�optimal and Optimal Solutions

In this section we compute explicitly the criteria ��	��� �	
���	����	���	 To
this end we need several important results� a summation result obtained
as a variation of Parseval relation� matrix computations involving the Zak
transform and solutions of some matrix optimization problems	
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Problem Input Data Operation Performed Type of Error Cause of Error

CTSA stochastic
function

representation by
coe�s in s�Riesz basis

approximation error
after reconstruction

incompleteness of
s�Riesz basis

DTSA
stochastic
sequence

representation by
function constructed

using a frame
�

frame coe�s do not
span l��Z��

CTSE
deterministic
function

analysis and synthesis
using a frame

reconstruction error
after transmission over

noisy channel

stochastic channel
noise

DTSE
deterministic
sequence

synthesis and analysis
using a s�Riesz basis

� �

TABLE ���� Classi	cation of the Stochastic Problems�

��� The Weak Poisson Summation Formula

The computations we perform use a special form of the Poisson summa�
tion formula	 Actually� in our framework it is merely a consequence of the
Parseval identity	 We call it the weak form of the Poisson summation for�
mula	 It has been proved and used by many authors before �see the proof
of Theorem �	�	� in �HeWa���� Theorem � in �Chui�
�� or Lemma 
	� in
�DaLaLa����	 The result that follows has been proposed and proved in in
�BaDaVa��� �Appendix C��

Theorem ��� Suppose f�� f� �W �L�� l�� and g�� g� �W �L�� l��� Then

X
m

Z Z
f��x�g

��x�f��y�g
��y�e��imb�x�y� �

�
�

b

X
m

Z
dxf��x�g

��x�f��x�
m

b
�g��x�

m

b
� ��	���

and the integrals converge absolutely�

Remark ��� The products f�g� and f�g
� can be replaced� equivalently�

by h�� h� in W �L�� l��	 Note that W �L�� l�� � W �L�� l�� � W �L�� l���
where the equivalence should be understood in the following sense� if f �
W �L�� l�� and g � W �L�� l��� then fg � W �L�� l�� and kfgkW �L� �l�� 	
kfkW �L� �l��kgkW �L� �l��� conversely� any function h � W �L�� l�� can be
factorized as a product h � fg with f � W �L�� l��� kfkW �L��l�� 	
khkW �L��l�� and g � W �L�� l��� kgk 	 khkW �L��l��	 For instance� for x �
�n� n � �� de�ne f�x� � h�x�
khkL��n�n��	 and g�x� � khkL��n�n��	� if
khkL��n�n��	 �� �� and f�x� � �� g�x� � � otherwise	
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��� Certain Matrix Optimization Problems

A	 Consider the minimization problem of a functional of the type�

I�X�A� � Tr fS�I �XA�R�I � A�X��g ��	���

with S�R selfadjoint invertible matrices	 To �x the notation� let assume X
is a p � q matrix� A is a q � p matrix and S�R are p � p strictly positive
matrices	 To make it nontrivial� assume rank�A� � q � p	 For such a
problem� the optimal X is given by�

Xo � RA��ARA���� ��	���

and the optimal value is�

I�A� �� I�Xo � A� � Tr fR���SR����I � R���A��ARA����AR����g
��	���

Moreover� I�A� can be further optimized over A by noting that P �
R���A��ARA����AR��� is an orthogonal projection	 Hence the optimal
A should correspond to an eigenspace associated to the largest q eigen�
values of R���SR���� say ��� � � � � �q	 Note the eigenvalues of R���SR���

are the same with the eigenvalues of RS	 Denote by P such an orthogonal
projection	 It is uniquely de�ned when the qth eigenvalue of R���SR��� is
nondegenerate	 Let fv�� � � � � vqg be an orthonormal basis in Ran�P � �for
instance the �rst q eigenvectors of R���SR���� and denote by V the p � q
matrix whose columns are these vectors	 Thus P � V V �� V �V � Iq and
R���SR���V � V � diag���� � � � � �q�	 Then any optimal pair �A�X� has the
form�

Aopt � LV �R���� Xopt � R���V L�� ��	���

where L is an arbitrary q � q invertible matrix� and the optimal value
becomes�

Imin �

pX
k�q��

�k ��	���

B	 Consider now the following functional�

I�X� � Tr fXRX�g ��	���

where X � Cp	q and R � Cq	q � R � � and p � q� subject to the constraint

AX� � pIp ��	���

where A � Cp	q	 We want to minimize I�X� subject to ��	���	 The La�
grange functional is

L�X�!� � Tr fXRX� � !�AX� � pIp� � �XA� � pIp�!
�g
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and solving for the stationary points we obtain

Xo � p�AR��A����AR��� ��	�
�

and the criterion becomes

Io�X�� � p�Tr f�AR��A����g ��	���

Since we assumed R � �� this is the global minimum point	
Next consider again the functional ��	��� subject to the constraint

XX� � pIp ��	���

Clearly the minimum of I�X� is achieved when the columns of X� form an
orthonormal basis in the p�dimensional invariant space of R associated to
the lowest eigenvalues	 Then the solution is

X �
p
pUV � ��	���

where U is a Cp	p unitary matrix and V is the Cq	p complex matrix whose
columns are the p eigenvectors of R corresponding to the lowest eigenvalues
�q�p��� � � � � �q� so that V �V � Ip	 The optimal value of the criterion is then

I�X� � p

qX
k�q�p��

�k ��	���

Now consider ��	����	��� where X�A�R are matrix�valued functions over
a domain D� and we de�ne

J�A�X� �

Z
D

Tr fXRX�g ��	���

where X is subject to ��	��� at every point of D� and A is constrained byZ
D

Tr fAA�g � � ��	���

We want now to minimize J over these two constraints	 The minimization
over X has been already carried out before� and the criterion turned out
��	���� that is

J�A�Xo� � p�
Z
D

Tr f�AR��A����g

Now we want to optimize further over A� subject to ��	���	 The optimiza�
tion decouples into two steps	 First� at each point of D we have to minimize
��	��� subject to Tr fAA�g � c�� for some yet unknown real�valued func�
tion c de�ned over D	 The solution is that A has to correspond to the
invariant space of R associated to the lowest p eigenvalues	 Thus

A � cUV �
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where V � Cq	p is the matrix whose columns are the p normalized eigen�
vectors of R corresponding to the lowest eigenvalues� say �q�p��� � � � � �q so
that V �V � Ip� and U � Cp	p is a unitary matrix	 Now� J turns into�

J�c� � p�
Z
D

�

c�

qX
k�q�p��

�k � subject to

Z
D

p � c� � �

Optimizing further over c� we obtain

copt �
�
Pq

k�q�p�� �k�
���

�p
R
D
�
Pq

k�q�p�� �k��������
� ��	���

The optimizer turns into�

Aopt � coptUV
� ��	���

Xopt �
p

copt
UV � ��	���

and the optimal criterion becomes�

Jopt � p
�

Z
D

�

qX
k�q�p��

�k�
����� ��	�
�

��� Zak Transform

For a function g � L��R�� we use the Zak transform as normalized in
�BaDaVa����

G�t� s� �
p
a
X
k�Z

e��iktg�a�s � k�� ��	���

For more information on the Zak transform we refer the reader to �Jans���
and �Jans���	 We recall here the inversion formulae in time and frequency
domain�

g�x� �
�p
a

Z �

�

G�t�
x

a
�dt � 
g��� �

r
a

��

Z �

�

e�ias
G�� a�

��
� s�ds ��	���

and the quasiperiodicity relations�

G�t� �� s� � G�t� s� � G�t� s� �� � e���itG�t� s� ��	���

Assume ba � p
q with p� q relatively prime	 Then we denote by "�t� s� the

p � q matrix whose �j� k� entry is G�t � k
q
� s � j q

p
�� j � �� �� � � � � p � ��
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k � �� �� � � � � q � ��


�t� s� ��
�����

G�t� s� G�t� �

q
� s� � � � G�t� q��

q
� s�

G�t� s� q

p
� G�t� �

q
� s� q

p
� � � � G�t� q��

q
� s� q

p
�

���
���

���
G�t� s� �p � �� q

p
� G�t� �

q
� s� �p� �� q

p
� � � � G�t� q��

q
� s� �p� �� q

p
�

�
�����

���

�

In general we denote the time domain functions by lower case letters
�f� g� � � � �� the Zak domain functions by upper case letters �F�G� � � ��� and
the matrix representation ��	��� by Greek upper case letters �#�"� � � � �	
Note g �� " is a unitary operator mapping L��R� into L����Cp	q�� where
L����Cp	q� is the Hilbert space of p � q complex valued functions de�
�ned over rectangle � � ��� �

q
�� ��� �

p
� endowed with inner product� #�" �

L����Cp	q��

h#�"i �
Z Z

�

Tr f#"�gdt ds ��	���

where � stands for hermitian conjugation �M� � $MT �	 Let E�t� � Cp	p�
Q�D � Cq	q be de�ned by�

E�t� �

�
����

� � � � � � �
� � � � � � �
			

			
			

			
e���iqt � � � � � �

�
���	 � Q �

�
������

� � � � � � �
� � � � � � �
� � � � � � �
			

			
			

� � � � � � �

�
�����	 �

��	���

D �

�
�������

�

e���i
�
q

e���i
�
q

	 	 	

e���i
q��

q

�
������	
� ��	���

Then the quasiperiodicity relations ��	��� turn into�

"�t�
�

q
� s� � "�t� s� �Q � "�t� s�

�

p
� � e���in�tE�t�r� � "�t� s� �Dn�

��	���

where �r�� n�� are coprime factors of �q� p�� i	e	 r�q�n�p � �	 In particular�
��	��� and ��	��� are useful in checking the consistency of design procedure
results	

We recall the following result �see �ZiZe��� BaDaVa��� for details�	
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Theorem ��� �� �g�� g�� b� a� is dual pair of frames if and only if

"�"�� � pIp ��	���

for a�e� �t� s� � � � ��� �q �� ��� �p ��

�� �g�� b� a� is a biorthogonal pair of S�Riesz bases if and only if

"��"� � pIq ��	�
�

for a�e� �t� s� � �� �
Now� without further ado� we start analyzing the stochastic criteria	

��� Continuous Time Signal Approximation Problem

Consider Jca de�ned in ��	���	 First expand the square�

Jca � E

Z
jf�x�j�w�x�dx� E

X
m�n

hf� g�mniwhg�mn� fi

�E
X
m�n

hf� g�mnihg�mn� fiw � E
X

m�n�m��n�

hf� g�mnihg�mn� g�m�n�iwhg�m�n� � fi

and apply Theorem 
	� to summations over frequency indices m and m��

Jca � E

Z
jf�x�j�w�x�dx�

�

b
E
X
m�n

Z
dx f�x�g��x� na�g��x�

m

b
� na�f�x�

m

b
�w�x�� c�c�

�
�

b�
E

X
m�n�m��n�

Z
dx f�x�

m

b
�g��x�

m

b
� na�g��x� na� �

� g��x� n�a�g��x�
m�

b
� n�a�f�x �

m�

b
�w�x��

where c�c� stands for complex�conjugate of the previous term	 Next we com�
pute the expectations using the autocovariance function R	 Let us consider
the general non�stationary case� that is E�f�x�f�y�� � R�x� y�	 Then the
above expression turns into�

Jca �

Z
dxR�x� x�w�x��

�

b

X
m

Z
dxR�x� x�

m

b
�w�x��

X
n

g��x�
m

b
� na�g��x � na��� c�c�

�
�

b�

X
m�m�

Z
dxR�x�

m

b
� x�

m�

b
�w�x��

X
n�n�

g��x �
m

b
� na�g��x� na� �

� g��x� n�a�g��x�
m�

b
� n�a��� ��	���
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An entire similar derivation can be made for the average power criterion
��	
��	 One obtains an expression similar to ��	��� where w is replaced by

� and
R
is replaced by limt�� �

�T

R T
�T 	 Note the

P
n and

P
n�n� terms are a�

periodic	 Thus� denoting formallyRc�t�� t�� � limK�� �
�K��

PK
k��K R�t��

ka� t�� k � a�� one has

Pca �

Z a

�

dxRc�x�

�
�

b

X
m

Z a

�
dxRc�x� x�

m

b
��
X
n

g��x�
m

b
� na�g��x� na�� � c�c�

�
�

b�

X
m�m�

Z a

�

dxRc�x�
m

b
� x�

m�

b
� �

�

X
n�n�

g��x�
m

b
� na�g��x� na�g��x� n�a�g��x�

m�

b
� n�a�

�
�

which is formally equal to ��	��� for R�t�� t�� � Rc�t�� t�� and w � ����a	�
that is for the cyclostationary process whose autocovariance function is Rc	
Now let us continue with ��	���	 Denote by

M i
m� �m�

�s� �
X
k�Z

R�a�s � k �
m�

ba
�� a�s � k �

m�

ba
�w�a�s � k�� ��	���

Clearly M�
m��m�

is ��periodic in s	 Using

jR�x�� x��j 	
p
R�x�� x��

p
R�x�� x��

and ��	�
� we deduce that M i
m��m�

is in L���� a�	 Then ��	��� turns into�

Jca � a

Z a

�

M i
����s�ds

�a

b

X
m

Z �

�

M i
��m�s�

X
n

g��a�s �
m

ba
� n��g��a�s � n��ds � c�c�

�
a

b�

X
m�m�

Z �

�

M i
m�m� �s�

X
n�n�

g��a�s �
m

ba
� n��g��a�s � n�� �

� g��a�s � n���g��a�s�
m�

ba
� n��� ds� ��	���

At this point we use the stationarity of f � and then the rationality assump�
tion ba � p

q 	 Thus M
i
m� �m�

becomes

M i
m��m�

�s� � R�
m� �m�

b
�
X
k

w�a�s � k�� ��	���
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Let us denote by

��s� �
X
k

w�a�s � k�� ��	���

so that M i
m��m�

�s� � R�m��m�

b ���s�	 Let m � m�p � r� m� � m
�

�p � r�

with � 	 r� r� 	 p � �	 Then� using the Zak transforms G�� G� of g��
respectively g�� the quasiperiodicity relations ��	��� and again the weak
Poisson summation formula ��	��� we obtain�

Jca � aq

Z �

�

ds

Z ��q

�

dt ���t���s�

� aq

p

p��X
r��

Z �

�
ds

Z ��q

�
dt��r�t���s�G��t �

l

q
� s� r

q

p
��G��t�

l

q
� s�

� c�c��
aq

p�

Z �

�
ds

Z ��q

�
dt

p��X
r�r���

�r�r� �t���s�
q��X

l� �l���

G��t�
l�
q
� s� r

q

p
�

�G��t�
l�
q
� s�G��t�

l�
q
� s�G��t�

l�
q
� s� r�

q

p
��

where

�r�t� �
X
m

e��imqtR�
mp� r

b
� ��	���

Because the integrand is ��periodic� the integral over s can be split into p

integrals over intervals of length �
p of the form

R �
� ds �

Pp��
r���

R r�q�p���p
r�q�p

ds	

Let us denote by M �t� the p� p matrix whose �r�� r�� element is �r��r� �t��
� 	 r�� r� 	 p � �� and by W �s� the p � p diagonal matrix whose �r� r�
element is ��s � r qp �� � 	 r 	 p� ��

M �t� �

�
�����

���t� ����t� � � � ���p����t�

���t� ���t�
	 	 	 ���p����t�

� � � 	 	 	
	 	 	

			
�p���t� �p���t� � � � ���t�

�
����	 � ��	���

W �s� �

�
�����
��s� � � � � �

� ��s � q
p �

	 	 	 �
			

	 	 	
	 	 	

			
� � � � � ��s � �p � �� qp �

�
����	 � ��	���
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Note the following properties of �r�t��

�r�p�t� � e���iqt�r�t� ��	���

�r�t�
�

q
� � �r�t� ��	�
�

��r�t� � �r�t� ��	���

Therefore M��t� � M �t� and M �t � �
q � � M �t�� i	e	 M is self�adjoint

Toeplitz and �
q
�periodic	 Note also the following properties�

W �s �
�

p
� � E�t�r�W �s�E�t��r� ��	���

M �t� � E�t�M �t�E�t�� ��	���

Using these propierties� the expression for Jca can be simpli�ed to

Jca � aq

Z Z
�

Tr fW �s�
�
I � �

p
"��t� s�"���t� s�


 �
�M �t��I � �

p
"��t� s�"���t� s��g� ��	���

Semi�Optimization Problems

The optimization problems decouple �berwise� i	e	 for every �t� s�	 Thus�
given g�� that is "�� the best "� is obtained as a least square problem by
minimizing a functional of type ��	���	 The solution is then�

"�semi�opt � pM"��"��M"���� ��	���

and the criterion becomes�

Jca�"
�� � aq

Z Z
�

Tr fMW �I � "�semi�opt"
���g dt ds ��	���

On the other hand� given g�� that is "�� the best "� is obtained similarly�

"�semi�opt � pW"��"��W"���� ��	����

and the criterion becomes�

Jca�"
�� � aq

Z Z
�

Tr fMW �I � "�"��semi�opt�g dt ds ��	����

Remark ��� When �g�� b� a� is a s�Riesz basis� then the necessary and
su�cient condition for �g�� b� a� de�ned in ��	��� to be a s�Riesz basis is
simply the eigenvalues of M �t� to be bounded above and below away from
zero	 Similarly� when �g�� b� a� is a s�Riesz basis� �g�� b� a� de�ned by ��	����
is also a s�Riesz basis whenever the eigenvalues ofW �s� are bounded above
and away from zero	 This happens when w �W �L�� l�� and has persistency
length a	
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The Optimization Problem
We can further optimize ��	��� over "�	 Using ��	��� and ��	��� �rst we

have to solve the following eigenproblem�

M����t�W �s�M����t�V �t� s� � V �t� s� � diag��ordj �t� s����j�q�� ��	����

where �ord� � �ord� � � � � � �ordp�� are the ordered eigenvalues ofM���WM���

and V is Cp	q normalized so that V �V � Iq and V V � is the orthogonal
projection onto the invariant space associated to the �rst q eigenvalues	
Then we obtain

"�opt � M����V L ��	��
�

"�opt � pM���V L�� ��	����

with L�� � �L����� and the optimal value of the criterion�

Jca � aq

Z Z
�

p��X
j�q

�ordj �t� s� dt ds ��	����

where L is an arbitrary Cq	q valued measurable function over �� invertible
with bounded inverse� i	e	 sup�t�s��� k L k	 � and sup�t�s��� k L�� k	 �	

��� Discrete Time Signal Approximation Problem

Consider the criterion ��	
��	 Let us compute �rst 	mn � E�jcmn �  cmnj��	
Using  cmn � hPm��n� cm�n�g

�
m�n� � g

�
mni and E�cm�n�cmn� � Rm��m�n��n we

obtain�

	mn � R��� �
X
m��n�

Rm��m�n��n
Z

e��i�m
��m�bxg��x� n�a�g��x� na� dx

�
X
m��n�

Rm�m��n�n�
Z

e��i�m�m
��bxg��x� na�g��x� n�a� dx

�
X

m��n��m���n��

Rm��m���n��n��
Z

dx

Z
dy e��i�m

��m�bxe��i�m�m
���bx

g��x� n�a�g��x� na�g��y � na�g��y � n��a�

Now replace g� and g� by their Zak transforms via ��	���	 Using the pseu�
doperiodicity relations ��	��� and the summation formula ��	��� we obtain�

	mn�p

Z ��p

�
ds

Z ��q

�
dt

q��X
l�l��l���

e��inl
p
q �l� �l�t� s��
l��l� �

�

p
�"��"��l��lp�l�
l� �l�

��

p
�"��"��l��l��lp
l��l� �

�

p�
�"��"��l� �l��"

��"��l��l��lp��
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where�

�l��l�t� s� �
X
k�j�Z

e��ik�t�
l�
q
�e��i�jq�l�

p

q
sRjq�l�k ��	����

and "��"� are the matrix representations ��	���	 Now let us compute Jda
from ��	
��	 It is given by

Jda �
X
mn

wmn	mn � p

Z ��p

�

ds

Z ��q

�

dt

q��X
l�l��l���

�l�l� �l�t� s��
l��l�

��

p
�"��"��l��lp�l�
l��l��

�

p
�"��"��l��l��lp
l��l��

�

p�
�"��"��l��l��"

��"��l��l��lp�

��	����

where

�l �
X
m�n

wmne
��inl p

q �

q��X
l���

�
X
m�n�

wm�n�q�l� �e
��il�l p

q � ��	����

This expression can be rewritten more compactly if we use the following
q � q matrices�

Dl � �l � diag��l� �l�t� s����l��q��� ��	����

�U l�l��l� � 
l��l��lp� ��	����

that is Dl is q � q diagonal matrix and U l is a q � q permutation matrix	
Then ��	���� becomes�

Jda � p

Z Z
�

q��X
l��

Tr f�I � �

p
"��"��Dl�I � �

p
"��"��U lg� ��	����

with � � ��� �q � � ��� �p �	 Note the following properties of the two sets of

matrices Dl and U l�

Dl�t�
�

q
� s� � Q�Dl�t� s�Q� ��	����

Dl�t� s�
�

p
� � e��i

l
qDl�t� s�� ��	��
�

�Dl�� � D�q�l�mod q� ��	����

U l � Qlp� ��	����

�U l�� � U �q�l�mod q� ��	����

Remark ��� Since 	m���n � 	mn and 	m�n�q � 	mn the average power
��	
�� turns into�

Pda �
�

q

q��X
n��

	��n
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This is equivalent to Jda for the particular choice of weights wmn � �
q �

m � � and � 	 n 	 q � �� and wmn � � otherwise	 Note this corresponds
to choosing �� � � and �l � �� for � � l 	 q � �	

Semi�Optimization Problems
Since ��	���� is an integral over independent �bers� the optimization

problems decouple into �nite optimization problems� �berwise�

J�"��"�� �

q��X
l��

Tr f�I � �

p
"��"��Dl�I � �

p
"��"��U lg ��	����

Recall we consider the case when both �g�� b� a� and �g�� b� a� are frame
sets� that is p

q
� �	 Thus "��"� has always rank p � q and cannot be I	

First consider the case when g� is �xed and we look for the best g�	 The
solution is given by the following linear system�

q��X
l��

"�DlU l �
�

p

q��X
l��

"�Dl"��"�U l ��	����

where the unknown is the p� q matrix "�	
Next consider the dual case� when g� is �xed and we search for the

optimal g�	 Similarly� its Zak representation matrix "� has to satisfy the
following linear system�

q��X
l��

"�U lDl �
�

p

q��X
l��

"�U l"��"�Dl ��	����

For either case� the criterion takes the following form�

Jda � p

Z Z
�

Tr f�
q��X
l��

U lDl��I � �

p
"��"��g dt ds ��	����

where �"��"�� are related to one another via ��	����� or ��	����	

The Optimization Problem
The optimization problem continues by further minimizing ��	���� over

both �"��"��	 One can easily show that it is equivalent to require that

�"��"�� satisfy simultaneously ��	���� and ��	����	 Denote R �
Pq��

l�� U
lDl

andX � �
p"

��"�	 Note thatR� �
Pq��

l�� D
lU l	 Then the system ��	�����	����

turns equivalently into�

X�R �
q��X
l��

U lX�Dl � � �R�
q��X
l��

U lX�Dl�X � � ��	����



xxxiv Radu Balan and Ingrid Daubechies

The optimizer corresponds to a rank p� q�q complex matrixX that satis�es
��	����	 Note there may be more solutions of ��	���� �and in general this
is the case�	 These correspond to other critical points of Jda	
In general we cannot obtain a closed form solution	 However� the interest�

ing practical problem is for the average power Pda� i	e	 for uniform weights
wmn � �

q for m � � and � 	 n 	 q � �� and � otherwise	 In this case we

obtain Dl � � for l � � and since U� � I� R � D� � R� and ��	���� turns
into�

X�I �X��R � �I �X��RX � �

In general R is invertible� hence from the �rst equation we obtainX � XX�

and thus X has to be a �selfadjoint� orthogonal projection	 The second
equation turns into RX � XRX� that means X is associated to an invari�
ant space of R	 Then Jda is given by the remaining eigenvalues of R	 Since
we want to minimize Jda� X has to correspond to the largest p eigenvectors
of R	 But R � D� is already diagonal	 Thus X is immediate	 Let us return
to "� and "�	 For a general solution X� "� and "� are obtained by factor�
izing X �which is of rank p� into a product of a q� p complex matrix with
another p � q complex matrix	 The set of solutions will be parameterized
by arbitrary p � p invertible with bounded inverse �over �� complex ma�
trices	 For the practical case we consider� "� and "� are obtained from the
ordered eigenvectors of R	 Since R is diagonal� the eigenvectors are simply
the columns of the identity matrix	 Let us denote by ej the q�vector whose
jth component is �� and the rest is zero� i	e	 the jth column of the identity
matrix Iq	 Denote by �t�s � f�� �� � � � � q��g � f�� �� � � � � q��g the ordering
permutation of the diagonal elements of D�� that is

��t�s�j����t� s� � ��t�s�j������t� s� � � 	 j 	 q � �

Then�

"��t� s� �
p
pL�V � ��	����

"��t� s� �
p
pL��V � ��	��
�

where�

V �t� s� � �e�t�s��� e�t�s��� � � � e�t�s�p���� ��	����

and L is an invertible with bounded inverse Cp	p matrix valued function
over �	 The criterion becomes�

Jda � p

Z Z
�

q��X
k�p

��t�s�k��t� s� dt ds ��	����
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��� Continuous Time Signal Encoding Problem

Consider now the Continuous Time Signal Encoding problem stated in
subsection �	�	
	 Recall the criterion Jce given by ��	���	 Since �g�� g�� b� a�
is a dual pair of frames� the criterion is�

Jce�g
�� g�� b� a�R� � lim

M�N��
�

��N � ����M � ��

E
� Z j

X
jmj�M

X
jnj�N

dmng
�
mnj�dx

�
�

We assume g�� g� are su�ciently well localized so that we can commute
summation with integrals and expectations� and apply the weak Poisson
summation formula �Theorem 
	��	 By expanding the sum and replacing
the expectation with the covariance function R��� the �nite sum turns into

EM�N �
�

��N � ����M � ��

X
jm�j�jm�j�M

X
jn�j�jn�j�N

Rm��m��n��n�e
��i�m��m��n�ba

�
Z

e��i�m��m��bxg��x� �n� � n��a�g��x� dx

Denote m � m��m� and n � n��n�	 For �xed m�n� m�� n� run over the
sets Im� respectively In where

Im �

� f�M��M � �� � � � �M �mg if m 	 �
f�M �m��M � �� � � � �Mg if m � �

�

of cardinality

jImj �
�

�M �m� � if m 	 �
�M �m� � if m � �

�

and similarly for In	 Then EM�N turns into

EM�N �
�MX

m���M
��� jmj

�M � �
�

�NX
n���N

�
�

�N � �

X
n��In

e��imn�ba�Rmn�mn

where

�mn �

Z
e��imbxg��x� na�g��x�dx

Now� for In as de�ned before and z � e��imba we obtain

X
n��In

e��imn�ba �

�
z�N�zN�n��

��z if m 	 �
z�N�n�zN��

��z if m � �
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when z �� �� and X
n��In

e��imn�ba � jInj

otherwise	 Assume �Rmn�mn� � l����Z�� �which is no constraint on the
stochastic process when g � M��� for instance� because then ��mn� �
l����Z���	 Then apply Lebesgue�s dominated convergence theorem to com�
pute limM�N��EM�N 	 We obtain

Jce �
�X

m���

�X
n���


mbamod ���Rmn�mn

Thus� for ba �� Q we obtain

Jce �
X
n

R��n���n ��	����

But we are interested in the case ba � p
q
	 Thus Jce turns into

Jce �
�X

m���

�X
n���

Rmq�n�mq�n ��	����

Next we use the Zak transform of g� and write the criterion in terms of the
matrix representation "�	 Simple algebra and application of the weak form
of Poisson summation formula ��	��� gives

Jce �

Z Z
�

Tr f"�R"��g dt ds ��	����

where � � ��� �
q
�� ��� �

p
�� R�t� s� is the q � q diagonal matrix

R�t� s� � diag���t�
l

q
� s����l�q��� ��	����

and ��t� s� are ��� �p � periodic functions de�ned by

��t� s� �
X
m�n

e��impse��intRmq�n ��	�
��

Now we are ready to analyze the optimization problems ��	�
% �	���	

The Semi�Optimization Problem
Given g�� that is "�� we look for "� that minimizes ��	�
�� and satis�es

��	���	 This problem has been solved in subsection 
	�� as Problem B	 The
solution ��	�
� reads�

"� � p�"�R��"�����"�R��� ��	�
��
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and the average distortion becomes

Jce � p�
Z Z

�

Tr f�"�R��"�����g dt ds ��	�
��

Remark ��	 When �g�� b� a� is a frame� then the necessary and su�cient
condition for �g�� b� a� de�ned in ��	�
�� to be a frame is simply the eigen�
values of R�t� s� to be bounded above and below away from zero� that is�

� � A� 	 ��t �
l

q
� s� 	 B� �� � 
t� s � � 	 l 	 q � � ��	�

�

for some A�� B�	

The Iso�Pair Problem
This case has been solved in ��	����	���	 The solution reads�

"� � "� �
p
pUV � ��	�
��

where U � �t� s� �� U �t� s� � Cp	p is a unitary valued measurable map
over �� and V � �t� s� �� V �t� s� � Cq	p is a measurable function so that
the columns of V �t� s� are the p eigenvectors of R�t� s� corresponding to
the lowest eigenvalues	 Since R is already diagonal� these columns are a
subset of the canonical basis fe�� � � � � eq��g of Cq 	 Assume �t�s is the q�
permutation so that

��t �
�t�s�l�

q
� s� � ��t�

�t�s�l � ��

q
� s� � � 	 l 	 q � �

Then

V �t� s� �
�
e�t�s�q�p� e�t�s�q�p��� � � � e�t�s�q���

�
��	�
��

The distortion is then

Jce � p

Z Z
�

q��X
l�q�p

��t�
�t�s�l�

q
� s� dt ds ��	�
��

The Optimization Problem
Since the Zak transform is unitary� the norm constraint kg�k � � is equiv�

alent to
R R

�
Tr f"�"��g dt ds � �	 Then� the norm�constraint optimizers

of Jce are parameterized as in ��	��%�	���	 With the current notations� this
becomes

"�opt � cUV � ��	�
��

"�opt �
p

c
UV � ��	�
��
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where

c�t� s� �
�
Pq��

l�q�p ��t�
�t�s�l�
q � s�����

fp R R
�
�
Pq��

l�q�p ��t� �
�t��s� �l�

q � s������ dt� ds�g���
��	�
��

and U � V as in ��	�
��	 The optimal distortion becomes�

Jce � p


�
B�Z Z

�

�
� q��X
l�q�p

��t�
�t�s�l�

q
� s�

�
A

���

dt ds

�
CA

�

��	����

��� Discrete Time Signal Encoding Problem

In the Discrete�Time Signal Encoding problem� the average transmission
error is de�ned by ��	����

Jde�g
�� g�� b� a�R� � lim

T��

X
m�n

E�j cmn � cmnj���

where T denotes the width of the time window during which noise is added�
see ��	���	 However one can consider an alternative error measure� namely
the average distortion per coe�cient de�ned by ��	����

Pde�g
�� g�� b� a�R� � lim

M�N��
�

�N � �

X
jmj�M

X
jnj�N

E�j cmn � cmnj��

We are going to show these two functionals are identical	 Using ��	������	���
and ��	��� we obtain

Jde � lim
T��

X
m�n

E�jh�T � g�mnij��

� lim
T��

�

�T

X
n

Z T

�T
dx

Z T

�T
dy
X
m

e��imb�y�x�g��x� na�g��y � na�

Now apply the weak Poisson summation formula ��	��� and then periodize
the integrand with

P
n	 Denote

Gm�x� �
X
n

g��x� na�g��x� m

b
� na��

We obtain�

Jde �
�

b
lim
T��

�

�T

Z T

�T

X
m

R�
m

b
�Gm�x�dx
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Since the integrand is a�periodic� the average is simply the integral over a
period� that is

Jde �
�

b

X
m�n

R�
m

b
�

Z a

�

g��x� na�g��x� m

b
� na�dx ��	����

Consider now Pde	 Expanding the expectation operator and performing
the summation over m from �� to �� via the weak Poisson summation
formula� we obtain

Pde �
�

b
lim
N��

�

�N � �

X
jnj�N

X
m

R�
m

b
�

Z �

��
g��x� na�g��x� m

b
� na�dx

Note that by a change of variable� the integral does not depend on n	
Therefore the average over n does not change the outcome and we remain
with

Pde �
�

b

X
m

R�
m

b
�

Z
g��x�g��x� m

b
�dx

Now by a�periodizing the integrand we obtain again ��	����	 Thus we
proved Pde � Jde	 Note� everywhere we assume the integrals converge abso�
lutely and we can freely commute summation symbols with expectation and
integration symbols	 That is true as long as g� is su�ciently well localized�
for instance g� �W �L�� l��	

Next we compute ��	���� in terms of Zak transform	 By replacing g�

with its Zak transform� then using pseudoperiodicity relation ��	���� and
then the summation formula ��	���� we obtain

Jde �

Z �

�

ds

Z �

�

dt
�

b

p��X
r��

X
m�

e��im
�qtR�

m�p � r

b
�G��t� s�G��t� s� r

q

p
�

Now we �
q �periodize the integrand over t� and �

p over s	 Using again the
pseudoperiodicity we obtain�

Jde �

Z Z
�

p��X
r� �r���

q��X
l��

�r��r� �t�G��t �
l

q
� s� r�

q

p
�G��t�

l

q
� s � r�

q

p
� dt ds

where

�r�t� �
�

b

X
m�

e��im
�qtR�

m�p � r

b
� ��	����

This can be compactly rewritten as�

Jde �

Z Z
�

Tr f"��S"�g dt ds ��	��
�
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where S � �� Cp	p is the Toeplitz self�adjoint matrix

S � ��r��r� ���r��r��p���

that is

S�t� �

�
�����

���t� ����t� ����t� � � � ���p����t�

���t� ���t� ����t�
	 	 	 ���p����t�

			
	 	 	

	 	 	
	 	 	

			
�p���t� �p���t� � � � ���t� ���t�

�
����	 � ��	����

Note the following property of ��t�

��r�t� � e��iqt�p�r�t� ��	����

and then

S�t� � E�t�S�t�E�t�� ��	����

where E�t� was de�ned in ��	���	 This commutativity relation allows us to
compute the eigenvectors of S�t�	 The eigenvectors of E�t�� hence of S�t�
as well� are given by�

fk �
�p
p

�
� 	k 	�k � � � 	p��k

�T
� � 	 k 	 p� � ��	����

where 	k is one of the complex pth root of e���iqt�

	k � e���i
q
p
�t� k

q
� � � 	 k 	 p� � ��	����

The eigenvalues of S�t� are then

mk � hfk� Sfki � 
R�
qt� k

p
� � � 	 k 	 p� � ��	����

where


R��� �
�

b

X
m

e��im�R�
m

b
� ��	����

The Semi�Optimization Problem
Given g�� that is "�� we look for "� that minimizes ��	��
� and satis�es

��	�
�	 The correspondence to the problem B in subsection 
	� is given by
A � "��� X � "��� R � S and Ip � Iq 	 The solution ��	�
� becomes�

"� � pS��"��"��S��"����� ��	����

and the average distortion becomes

Jde � p�
Z Z

�

Tr f�"��S��"����g dt ds ��	����
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Remark ��
 When �g�� b� a� is a s�Riesz basis� then the necessary and
su�cient condition for �g�� b� a� de�ned in ��	���� to be a s�Riesz basis is
simply the eigenvalues of S�t� to be bounded above and below away from
zero� that is�

� � A� 	 mk�t� 	 B� �� � 
t � � 	 k 	 p� � ��	��
�

for some A�� B�	

The Iso�Pair Problem
We optimize now Jde over the constraint "�" � pIq	 Again the solution

is given by the problem B mentioned before	 Equations ��	����	��� and the
aforementioned correspondence give

"� � "� �
p
pV U ��	����

where U � � � Cq	q is a measurable unitary valued map� and V � � �
Cp	q is a measurable function whose columns are normalized eigenvectors
of S�t� corresponding to the lowest q eigenvalues so that V �V � Iq	 De�
note by �t the permutation that orders the p eigenvalues mk introduced in
��	�����

m�t����t� � m�t����t� � � � �� m�t�p����t�

Then

V �
�
f�t�p�q��t� f�t�p�q����t� � � � f�t�p����t�

�
��	����

and the distortion becomes

Jde � p

Z Z
�

p��X
k�p�q

m�t�k��t� dt ds ��	����

The Optimization Problem
Using again the analysis in subsection 
	�� we obtain the optimal solution

of Jde subject to the norm constraint kg�k � � and biorthogonality "��"� �
pIq �

"� � cV U ��	����

"� �
p

c
V U ��	����

where U� V are as in ��	���� and c � c�t� is given by

c�t� �
�
Pp��

k�p�qm�t�k��t��
���

f q
p

R ��q
�

�
Pp��

k��p�q m�t� �k
���t������ dt�g���

��	����

The optimal distortion becomes�

Jde � q

�
�Z ��q

�


 p��X
k�p�q

m�t�k��t�
����

dt

�
A

�

��	����
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� Non�Localization Results

In the previous section we obtained explicit solutions to several optimiza�
tion problems	 The optimizers share a common property� they are all ob�
tained from eigenspaces of some selfadjoint operator	 In this section we
study how well the optimal windows can be localized in the time�frequency
domain	 We prove in general the optimizers are not well�localized in the
sense the windows cannot belong to the following Banach spaces�

C�L�� l�� � ff � R� C j f continuous� kfkW �L��l�� ��g� ��	����

H��� � ff � L��R� j kfk�H��� ��

Z
�
�

�
� x���jf�x�j� � j 
f�x�j�� dx ��g�

��	����

��� CTSA

Recall the parametrization of the optimal solution ��	��
� �	�����

"� � M����V L ��	��
�

"� � M���V L�� ��	����

where L is a bounded invertible Cq	q�valued function de�ned over ��
V �V � Iq and the columns of V span an invariant subspace ofM���WM���

associated to the largest q eigenvalues�

M���WM���V � V !� ��	����

Next we consider the case when w � ����a	� i	e	 a uniform weight over an
interval of the length of a translation step	 Then W �s� � I� for all s� and
��	���� turns into an eigenproblem for M �t�	 Since M �t� commutes with
E�t� �see ��	����� the eigenvectors of M �t� coincide with the eigenvectors
of E�t� which are given by ��	����	 Thus the columns of V form a subset of
ff�� f�� � � � � fp��g given by the ordering of the associated eigenvalues	 The
eigenvalues are then�

�k�t� � hfk�Mfki � 
R�
qt� k

p
� ��	����

where


R��� �
X
m

e��im�R�
m

b
� ��	����

Let us denote by �t the ordering permutation� i	e	

��t����t� � ��t����t� � � � � � ��t�p����t� ��	����
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and by Dq the set of points t where the qth eigenvalue is degenerate as
follows�

Dq � ft � ���
�

q
� � ��t�q����t� � ��t�q��t�g ��	����

Assume the entries of M �t� are continuous functions �for instance when
R � W �L�� l���	 Then �k�t� and ��t�k��t� are continuous functions� for
every � 	 k 	 p � �	 Next we show Dq is a nonempty set	 Using ��	����
note the following�

�k�t�
�

q
� � �k���t� � � 	 k 	 q � � ��	����

�p���t�
�

q
� � ���t� ��	����

Denote by �� the circular shift� ���k� � k��� � 	 k 	 p�� and ���p��� �
�	 Then the above relations on � imply that

���t� �
q
� �t ��	����

Now assume S � f�t���� �t���� � � � � �t�q���g is independent of t	 It follows
that S has to be invariant to �� as well� and this is impossible	 Hence� for at
least one t� ��t�q����t� � ��t�q��t� and therefore Dq cannot be empty	 As�
sume now thatDq contains isolated points	 Note this is a structurally stable
property with respect to the W �L�� l���norm on R� i	e	 for 	�perturbations
of R in W �L�� l���norm� Dq would still contain isolated points	 Moreover�
this is a generic property with respect to the same topolgy� namely� as�
sume R is such that Dq does not contain isolated points� then one can
choose an arbitrarily small perturbation so that only isolated points are
left in Dq 	 Let t� be such an isolated point	 Then for some 	 � �� V �t�
is uniquely determined on both �t� � 	� t�� and �t�� t� � 	�	 However� one
column of limt
t� V �t� is orthogonal to all columns of limt�t� V �t�	 Hence
the two limits cannot coincide and "��"� cannot be continuous as func�
tions of t	 Similarly to the amalgam version of the Balian�Low theorem
�see �BeHeWa����� this implies the corresponding optimal windows g�� g�

cannot be in C�L�� l��	 On the other hand� since the discontinuity occurs

along a segment of the form f�t�� s� � � 	 s 	 �
pg� the �rst derivatives �G�

�t

and �G�

�t cannot be in L����	 Therefore g�� g� cannot belong to H���	 In
e�ect we proved�

Theorem ��� Assume R � W �L�� l��� w � ����a	 and Dq contains an
isolated point� Then any pair of windows �g�� g�� optimal with respect to
Jca cannot be well�localized in the sense that

g�� g�� 
g�� 
g� �� C�L�� l�� ��	��
�



xliv Radu Balan and Ingrid Daubechies

and

g�� g� �� H��� ��	����

Moreover� the existence of isolated points in Dq is a generically and struc�
turally stable property with respect to the W �L�� l���norm�

��� DTSA

Consider the discrete�time signal approximation problem in the case of
uniform weights wmn � �

q � for m � � and � 	 n 	 q � �� and wmn � ��
otherwise	 The optimal pair of windows with respect to Jda criterion is
parametrized by ��	���� and ��	��
��

"� �
�p
p
L�V � ��	����

"� �
�p
p
L��V � ��	����

where L is a bounded� invertible Cp	p matrix valued function over �� and
the columns of V form a subset of the canonical basis of Cq �i	e	 the clumns
of the identity matrix Iq�	 The choice of columns of V is based on the order�
ing of the diagonal elements ��l���t� s����l�q�� of D� �see �	����	 Assume
R � l����Z��	 Then �l�k�t� s� are continuous functions in �t� s�	 Using ��	����
we obtain

�l���t �
�

q
� s� � �l�����t� s� � � 	 l 	 q � � ��	����

�q�����t �
�

q
� s� � �����t� s� ��	����

Let us denote by �t�s the ordering permutation

��t�s������t� s� � ��t�s������t� s� � � � � � ��t�s�q������t� s� ��	����

and Ep the set of points where the pth eigenvalue is degenerate as follows�

Ep � f�t� s� � � j ��t�s�p������t� s� � ��t�s�p����t� s�g ��	����

Using a similar argument as in the CTSA case� we obtain Ep as well as
Ep � ���� �

q
�� fs�g� are non empty sets� for every s� � ��� �

p
�	 Note Ep is a

�D subset of �	 Its topology may be complicated� in general	 However� the
generic Ep is made of continuous curves	 We say Eq contains an isolated
curve if there is an open set U of � such that Ep � U has empty interior
and separates U � i	e	 U � U� � �Ep � U � � U�� where U�� U� are open�
and together with Ep � U disjoint subsets of U 	 When Ep contains an iso�
lated curve� V �t� s� cannot be chosen continuously	 If� moreover� Ep � U is
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di�eomorphically equivalent to a straight line� i	e	 there is a di�erentable
� � �$a�$b� � U so that Ep � U � ���$a�$b��� then we say Ep contains an
isolated smooth curve	 In such a case� one can easily show there is a coor�
dinate system over U so that Ep �U becomes a straight line� and the �rst
derivatives of G�� G� cannot be square integrable	 Thus g�� g� �� H���	 All
these can be summarized into�

Theorem ��� Assume R � l����Z�� and Ep contains isolated curves� Then
any optimizer �g�� g�� of Jda cannot be well�localized in the sense�

g�� g�� 
g�� 
g� �� C�L�� l�� ��	����

Furthermore� if Ep contains an isolated smooth curve� then g�� g� cannot
belong to H���� The existence of isolated curves in Eq is a generically and
structurally stable property with respect to the l����Z���norm�

Remark ��� Note this theorem proves that� generically� the optimum
value of Jda is not achieved in the class M���� where the optimization prob�
lem ��	
�� is formulated	

��� CTSE

The optimal solutions of continuous�time signal encoding problem are simi�
lar to those of the discrete�time signal approximation problem	 The optimal
iso�pairs and dual frame pairs �g�� g�� are parametrized via a product of the
form UV �� with U a Cp	p unitary valued map on �� and V a Cq	p matrix
valued map over � whose columns form a subset of the canonical basis of
Cq � see ��	�
�� �	�
���	�
��	 The choice of the columns of V is made based
on the ordering of the elements ��l�t� s� � ��t� l

q
� s����l�q�� from ��	����	

Note

�l�t �
�

q
� s� � �l���t� s� � � 	 l 	 q � � ��	����

�q���t �
�

q
� s� � ���t� s� ��	��
�

Denote by �t�s the ordering permutation of these elements�

��t �
�t�s���

q
� s� � ��t �

�t�s���

q
� s� � � � � � ��t �

�t�s�q � ��

q
� s� ��	����

and

Eq�p � f�t� s� � � j ��t� �t�s�q � p� ��

q
� s� � ��t�

�t�s�q � p�

q
� s�g
��	����

Using the same arguments as in the previous subsection� when R � l����Z���
Eq�p � ���� �

q
� � fs�g� is not empty� for every s�	 Moreover� when Eq�p
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contains an isolated curve� "��"� cannot be continuous� whereas when Eq�p
contains an isolated smooth curve� the �rst order derivatives of G�� G�

cannot be in L����	 All these are summarized in the following

Theorem ��� Assume R � l����Z�� and Eq�p contains isolated curves�
Then any optimizer �g�� g�� of Jce cannot be well�localized in the sense�

g�� g�� 
g�� 
g� �� C�L�� l�� ��	����

Furthermore� if Eq�p contains an isolated smooth curve� then g�� g� cannot
belong to H���� The existence of isolated curves in Eq�p is a generically
and structurally stable property with respect to the l����Z���norm�

��� DTSE

The optimizers of the discrete�time signal encoding problem are similar
to the optimizers of the continuous�time signal approximation problem	
The optimal iso�pairs �given by ��	����� and optimal biorthogonal pairs
�given by ��	�����	����� are parametrized by matrix products of the form
V U for some U � U �t� s�� a Cq	q unitary matrix valued function over ��
and V � V �t� a Cp	q matrix valued function over � whose columns form
a subset of the orthonormal basis ff�� f�� � � � � fp��g of Cp introduced by
��	����	 The choice of the columns of V �t� is dictated by the ordering of the
eigenvalues of S�t� of ��	����	 These eigenvalues� denoted by mk�t�� were
computed in ��	����	 Let �t be the ordering permutation

m�t����t� � m�t����t� � � � �� m�t�p����t� ��	����

and let Dp�q denote the set of points where the p � qth eigenvalue is de�
generate as follows�

Dp�q � ft � ���
�

q
� j m�t�p�q����t� � m�t�p�q��t�g ��	����

When R � W �L�� l��� mk�s are continuous and by a similar argument
as in subsection �	� we obtain Dp�q is not empty	 We also obtain� when
Dp�q contains isolated points� V �t� cannot be continuous and therefore the
windows g�� g� are not well�localized	 All these results are summarized in
the following�

Theorem ��� Assume R � W �L�� l�� and Dp�q contains an isolated
point� Then any optimal iso�pair or biorthogonal pair �g�� g�� of Jde cannot
be well�localized in the following sense�

g�� g�� 
g�� 
g� �� C�L�� l�� ��	����

and

g�� g� �� H��� ��	����
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Moreover� the existence of isolated points in Dp�q is a generically and
structurally stable property with respect to the W �L�� l���norm�

� Numerical Examples

In this section we present a set of examples of the solutions presented
before	

The semi�optimal problems start with a �xed analysis window� and de�
sign the optimal synthesis window� for a given weight and signal autoco�
variance functions	 We choose the gaussian window

g��x� � e�
x
�

��	����

as analysis window� and uniform weights� i	e	

w�x� � ����a	�x� ��	����

for the CTSA problem� respectively

wmn �
�

q

m������q	�n� ��	��
�

for the DTSA problem	 The time step is set to one unit� a � �	 The
covariance function is chosen to decrease exponentially fast�

R�x� � e�jxj ��	����

in the CTSA case� and

Rmn � e��jmj�jnj� ��	����

Note the Fourier transform of R�x� is 
R��� � �p
��

�
���� � �� and the dis�

crete Fourier transform of Rmn is 
R���� ��� ��
P

mnRmne
�im���in�� �

���e����
j��e���i�� j�j��e���i�� j� � �	 These prove the choice above corresponds in�

deed to two stationary stochastic processes	
Once this data is set� one can straightforwardly apply ��	���� ��	�
���

or ��	���� to obtain respectively the CTSA� CTSE� or DTSE semi�optimal
solution	 For the uniform weights ��	��
�� the equation ��	���� turns into�

"�D� �
�

p
"�D�"��"�

whose solution is

"� � p�"�D�"�����"�D� ��	����
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This gives the semi�optimal solution of the DTSA problem	
The optimal windows are given by the solution to an eigenvalue problem

associated to M �t� of ��	���� D��t� s� of ��	����� R�t� s� of ��	����� and
S�t� of ��	����	 The optimal solution is not completely determined by the
solution of the corresponding eigenproblem	 There is a second term� namely
the L�factor� that parametrizes all equivalent solutions	 We are going to
choose L in a particular way� so that the optimal windows become real
valued functions	 To this end we use the following result whose proof is
straightforward�

Proposition ��� Denote by G�t� s� the Zak transform of an L��R��function
g� and by "�t� s� the matrix representation ������� Then the following are
equivalent�

�� g is real�valued�

�� G�t� s� � G��� t� s��


� "�t� s� � "��q � t� s�T where T is the q � q matrix with one on the
antidiagonal� and zero in the rest� i�e� Tl� �l� � 
l��l� �q�� for � 	
l�� l� 	 q � ��

Let us apply this result to the CTSA problem	 When R is real valued� the
matrix M �t� has the following property�

M �t� � M �
�

q
� t� ��	����

and therefore the eigenvectors of M ��q � t� can be chosen so that V ��q �
t� s� � V �t� s�	 Thus we solve the eigenproblem M �t�V �t� � V �t�!�t� for
� 	 t 	 �

�q � and we set�

"��t� s� �

�
V �t� � for � 	 t 	 �

�q

V �t�T � otherwise
��	����

Similar argument goes for S�t� and c�t� associated to the DTSE problem	
For the DTSA problem� when Rmn are real� the diagonal matrixD��t� s�

is real� its diagonal elements �l���t� s� have the following property�

�l���
�

q
� t� s� � �q���l���t� s� ��	����

Hence D� has the following invariance property�

D��
�

q
� t� s� � TD��t� s�T � ��	����
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and therefore the matrix V �t� s� in ��	���� can be chosen so that V ��q �
t� s� � T V �t� s�	 In turn� this implies we can choose "� and "� via ��	����
and ��	��
� to satisfy�

"��
�

q
� t� s� � "��t� s�T "��

�

q
� t� s� � "��t� s�T�

and thus� optimal real�valued windows g�� g�	 Similar argument applies to
R�t� s� and c�t� s� assocuated to the CTSE problem	
Now we present the numerical results	 In the left�hand side of the Fig�

ure 
 we plot the semi�optimal solutions of the CTSA problem� for several
values of p and q	 For comparison� the right�hand side of the same �gure
renders the optimal solution obtained as explained before	 In Table �	� we
summarize the values of the criterion Jca obtained for the semi�optimal so�
lution� respectively optimal solution	 Similarly� the left�hand side of Figure
� contains the semi�optimal solutions of the DTSA problem� whereas the
right�hand side of the same �gure contains the optimal window	 Numeri�
cal values of the criterion Jda are presented in Table �	
	 For the CTSE
problem we contrast the semi�optimal and optimal solutions in Figure ��
and the channel distortion is summarized in Table �	�	 Finally� the Figure
� contains the same type of results for the DTSE problem� whereas Ta�
ble �	� contains the channel distortion numbers	 The typical behaviour of
the eigenvalues is presented in Figure �	 There� the t�dependence over the
interval ��� �q � is plotted	 The abscisis is discretized in �� points	 Note the
self�crossing of the eigenvalue maps which are responsible for the ill time�
frequency localization of the optimal windows	 Instead� the semi�optimal
windows are better localized� but with a price in the approximation error	

p � � � � � � � �
q � � � � � � � �

Semi�opt� ����� ����� ���
� ����� ����� ����� ����� �����

Optimum ����� ���

 ����� ����� ����� ����� ���
� ����


TABLE ���� Table of values of Jca�

q � � � � � � � �
p � � � � � � � �

Semi�opt� ����� ����� ����� ����� ����� ����� ����� �����

Optimum ����� ����� ���
� ����� ����� ����� ����� ���
�

TABLE ���� Table of values of Jda�
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FIGURE �� The semi�optimal and optimal solutions for the CTSA problem� Left
plots contain the semi�optimal windows g� when the gaussian ������� is used for
analysis� right plots contain the optimal solutions� the 	rst row is for p � �� q � ��
the second row is for p � �� q � �� the third row is for p � �� q � �� the fourth
row is for p � �� q � ��
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FIGURE �� The semi�optimal and optimal solutions for the DTSA problem� Left
plots contain the semi�optimal windows g� when the gaussian ������� is used for
analysis� right plots contain the optimal solutions� the 	rst row is for p � �� q � ��
the second row is for p � �� q � �� the third row is for p � �� q � �� the fourth
row is for p � �� q � ��



lii Radu Balan and Ingrid Daubechies

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2

2.5

x

g
2

−20 −15 −10 −5 0 5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

g
1

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2

x

g
2

−20 −15 −10 −5 0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

g
1

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

g
2

−20 −15 −10 −5 0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

g
1

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

g
2

−20 −15 −10 −5 0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

g
1

FIGURE �� The semi�optimal and optimal solutions for the DTSE problem� Left
plots contain the semi�optimal windows g� when the gaussian ������� is used for
analysis� right plots contain the optimal solutions� the 	rst row is for p � �� q � ��
the second row is for p � �� q � �� the third row is for p � �� q � �� the fourth
row is for p � �� q � ��
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FIGURE �� The semi�optimal and optimal solutions for the DTSE problem� Left
plots contain the semi�optimal windows g� when the gaussian ������� is used for
analysis� right plots contain the optimal solutions� the 	rst row is for p � �� q � ��
the second row is for p � �� q � �� the third row is for p � �� q � �� the fourth
row is for p � �� q � ��
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q � � � � � � � �

p � � � � � � � �

Semi�opt� ����� ����� ����� ����� ����� ����� ����� �����

Optimum ����� ����� ����� ����� ����� ����� ����
 �����

TABLE ���� Table of values of Jce�

p � � � � � � � �

q � � � � � � � �

Semi�opt� ����
 ����� ����� ����� ���� ����� ����� �����

Optimum ����� ����� ����� ����� ����� ����� ����� ��
��

TABLE ���� Table of values of Jde�

� Conclusions

In this chapter we presented an application of the Gabor analysis to four
classes of stochastic signal problems	 First we established a rigouros frame�
work for stochastic signal analysis� namely through the use of amalgam
spaces	 In particular� continuous�time stationary signals �i	e	 functions� are
realized as elements of W �L�� l��� whereas discrete�time stationary signals
�i	e	 sequences� are realized in l����Z��	 Thus we carried the Gabor analy�
sis onto these two Banach spaces	 We obtained necessary and su�cient con�
ditions on the analysis and synthesis windows to have bounded operators	
The amalgam space W �L�� l�� is naturally mapped to the mixed�norm
space l����Z��� whereas l����Z�� is mapped into the space of distributions
M �

���	 We proved the analysis window is in W �L�� l�� is a su�cient condi�
tion for the analysis operator of the former case to be bounded	 Surprisingly�
it turned out the necessary decay of the window is given by W �L�� l��� i	e	
when the analysis operator is bounded then necessarily the window has to
be inW �L�� l��	 Moreover� in some sense this seems to be optimal	 For the
latter case� the synthesis operator is bounded if and only if the synthesis
window is in M���	
These results helped us to formally de�ne and represent the stochastic

signals	 It also constituted the formal argument for the algebraic manip�
ulations we performed next	 We considered two classes of situations	 The
�rst class concerns the approximation problem	 Given a signal� whether
continuous�time or discrete�time� we want to approximate it by an element
in a linear �and smaller in the sense of trace� subspace constrained to be
time�frequency shift invariant	 We stated and analyzed two optimization
problems and obtained explicit solutions involving only linear� quadratic or
eigenvalue matrix equations	 The second class of situations concerns the sig�
nal transmission problem	 The signal is encoded either with a frame� when
the data is a continuous�time signal� or with a Riesz basis for its span� when
the data is a discrete�time signal	 The received data is perturbed by the
channel noise	 Thus the decoder will use some channel information� more
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speci�c its second order statistics� and replace the standard dual frame�
or biorthogonal decoding window� by another dual� or biorthogonal� opti�
mally adapted to the channel	 With this scenario in mind� we stated and
analyzed three optimization problems� and obtained explicit solutions sim�
ilar to the class of approximation problems	 Interestingly� there seems to
exist a duality between the solutions of these two classes of problems	
Next we analyzed the time�frequency localization of the optimizers of

the four problems stated before	 We proved that� in general� they are ill�
localized in a sense similar to the Balian�Low non�localization phenomenon	

We concluded our study by giving a numerical example in designing
optimal and semi�optimal analysis&synthesis windows	
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