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Abstract

A number of static and multi-resolution methods have been introduced in recent years to compress 3D meshes. In most of these methods,
the connectivity information is encoded without loss of information, but user-controllable loss of information is tolerated while compressing
the geometry and property data. All these methods are very efficient at compressing the connectivity information, in some cases to a fraction
of a bit per vertex, but the geometry and property data typically occupies much more room in the compressed bitstream than the compressed
connectivity data. In this paper, we investigate the use of polynomial linear filtering as studied in the Refs. [Taubin G. A signal processing
approach to fair surface design. Computer Graphics Proc., Annual Conference Series 1995;351–358; Taubin G, Zhang T, Golub G. Optimal
surface smoothing as filter design. IBM Research report RC–20,404, 1996], as a global predictor for the geometry data of a 3D mesh in multi-
resolution 3D geometry compression schemes. Rather than introducing a new method to encode the multi-resolution connectivity informa-
tion, we choose one of the efficient existing schemes depending on the structure of the multi-resolution data. After encoding the geometry of
the lowest level of detail with an existing scheme, the geometry of each subsequent level of detail is predicted by applying a polynomial filter
to the geometry of its predecessor lifted to the connectivity of the current level. The polynomial filter is designed to minimize thel 2-norm of
the approximation error but other norms can be used as well. Three properties of the filtered mesh are studied next: accuracy, robustness and
compression ratio. The Zeroth Order Filter (unit polynomial) is found to have the best compression ratio. But higher order filters achieve
better accuracy and robustness properties at the price of a slight decrease of the compression ratio.q 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Polygonal models are the primary 3D representations for
the manufacturing, architectural, and entertainment indus-
tries. They are also central to multimedia standards such as
VRML and MPEG-4. In these standards, a polygonal model
is defined by the position of its vertices (geometry); by the
association between each face and its sustaining vertices
(connectivity); and optional colors, normals and texture
coordinates (properties).

Several single-resolution [9,20] and multi-resolution
methods [8,14,15,18] have been introduced in recent years
to represent 3D meshes in compressed form for compact

storage and transmission over networks and other commu-
nication channels. In most of these methods, the connectiv-
ity information is encoded without loss of information, and
user-controllable loss is tolerated while compressing the
geometry and property data. In fact, some of these methods
only addressed the encoding of the connectivity data
[6]. Multi-resolution schemes reduce the burden of
generating hierarchies of levels on the fly, which may
be computationally expensive and time consuming. In
some of the multi-resolution schemes the levels of
detail are organized in the compressed data in progres-
sive fashion, from low to high resolution. This is a
desirable property for applications, which require trans-
mission of large 3D data sets over low bandwidth
communication channels. Progressive schemes are
more complex and typically not as efficient as single-
resolution methods, but reduce quite significantly the
latency in the decoder process.
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In this paper, we investigate the use of polynomial linear
filtering [16,17], as a global predictor for the geometry data
of a 3D mesh in multi-resolution 3D geometry compression
schemes. As in other multi-resolution geometry compres-
sion schemes, the geometry of a certain level of detail is
predicted as a function of the geometry of the next coarser
level of detail. However, other 3D geometry compression
schemes use simpler and more localized prediction
schemes.

Although, we concentrate on the compression of geome-
try data, property data may be treated similarly. The meth-
ods introduced in this paper apply to the large family of
multi-resolution connectivity encoding schemes. These
linear filters are defined by the connectivity of each
level of detail and a few parameters, which in this
paper are obtained by minimizing a global criterion
related to certain desirable properties. Our simulations
present the least-square filters compared with some
other standard filters.

In Ref. [12], the Butterfly subdivision scheme is used for
the predictor. In Ref. [7], a special second-order local criter-
ion is minimized to refine the coarser resolution mesh. The
latter class of algorithms has concentrated on mesh simpli-
fication procedures and efficient connectivity encoding
schemes. For instance, in the Progressive Forest Split
scheme [18], the authors have used a technique where the
sequence of splits is determined based on the local volume
conservation criterion. Next, the connectivity can be effi-
ciently compressed as presented in the aforementioned
paper or as in Ref. [15].

Mesh simplification has also been studied in a different
context. Several works address the remeshing problem,
usually for editing purposes. For instance in Ref. [4],
the harmonic mapping is used to resample the mesh.
Thus, the remeshing is obtained by minimizing a global
curvature-based energy criterion. A conformal map is
used in Ref. [10] for similar purposes, whereas in
Ref. [11] again a global length based energy criterion
is used to remesh.

The organization of the paper is as following. In Section
2, we review the mesh topology based filtering and
introduce the basic notions. In Section 3, we present
two geometry-encoding algorithms. In Section 4, we
analyze three desirable properties: accuracy, robustness
and compression ratio. In Section 5, we present numer-
ical and graphical results; and finally, the conclusions
are contained in Section 6 and are followed by the
bibliography.

2. Mesh topology based filtering

Consider a mesh (V, F) given by a list of vertex
coordinatesV (the mesh geometry) of the nV vertices,
and a list of polygonal facesF (the mesh connectivity).

The mesh geometry can be thought of as a collection of
three vectors (x,y,z) of length nV containing, respec-
tively, the three coordinates of each vertex; alternatively
we can seeV as representing a collection ofnV vectors
�r0; r1;…; rnV� of length 3, each of them being the
position vector of some mesh vertex. To the listF
we associate the symmetricnV× nV vertex to vertex
incidence matrixM, and thenV× nV matrix K defined
by:

K � I 2 DM �1�

where D is the nV× nV diagonal matrix whose (i,i)
element is the inverse of the number of first-order
neighbors the vertexi has. As shown in Ref. [16],K
has nV real eigenvalues all in the interval [0,2].

Consider now a collectionP� �Px�X�;Py�X�;Pz�X�� of
three polynomials each of degreed, for some positive inte-
gerd.

Definition We callP a polynomial filter of length d1 1
(anddegreeor order d), where its action on the meshV, F
is defined by a new meshV 0, F of identical connectivity
but of geometryV 0 � �x0; y0; z0� given by:

x0 � Px�K�x; y0 � Py�K�y; z0 � Pz�K�z �2�
A rational filter (Q,P) of orders (m,n) is defined by two

collections of polynomials�Qx;Qy;Qz� and �Px;Py;Pz� of
degreesm, respectively,n, whose action on the meshV,
F is defined by the new meshV 0, F through:

Qx�K�x0 � Px�K�x; Qy�K�y0 � Py�K�y;
Qz�K�z0 � Pz�K�z

�3�

To avoid possible confusions, we assumeQx�K�; Qy�K� and
Qz�K� invertible. We point out the filtered mesh has the
same connectivity as the original mesh; only the geometry
changes. Note also the filter works for non-manifold
connectivity as well.

In this report we consider only polynomial filters, i.e.
rational filters of the form (1,P). In Ref. [3], the authors
considered the case (Q,1). Note the distinction between
polynomial and rational filters is artificial. Indeed, any
rational filter is equivalent to a polynomial filter of length
nV, in general, and in fact, any polynomial filter of degree
larger thannV is equivalent to a polynomial filter of degree
at most nV2 1. These facts are results of the Cayley–
Hamilton theorem (see Ref. [5], for instance) that says the
characteristic polynomial ofK vanishes when applied onK.
Therefore:

Q�K�21P�K� � P0�K� �4�

for some polynomialP0 of degree at mostnV2 1. Hence,
the notion of Infinite Impulse Response (IIR) filter does not
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have any correspondence in the mesh topology based
filtering, because any polynomial of higher order or rational
filter is equivalent to a polynomial filter of degree at most
nV2 1, thus, a Finite Impulse Response (FIR) filter.
However, the difference between polynomial and
rational filters lays in their implementation. The poly-
nomial filter is easily implemented by a forward itera-
tion scheme. The rational filter can be implemented by
a forward–backward iteration scheme:

w� Px�K�x Qx�K�x0 � w �5�

involving the solution of a linear system of sizenV. For
small degreesm, n compared tonV (when the rational
form has an advantage), the backward iteration turns
into a sparse linear system, and thus efficient methods
can be applied to implement it.

Two particular filtering schemes are of special impor-
tance to us and are studied next. The first scheme is called
the Zeroth Order Filter and is simply defined by the
constant polynomial 1:

PZ�X� � �1;1; 1� �6�

Technically speaking, with the order definition given
before, this is a zero order filter, but the most general
form of zero order filters would be constant polynomials,
not necessarily 1. However, throughout this paper we keep
this convention to call the constant polynomial 1, the Zeroth
Order Filter. Note its action is trivial: it does not change
anything.

The second distinguished filtering scheme is called Gaus-
sian Smoothing and it is a first-order filter defined by:

PG�X� � �1 2 X; 1 2 X;1 2 X� �7�

Using the definition ofK and the filter action on the mesh
geometry, the geometry of the Gaussian filtered mesh is
given by:

x0 � DMx; y0 � DMy; z0 � DMz �8�

which turns into the following explicit form (using the
position vectorsri and the first-order neighborhoodi * of
vertex i):

r 0i � 1
uipu

X
v[ip

rv �9�

In other words, the new mesh geometry is obtained by
taking the average of the first-order neighbors’ positions
on the original mesh.

3. The progressive approximation algorithms

In progressive transmission schemes, the original
mesh is represented as a sequence of successively
simplified meshes obtained by edge collapsing and
vertex removal. Many simplification techniques have
been proposed in the literature. For instance in Ref.
[18] the progressive forest split method is used. It
consists of partitioning the mesh into disjoint patches
and in each patch a connected sequence of edge collap-
sing is performed.

The meshes we are using here have been simplified by a
clustering procedure. First, all the coordinates are normal-
ized so that the mesh is included in a 3D unit cube. Next the
cube is divided along each coordinate axis into 2B segments
(B is thequantizing rate, representing the number of bits per
vertex and coordinate needed to encode the geometry), thus
obtaining 23B smaller cubes. In each smaller cube, all the
edges are collapsed to one vertex placed in the center of
the corresponding cube. The mesh thus obtained represents
the quantized mesh at the finest resolution level. The
coarsening process proceeds now as follows: 23K smaller
cubes are replaced by one of edge size 2K times bigger,
and all the vertices inside are removed and replaced
by one placed in the middle of the bigger cube.
Next, the procedure is repeated until we obtain a suffi-
ciently small number of vertices (i.e. a sufficient coarse
resolution).

At each level of resolution, thecollapsing ratio (i.e.
the number of vertices of the finer resolution, divided
by the number of vertices of the coarser resolution) is
not bigger than 23K. In practice, however, this number
could be much smaller than this bound, in which case
some levels may be skipped. Afterl steps, the number
of bits needed to encode one coordinate of any such
vertex is B–lK. Thus, if we consider all the levels of
detail and a constant collapsing ratioR, the total
number of bits per coordinate needed to encode the
geometry becomes:

Mb � NB1
N
R
�B 2 K�

1
N

R2 �B 2 2K�1 …1
N
RL �B 2 LK�

where N is the initial number of vertices andL the
numbers of levels. Assuming 1=RL

p 1 we obtain

Mb � NB
R

R2 1
1 NK

R

�R2 1�2 :

Thus, the number of bits per vertex (of initial mesh)
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and coordinate turns into:

Nbits .
R

R2 1
B 1

K
R2 1

� �
�bits=vertex·coordinate� �10�

Thus, if we quantize the unit cube usingB� 10 bits
and we resample at each level with a coarsening factor
of 2K � 2 and a collapsing ratioR� 2; we obtain the
sequence asB=K � 10 levels of details encoded using an
average of 22 bits/vertex·coordinate, or 66 bits/vertex
(including all three coordinates). Thus, a single resolu-
tion encoding would require onlyB (10, in this exam-
ple) bits per vertex and coordinate in an uncompressed
encoding. Using the clustering decomposition algorithm,
the encoding of all levels of details would requireNbits

(given by Eq. (10)), about 22 in this example, which is
more than twice the single resolution rate.

In this scenario, no information about the coarser resolu-
tion mesh has been used to encode the finer resolution
mesh. In a progressive transmission, the coarser approx-
imation may be used to predict the finer approximation
mesh and thus only the differences should be encoded
and transmitted. Moreover, the previous computations did
not take into account the internal redundancy of the bit
stream. An entropy encoder would perform much better
than Eq. (10). In this paper, we do not discuss the
connectivity encoding problem, since we are interested in
the geometry encoding only. Yet, we assume at each level
of detail the decoder knows the connectivity of that level
mesh.

Suppose (MeshnL21, mapnL22,nL21, MeshnL22, mapnL23,nL22,
…, map1,2, Mesh1, map0,1, Mesh0) is the sequence of meshes
obtained by coarsening algorithm, whereMeshnL21 is the
coarsest resolution mesh,Mesh0 the finest resolution
mesh, and mapl21;l : {0 ; 1;…;nVl21 2 1} ! {0 ; 1;…;

nVl 2 1} is the collapsing mapthat associates to thenVl21

vertices of the finer resolution mesh, thenVl vertices of the
coarser resolution mesh where they collapse. Each mesh
Meshl has two components (Geoml, Connl), the geometry
and connectivity, respectively, as explained earlier. We
are concerned with the encoding of the sequence of geome-

tries (GeomnL21, GeomnL22, …, Geom1, Geom0). Our basic
encoding algorithm is the following.

3.1. The basic encoding algorithm

Step 1. Encode GeomnL21 using an entropy or arithmetic
encoder;
Step 2. For l� nL 2 1 down to 1 repeat:

Step 2.1 Based on mesh Meshl and connectivity
Connl21 find a set of parameters Paraml21 and
construct a predictor of the geometry Geoml21:

Gêoml21 � Predictor

�Meshl ;Connl21;mapl21;l ;Paraml21�

Step 2.2 Encode the parameters Paraml21;
Step 2.3 Compute the approximation error Diffl21 �
Geoml21 2 Gêoml21 and encode the differences.S

The decoder will reconstruct the geometry at each level
by simply adding up the difference to his prediction:

Geoml21 � Predictor�Meshl ;Connl21;mapl21;l ;Paraml21�
1 Diffl21

It is clear that different predictors yield different perfor-
mance results. In the next section, we present several desir-
able properties of the encoding scheme.

The data packet structure is represented in Table 1.
ThePredictorconsists of applying the sequence of opera-

torsextension, where the geometry of levell is extended to
level l 2 1, and update, where the geometry is updated
using a polynomial filter whose coefficients are calledpara-
metersof the predictor and whose matrix is the finer resolu-
tion incidence matrixKl21.

The extension step is straightforwardly realized using the
collapsing maps:

r l21;ext
i � r l

mapl21;l �i� �11�
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Table 1
The data packet structure for the basic encoding algorithm

MeshnL21 MapnL22,nL21&ConnnL22 ParamnL22 DiffnL22 ··· Map0,1&Conn0 Param0 Diff0

Table 2
The data packet structure for the variable encoding algorithm

MeshnL21 MapnL22;nL21&ConnnL22 ParamnL22 DiffnL22 … Maps12;211&Conns11

Params11 Diffs11 Maps11;s&Conns Params Maps;s21&Conns21 Params21 …
… Map2;1&Conn1 Param1 Map0;1&Conn0 Param0 Diff0



Thus the first “prediction” of the new vertexi is on the
same point where it collapses, i.e. the position of the
vertex mapl21;l�i� in mesh l. Next, the updating step is
performed by polynomial filtering as in Eq. (2). The
filter coefficients are the predictor parameters and have
to be found and encoded. On each coordinate, we use a
separate filter. In the next section, we introduce differ-
ent criteria to measure the prediction error associated
to a specific property. In Ref. [18], Taubin filters (i.e.
of the form P�X� � �1 2 lX��1 1 mX�� have been used
as predictors, but no optimization of the parameters
has been done. Here, we use more general linear
filters taking into account several performance criteria
as well.

More specific, let us denote byxl21;ext
i thenVl21-vector of

x-coordinates obtained by extension (11), and byxl21;updt

the filtered vector with the polynomialpx�X� �
Pd

k�0 ckX
k

of degreed,

xl21;updt� Px�Kl21�xl21;ext �12�
Let r l21 denote thenVl21 × 3 matrix containing all the

coordinates in the natural order,r l21 � �xl21uyl21uzl21�;
similar for r l21;updt

: The update is our prediction for the
geometryGeoml21. Then the coefficients are chosen to mini-
mize somelp-norm of the prediction error:

min
Filters Coefficients

Jl21 � ir l21 2 r l21;updtilp �13�

Note the optimization problem decouples into three inde-
pendent optimization problems, because we allow different
filters on each coordinate. The polynomialPx(X) can be
represented either in the power basis, i.e.Px�X� �Pd

k�0 ckX
k
; or in another basis. We tried the Chebyshev

basis as well, in which casePx�X� �
Pd

k�0 ckTk�X� with Tk
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Fig. 1. The car mesh at the finest resolution (left) and the coarsest resolution (right) after seven levels of reduction.

Fig. 2. The car mesh at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth Order Filter (top left); the Gaussian
Smoother (top right); the least-squares filter of order 1 (bottom left) and the least-squares filter of order 3 (bottom right).



the kth Chebyshev polynomial. On each coordinate, the
criterion Jl21 decouples as follows:

Jl21 � i�Jl21
x ; Jl21

y ; Jl21
z �ilp; Jl21

x � iAxc
l21
x 2 xl21ilp;

Jl21
y � iAyc

l21
y 2 yl21ilp; Jl21

z � iAzc
l21
z 2 zl21ilp;

�14�
where thenv× d 1 1 matrix Ax is either

Ax � �xl21;updtuKl21xl21;updtu…uKd
l21xl21;updt� �15�

in the power basis case, or

Ax � �xl21;updtuT1�Kl21�xl21;updtu…uTd�Kl21�xl21;updt� �16�
in the Chebyshev basis case.cl21

x is thed 1 1-vector of the
x-coordinate filter coefficients andxl21 the nVl21-vector of
the actualx-coordinates all computed at levell 2 1. Similar
for Ay;Az; cy; cz; andyl21

; zl21
:

The basic encoding algorithm can be modified to a more
general context. The user may select the levels for which the
differences are sent. Then, for those levels the differences
are not sent, the extension step to the next level has to use
the predicted values instead of the actual values of the
current level. In particular, we may want to send the differ-
ences starting with levelnL 2 1 and going down to some

level S1 1; then, from levelS down to level 0, we do not
send any difference but just the parameters, excepted for the
level 0 when we send the differences as well. The algorithm
just described is presented next.

3.2. The variable length encoding algorithm

Step 1. EncodeMeshnL21;

Step 2. For l � nL 2 1 down toS repeat:
Step 2.1Estimate the parametersParaml21 by mini-
mizingJl21

; where the predictor uses the true geometry
of level l, Geoml:

Gêoml21

� f �Connl ;Connl21;mapl21;l ;Geoml ;Paraml21�

Step 2.2Encode the parametersParaml21;
Step 2.3If l ± S; encode the differencesDiffl21 �
Geoml21 2 Gêoml21;

Step 3. For l � S2 1 down to 1
Step 3.1Estimate the parametersParaml21 by mini-
mizing Jl21 where the predictor uses the estimated
geometry of levell:

Gêoml21

� f �Connl ;Connl21;mapl21;l ;Gêoml ;Paraml21�

Step 3.2Encode the parametersParaml21;
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Table 3
Compression ratio results for several filtering schemes applied to the car mesh rendered in Fig. 1

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 795 795 795 795
Coefficients 0 0 168 336
Differences 21,840 64,611 22,520 22,574

Total (bytes) 22,654 65,425 23,503 23,725
Rate (bits/vertex) 14.17 40.94 14.71 14.82

Table 4
Compression ratios for different filter lengths in power basis

Filter’s degree 1 2 3 4 5 6 7

bits/vertex 14.71 14.82 14.85 14.89 14.96 15.04 15.11

Table 5
Compression ratios in the single resolution implementation of the variable length encoding algorithm applied to the car mesh rendered in Fig. 1

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 795 795 795 795
Coefficients 0 0 168 336
Differences 27,489 27,339 25,867 25,532

Total (bytes) 28,306 28,156 26,859 26,690
Rate (bits/vertex) 17.71 17.62 16.81 16.68

l 2 error/vertex(1024) 11.96 18.64 9.33 8.44
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Fig. 3. Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to the car mesh rendered in Fig. 1.

Fig. 4. The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper left); Gaussian Smoothing (upper
right); LS first order (lower left) and LS third order (lower right).



Step 4. Using the last prediction of level 0, encode the
differences,Diff0 � Geom0 2 Gêom0: S

In this case, the data packet structure is the one represented
in Table 2. In particular, forS� nL only the last set of
differences is encoded. This represents an alternative to
the single-resolution encoding scheme.

4. Desired properties

In this section, we discuss three properties we may want
the encoding scheme to possess. The three properties: accu-
racy, robustness, and compression ratio yield different opti-

mization problems all of the type mentioned before. Thel p-
norm to be minimized is different in each case. For accuracy
the predictor has to minimize thel∞ norm, for robustness the
l 2 norm should be used, whereas the compression ratio is
optimized forp [ �1;2� in general. Thus, a sensible criter-
ion should be a trade-off between these various norms.
Taking the computational complexity into account, we
have chosen thel 2-norm as our criterion and in the following
section of examples, we show several results we have
obtained.

4.1. Accuracy

Consider the following scenario: suppose we chooseS�
nL; the number of levels, in the variable length encoding
algorithm. Suppose also the data block containing the level
zero differences is lost (note this is the only data block
containing differences becauseS� nL�: In this case, we
would like to predict the finest resolution mesh as accurately
as possible based on the available information. Equiva-
lently, we would like to minimize the distance between
Mesh0 and the predictionMêsh0, under the previous
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Table 6
Compression ratio results for several filtering schemes applied to the round table mesh rendered in Fig. 5

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 438 438 438 438
Coefficients 0 0 168 336
Differences 22,739 51,575 23,645 23,497

Total (bytes) 23,196 52,032 24,274 24,295
Rate (bits/vertex) 15.63 35.07 16.36 16.37

Table 7
Compression ratios for different filter lengths, in power basis, for the round
table

Filter’s degree 1 2 3 4 5 6 7
bits/vertex 16.36 16.34 16.37 16.50 16.62 16.73 16.88

Fig. 5. The round table mesh at the finest resolution (left) and the coarsest resolution (right) after seven levels of reduction.



hypothesis. There are many ways of measuring mesh
distances. One such measure is the Haussdorf distance.
Although, it describes very well the closeness of two
meshes, the Haussdorf distance yields a computational
expensive optimization problem. Instead of Haussdorf
distance one can consider the maximum distance between
vertices (i.e. thel∞-norm, see Ref. [1]):

1a � max
0#i#nV0 2 1

ir0
i 2 r̂0

i i V ir0 2 r̂0il∞

Note the l∞-norm is an upper bound for the Haussdorf
distance. Consequently1a controls the meshes closeness
as well. As mentioned in the previous section, the optimiza-

tion problem (13) decouples in three independent optimiza-
tion problems. Forp� ∞; these have the following form:

inf
c

iAc2 bil∞ �17�

whereA was introduced by Eqs. (15) and (16), depending on
the basis choice,c is thenf-vector of unknown filter coeffi-
cients, andb is one of the three vectorsx, y or z. For 0#
i # nV 2 1;0 # j # fL 2 1; A� �aij �; b� �bi� and writ-
ing cj � fj 2 gj with fj $ 0; the positive part, andgj $ 0;
the negative part ofcj (thus at least one of them is always
zero), the optimization problem (17) turns into the following
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Fig. 6. The round table mesh at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth Order Filter (top left); the
Gaussian Smoother (top right); the least squares filter of order 1 (bottom left) and the least squares filter of order 3 (bottom right).



linear programming problem:

max
w;fj ;gj ;ui ;vi

2w 2 1
Xd
j�0

� fj 1 gj�
24 35

subject to: w; fj ;gj ;ui ; vi $ 0

bi � ui 1
Xd
j�0

aij � fj 2 gj�2 w

bi � 2vi 1
Xd
j�0

aij � fj 2 gj�1 w

�18�

with 1 a small number to enforce at least one offj or gj to
be zero (for instance1 � 1026�: With the standard
simplex algorithm, this problem requires the storage
of a �2nV 1 2� × �2nV 1 2d 1 2�-matrix (the so-called
tableaux) which is prohibitive for large number of vertices
(nVof order 105, for instance). In any case, the moral of this
subsection is to point out that the more accurate predictor is
the one that achieves a lowerl∞-norm error.

4.2. Robustness

Consider now the following scenario: the differences
associated to the prediction algorithm are not set to zero

but perturbed by some random quantities. This may be
due to several causes. We can either imagine irretrievable
transmission errors or even a resampling process at the
transmitter to reduce the code length of the entire object.
In any case, we assume the true differencedi is perturbed by
some stochastic processn i. Thus, the reconstructed geome-
try has the form

xl21;reconstr
i � x121;updt

i 1 diffi 1 ni :

We assume the perturbations are about of the same size as
the prediction differences. Next, suppose we want to
minimize in average the effect of these perturbations.
Then, one such criterion is the noise varianceE�n2

i �: Assum-
ing the stochastic process is ergodic, it follows that the noise
variance can be estimated by the average of all the coordi-
nate perturbations:

E�n2
i � � 1

N

XN 2 1

i�0

n2
i :

Next, since the perturbation is of the same order as the
prediction error, the later term can be replaced by the aver-
age of the differences. Hence, we want to minimize:

E�n2
i � .

1
N

XN 2 1

i�0

d2
i
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Fig. 7. Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to the round table renderedin Fig. 5.
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Fig. 8. The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper left); Gaussian Smoothing (upper
right); LS first order (lower left) and LS third order (lower right).

Fig. 9. The skateboard mesh at the finest resolution (left) and the coarsest resolution (right) after eight levels of reduction.



R. Balan, G. Taubin / Computer-Aided Design 32 (2000) 825–846836

Fig. 10. The skateboard mesh at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth Order Filter (top left); the
Gaussian Smoother (top right); the least squares filter of order 1 (bottom left) and the least squares filter of order 3 (bottom right).
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Fig. 11. Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to the mesh rendered in Fig. 9.



This shows that a criterion of robustness is the total energy
of the differences. In this case, our goal to increase the
robustness of the algorithm is achieved by decreasing the
l 2-norm of the prediction errors. Thus, the filters are the
solvers of the optimization problem (13) forp� 2: The
solution in terms of filter coefficients is very easily obtained
by using the pseudoinverse matrix. Thus, the solution of:

inf
c

iAc 2 bil2

is given by:

c� �ATA�21ATb �19�

4.3. Compression ratio

The third property we discuss now is the compression
ratio the algorithm achieves. In fact, if no error or further
quantization is assumed, the compression ratio is perhaps
the most important criterion in judging and selecting an

algorithm. In general, estimating compression ratios is a
tough problem due to several reasons. First of all, one
should assume a stochastic model of the data to be encoded.
In our case, we encode the vectors of prediction errors,
which in turn depend on the mesh geometry and the way
we choose the filters’ coefficients. Next, one should have an
exact characterization of the encoder’s compression ratio.
The best compression ratio, assuming a purely stochastic
data, is given by Shannon’s entropy formula and, conse-
quently, by the entropy encoder which strives to achieve
this bound (Shannon-Fano and Huffman codings—see
Ref. [21] or [2]). However, the entropy encoder requires
some a priori information about the data to be sent, as
well as overhead information that may affect the global
compression ratio. Alternatively, one can use adaptive enco-
ders like the adaptive arithmetic encoder as in the JPEG/
MPEG standards (see Ref. [13]). This encoder may perform
better in practice than blind entropy or arithmetic encoders,
however, it has the important shortcoming that its
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Fig. 12. The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper left); Gaussian Smoothing (upper
right); LS first order (lower left) and LS third order (lower right).

Fig. 13. The piping mesh at the finest resolution (left) and the coarsest resolution (right) after seven levels of reduction.



compression ratio is not characterized by a closed formula.
In any case, for purely stochastic data the best compression
ratio is bounded by Shannon’s formula, which we discuss
next. We thus assume our bit sequence encoding scheme
achieves this optimal bound. Suppose the quantized differ-
encesxi ; 0 # i # N 2 1; are independently distributed and
have a known probability distribution, sayp�n�; 22B21 #
n # 2B

: Thusp(n) is the probability that a difference isn. In
this case, the average (i.e. expected value) of the number of
bits needed to encode one such difference is not less than:

RShannon� 2
X2B2 1

n�2 2B2 1

p�n� log2p�n�

where 2B is the number of quantization levels (see Ref.
[19]). Assuming now the ergodic hypothesis holds true,
p(n) can be replaced by the repetition frequencyp�n� �
f �n�=N; where f(n) is the repetition number of the valuen
and N the total number of values (presumablyN � 3nV�:
Thus, if we replace the firstp(n) in the above formula by this

frequency, the sum turns into

R� 2
1
N

XN 2 1

i�0

log2p�n� xi�

Note the summation index has changed. At this point we
have to assume a stochastic model for the prediction errors.
We consider the power-type distribution that generalizes
both the Gaussian and Laplace distributions, that are
frequently used in computer graphics models (see Ref.
[12], for instance):

p�x� � a
1
a a

2G
1
a

� � exp�2auxu a� �20�

whereG (x) is the Euler’s Gamma function (to normalize the
expression) anda is a parameter. Fora � 1 it becomes the
Laplace distribution, whereas fora � 2 it turns into
the Gauss distribution. Then, the previous rate formula
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Fig. 14. The piping mesh at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth Order Filter (top left); the
Gaussian Smoother (top right); the least squares filter of order 1 (bottom left) and the least squares filter of order 3 (bottom right).

Table 8
Compression ratios in the Single Resolution implementation of the Variable length encoding algorithm applied to the round table mesh rendered in Fig. 5

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 438 438 438 438
Coefficients 0 0 168 336
Differences 30,386 29,138 27,972 27,377

Total (bytes) 30,847 29,599 28,609 28,146
Rate (bits/vertex) 20.79 19.95 19.28 18.97

l 2 error/vertex(1022) 15.85 17.38 11.17 9.97



turns into:

R� R0 1
a log2e

N

XN 2 1

i�0

uxi u
a
;

R0 � 1 1 log2G
1
a

� �
2 log2a 2

1
a

log2a

Now we replace the parametera by an estimate of it. An
easy computation shows the expected value ofuxua for thea -
power p.d.f. (Eq. (20)) isE�uxua� � 1=aa: Thus, we get the

following estimator for the parametera:

â� 1
a

NXN 2 1

i�0

uxi u
a

and the above formula of the rate becomes:

R� r0�a�1
1
a

log2

XN 2 1

i�0

uxi u
a

" #
;

r0�a� � 1 1 log2

G� 1
a
�

a
1

1
a

log2
ea
N

�21�

Consider now two linear predictors associated to two
different linear filters. Each of them will have different
prediction errors. If we assume the prediction errors are
independent in each case and distributed by the same
power law with exponenta but maybe different parameters
a1, respectivelya2, then the prediction scheme that yields
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Table 9
Compression ratio results for several filtering schemes applied to the skateboard rendered in Fig. 9

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 444 444 444 444
Coefficients 0 0 168 336
Differences 22,735 46,444 22,627 22,443

Total (bytes) 23,199 46,908 23,259 23,247
Rate (bits/vertex) 14.33 28.98 14.37 14.36

Table 10
Compression ratios for different filter lengths, in power basis, for the round
table

Filter’s degree 1 2 3 4 5 6 7
bits/vertex 14.37 14.32 14.36 14.45 14.48 14.54 16.01

Table 11
Compression ratios in the Single Resolution implementation of the variable length encoding algorithm applied to the skateboard rendered in Fig. 9

Zeroth Order Gaussian Smoothing LS Filter of degree 1 LS Filter of degree 3

Coarsest mesh 444 444 444 444
Coefficients 0 0 168 336
Differences 28,931 27,082 26,542 26,436

Total (bytes) 29,397 27,549 27,184 27,250
Rate (bits/vertex) 18.16 17.02 16.80 16.84

l2 error/vertex(1024) 43.87 51.83 38.82 36.12

Table 12
Compression ratio results for several filtering schemes applied to the piping construction mesh rendered in Fig. 13

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 522 522 522 522
Coefficients 0 0 144 288
Differences 2605 31,595 2625 2673

Total (bytes) 3146 32,136 3311 3503
Rate (bits/vertex) 1.38 14.17 1.46 1.54



the sequence of differences with smallerla-norm has a
better (entropic) compression bound and, therefore, is
more likely to achieve a better compression ratio. Equiva-
lently, the p.d.f. that has a larger parametera, or is narrower,
would be encoded using fewer bits.

The argument we presented here suggests that a better
compression ratio is achieved by the prediction scheme
that minimizes thela-norm of the prediction error, where
a is the p.d.f.’s characteristic exponent (when it is a power-
type law), usually between 1 (the Laplace case) and 2 (the
Gaussian case). Forp� 2; the optimizing filter is found by
using the pseudoinverse ofA as in Eq. (19). Forp� 1; the
optimizer solves the linear programming problem:

max
fj ;gj ;ui ;vi

XN 2 1

i�0

2ui 2 vi 2 1
Xd
j�0

� fj 1 gj�
24 35

subject to: fj ; gj ; ui ; vi $ 0

bi � ui 2 vi 1
Xd
j�0

aij � fj 2 gj�

�22�

with 1 as in Eq. (18), which involves (in the simplex algo-
rithm) a �N 1 2� × �2N 1 2d 1 1� matrix and the same
computational problems as Eq. (18).

5. Examples

In this section, we present a number of examples of our
filtering algorithm. For several meshes, we study the accu-
racy the fine resolution mesh is approximated, and also the
compression ratio obtained for different filter lengths.

First, we analyze the basic encoding algorithm presented
in Section 3. The filters’ coefficients are obtained by solving
the optimal problem (13) forp� 2; i.e. we use the least-
squares solution.

The car mesh represented in Fig. 1 (left) havingnV0 �
12;784 vertices and 24,863 faces is decomposed into a
sequence of eight levels of detail. The coarsest resolution
mesh ofnV7 � 219 vertices is rendered in Fig. 1 (right). We
used several filter lengths to compress the meshes. In parti-
cular, we study four types of filters, namely the Zeroth Order
Filter, the Gaussian Smoother and filters of orderd� 1 and
d� 3 (decomposed in power basis). The last two filters will
be termed as “higher order filters”, although their order is
relatively low. To check the accuracy of the approximation,
we used the prediction algorithm assuming the differences
are zero at all levels. The four meshes corresponding to the
four filters are represented in Fig. 2.

Note the Zeroth Order Filter does not change the geome-
try at all (because of its pure extension nature). It gives the
worst approximation of the mesh, yet it has the best
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Table 13
Compression ratios for different filter lengths, in power basis, for the piping
construction

Filter’s degree 1 2 3 4 5 6 7
bits/vertex 1.46 1.50 1.54 1.58 1.61 1.65 1.69

Table 14
Compression ratios in the Single Resolution implementation of the variable length encoding algorithm applied to the piping construction rendered in Fig. 13

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 522 522 522 522
Coefficients 0 0 168 336
Differences 19,160 41,278 21,009 21,573

Total (bytes) 19,704 41,823 21,701 22,458
Rate (bits/vertex) 8.69 18.44 9.57 9.90

l 2 error/vertex(1022) 1.21 22.96 1.20 1.20

Table 15
Compression ratio results for several filtering schemes applied to the sphere rendered in Fig. 17

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 881 881 881 881
Coefficients 0 0 72 144
Differences 29,770 22,614 19,762 13,395

Total (bytes) 30,673 23,518 20,738 14,440
Rate (bits/vertex) 23.96 18.37 16.20 11.28

Table 16
Compression ratios for different filter lengths, in power basis, for sphere

Filter’s degree 1 2 3 4 5 6 7
bits/vertex 16.20 12.90 11.28 10.59 10.36 10.42 10.69
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Fig. 15. Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to the mesh rendered in Fig. 13.

Fig. 16. The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper left); Gaussian Smoothing (upper
right); LS first order (lower left) and LS third order (lower right).



compression ratio (see below). The Gaussian filter smoothes
out all the edges, a natural consequence since it really corre-
sponds to a discrete diffusion process. The higher order
filters (i.e. first order and third order) trade-off between
smoothing and compression.

In terms of the compression ratio, the four filters have
performed as shown in Table 3. Varying the filter length,
we found the compression ratios indicated in Table 4: all the
results apply to the geometry component only. The connec-
tivity is not presented here.

Next we study the variable length encoding algorithm for
the four particular filters mentioned before with the para-
meterS� nL (i.e. in the Single Resolution case). Thus, the
mesh geometry is obtained by successively filtering
the extensions of the coarser mesh and, at the last level,
the true differences are encoded. In terms of accuracy, we
obtained very similar meshes. More significantly are the
compression ratios, shown in Table 5. To analyze the
compression ratios of these four filters, we also have plotted
the histogram of the errors on a semilogarithmic scale in
Fig. 3. Note the power-type p.d.f. hypothesis is well satisfied
by the Zeroth, LS 1st and LS 3rd order filters, and less by the
Gaussian smoother. Also as smaller thel 2-norm error gets,
as narrower the p.d.f. and as smaller the rate becomes, in
accordance with the conclusions of Section 4.3.

Equally important is how these errors are distributed on
the mesh. In Fig. 4, we convert the actual differences into a
scale of colors and set this color as an attribute for each
vertex. Darker colors (blue, green) represent a smaller
error, whereas lighter colors (yellow, red) represent a larger
prediction error. The darker the color the better the predic-
tion and also the accuracy. All the errors are normalized
with respect to the averagel 2-norm error per vertex for

that particular filter. The averagel 2-norm error is given on
the last row in Table 5.

Note in the Single Resolution case there is not much
difference among the filtering schemes considered. In parti-
cular, the higher order filters perform better than the Zeroth
Order Filter, and the Gaussian filter behaves similarly to the
other filters. This is different to the Multi-Resolution case in
Table 3. There, the Gaussian filter behaves very poorly, and
the Zeroth Order Filter gives the best compression ratio. In
fact it is better than the Single Resolution case (Tables 6 and
7). On the other hand, with respect to the accuracy, the
higher order filters give a more accurate approximation
than the Zeroth Order Filter.

About the same conclusions hold for three other meshes
we used: the round table, the skateboard and the piping
construction. The round table rendered in Fig. 5, left, has
nV0 � 11;868 vertices and 20,594 faces. The coarsest reso-
lution mesh (at level eight, pictured on the right side) has
nV7 � 112 vertices. The predicted mesh after eight levels of
decomposition when no difference is used, is rendered in
Figs. 6–8.

The skateboard mesh at the finest resolution (left, in Fig.
9) hasnV0 � 12;947 vertices and 16,290 faces. At the coar-
sest resolution (right, in the same figure) it hasnV7 � 125
vertices (see also Fig. 10).

The piping construction hasnV0 � 18; 138 vertices, and
after seven levels of details, it is reduced tonV0 � 147
vertices. The first simplification step achieves almost
the theoretical bound: from 18,138 vertices, the mesh
is simplified to 2520 vertices (Figs. 11 and 12). The
original mesh and its approximations are rendered in
Figs. 13 and 14.

The last mesh we discuss is somewhat different to the
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Fig. 17. The sphere at the finest resolution (left) and the coarsest resolution (right) after four levels of reduction.



other. It is a sphere ofnV0 � 10;242 vertices and 20,480
faces that reduces after four levels tonV3 � 224 vertices.
The striking difference is the compression ratio of the
Zeroth Order filter: it is the worst of all the filters we
checked (Tables 8–16). Even the Gaussian filter fares better
than this filter (Figs. 15 and 16). Snapshots of the approxi-
mated meshes are pictured in Figs. 17 and 18. The mesh
used is non-manifold but this is not a problem for the
geometry encoder. The histograms shown in Fig. 19 are in
accordance with the rate results presented in Table 17: the
narrower the distribution the better the rate. Note also how
well a power-type low fits the 3rd order filtered distribution
(Fig. 20).

These examples show that in terms of compression ratio,

the Zeroth Order Filter compresses best the irregular and
less smooth meshes, whereas higher order filter are better
for smoother and more regular meshes. However, in terms
of accuracy and robustness, the higher order filters perform
much better than its main “competitor”, the Zeroth Order
Filter. Note, except for highly regular meshes (like sphere,
for instance), relatively low-order filters are optimal. The
range [1…5] seems enough for most of the encoding
schemes.

6. Conclusions

In this paper, we study the 3D geometry filtering using the
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Fig. 18. The sphere at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth Order Filter (top left); the Gaussian
Smoother (top right); the least squares filter of order 1 (bottom left) and the least squares filter of order 3 (bottom right).



discrete Laplace operator. We next apply the filtering tech-
nique to Multi Resolution Analysis where the original mesh
is converted into a sequence of successive refinements.
Based on the coarser resolution mesh, the finer resolution
mesh is predicted using an extension map followed by filter-
ing. At each level, the coordinate vectors are filtered sepa-
rately using different filters. These filters are optimizers of
some prediction error norm. Thus the geometry of a
sequence of successively refined meshes is encoded in the
following format: first the coarsest resolution mesh geome-
try and next for each successive level, the filters coefficients

and prediction errors. The connectivity information is
supposed to be known at each level separately.

Next, we study several desirable properties of any encod-
ing scheme, finding for each one the appropriate criterion to
be optimized. Thus, for a better accuracy of the predicted
mesh when no difference is available, the filter coefficients
should minimize thel∞-norm of the prediction errors. For
robustness, as understood in signal processing theory, the
filters should minimize thel 2-norm of the differences. The
third property, the compression rate, is maximized when
the l∞-norm is replaced by ala-norm with a usually
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Fig. 19. Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to the sphere mesh rendered in
Fig. 17.

Table 17
Compression ratios in the Single Resolution implementation of the variable length encoding algorithm applied to the sphere rendered in Fig. 17

Filter Zeroth Order Gaussian Smoothing LS of degree 1 LS of degree 3

Coarsest mesh 881 881 881 881
Coefficients 0 0 168 336
Differences 28,904 22,152 20,904 17,920

Total (bytes) 29,806 23,055 21,885 18,971
Rate (bits/vertex) 23.28 18.00 17.09 14.82

l 2 error/vertex(1024) 6.85 2.36 1.81 1.11



between 1 and 2, depending on the prediction error’s p.d.f.
Thus, if the differences are Laplace distributed, thel 1-norm
should be minimized, whereas if they are Gaussian, then the
l 2-norm should be used. In any case, each of the three
extreme cases (l∞, l 2 or l 1) can be solved exactly. Thel 2-
norm case is the simplest and relatively computational inex-
pensive, and is solved by a linear system. The other two
cases turn into linear programming problems, which are
computationally expensive to solve.

These theoretical results are next applied to concrete
examples. In general for large, non-smooth and irregular
meshes the Zeroth Order Filtering scheme yields the
best compression ratio, but the poorest accuracy or,
for the same reason, robustness. Instead, by paying a

small price in the compression ratio, a least-square filter
gives a better rendering accuracy and superior robust-
ness. At the other end of the scale, for very smooth and
regular meshes, the Gaussian filter (which in general
behaves very poorly) gives a better compression ratio
than the Zeroth Order filter.

The basic encoding algorithm can be modified to allow a
variable structure. The user can choose for what levels the
differences are encoded and, by choosing a limit case, only
the highest resolution level errors are encoded. Thus, the
MRA scheme becomes a Single Resolution encoding
scheme. Examples in terms of accuracy and compression
ratio are shown in Section 5.

The novelty of this study consists in using linear filter in
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Fig. 20. The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper left); Gaussian Smoothing (upper
right); LS first order (lower left) and LS third order (lower right).



Multi-Resolution encoding schemes and finding appropriate
optimization criteria for specific compression or rendering
properties. We hope this compression scheme will prove
effective in Progressive Transmission protocols as MPEG4.
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