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Abstract. In this paper we present a new source separation method
based on dynamic sparse source signal models. Source signals are mod-
eled in frequency domain as a product of a Bernoulli selection variable
with a deterministic but unknown spectral amplitude. The Bernoulli vari-
ables are modeled in turn by first order Markov processes with transition
probabilities learned from a training database. We consider a scenario
where the mixing parameters are estimated by calibration. We obtain
the MAP signal estimators and show they are implemented by a Viterbi
decoding scheme. We validate this approach by simulations using TIMIT
database, and compare the separation performance of this algorithm with
our previous extended DUET method.

1 Introduction

Signal Separation is a well studied topic in signal processing. Many studies were
published during the past 10 years, each of them considering the separation
problem from different points of view. Once can use model complexity to classify
these studies into four categories:

1. Simple models for both sources and mixing. Typical signals are modeled
as independent random variables, in their original domain, or transformed
domain (e.g. frequency domain). The mixing model is either instantaneous,
or anechoic. The ICA problem [I], DUET algorithm ([2]), or [3] belong to
this category;

2. Complex source models, but simple mixing models. An example of this type
is separation of two speech signals from one recording using one microphone.
In this case, source signals are modeled using complex stochastic models ,
e.g. AR processes in [4], HMMs in [5], or generalized exponentials in [6];

3. Complex mixing models, but simple source models. This is the case of stan-
dard convolutive ICA. For instance source signals are i.i.d. but the mixing
operator is composed of unknown transfer functions. Thus the problem turns
into a blind channel estimation as in e.g. [7-9];

4. Complex mixing and source models. For instance [I0] uses AR to model
source signals, and FIR transfer functions for mixing.
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We chose the complexity criterion in order to point out the basic trade-off of
signal separation algorithms. A more complex mixing or source model may yield
a better performance provided it fits well the data. However more complex mod-
els are less robust to mismatches than a simpler model, and may perform un-
expectedly worse on real world data. In our prior experiments [II] we found
that simple signal and mixing models yield surprisingly good results on real
world data. Robustness to model uncertainties explains these good results. In-
deed this is the case with DUET. The basic idea of the DUET approach is the
assumption that for any time-frequency point, only one signal from the ensem-
ble of source signals would use that time-frequency point. In [I2] we extended
this assumption in a system with D sensors to what we called generalized W-
disjoint orthogonality hypothesis by allowing up to D — 1 source signals to use
simultaneously any time-frequency point. In both cases source signals were as-
sumed mutually independent across both time and frequency. In other words,
any two different time-frequency coefficients of the same source are assumed
independent. However we would like to increase the power of source separa-
tion particularly when there exists prior knowledge about the sources (see also
[BU6IT3]). In this paper we propose an incremental increase in source model com-
plexity combined with simple mixing model that conforms to our basic belief
that models should not be more complicated than what is really needed in order
to solve the problem. For this we allow for statistical dependencies of source
signals across time. More precisely [14] postulates a signal model that states
that the time-frequency coefficient S(k,w) of a (speech) signal s(t) factors as
a product of a continuous random variable, say G(k,w), and a 0/1 Bernoulli
b(k,w), S(k,w) = b(k,w)G(k,w). This formula models sparse signals. See also
[15] for a similar signal model. Denoting by ¢ the probability of b to be 1, and
by p() the p.d.f. of G, the p.d.f. of S turns into ps(S) = ¢gp(S) + (1 — q)6(9),
with 8, the Dirac distribution. For L independent signals Sy, ..., S, the joint
p-d.f. is obtained by conditioning with respect to the Bernoulli random vari-
ables. The rank k term, 0 < k < N, is associated to a case when exactly k
sources are active, and the rest are zero. In [I2] we showed that by truncat-
ing to the first N4+1 terms the approximated joint p.d.f. corresponds to the
case when at most N sources are active simultaneously, which constitutes the
generalized W-disjoint hypothesis. This paper extends the signal model intro-
duced before by assuming the Bernoulli variables are generated by a Markov
process, while the complex amplitudes G(k,w) are modeled as unknown deter-
ministic variables. The application we target is a meeting transcription system
(see Figure [[) where an array of microphones records the meeting, and the
convolutive mixing parameters are learned during an initial calibration phase.
Section [3] describes the statistical signal estimators. We show that signal esti-
mation is similar to a Viterbi decoding scheme. Section ] presents the meth-
ods for learning the transition probabilities of source models, and of the mix-
ing parameters. Section [0l contains numerical results, and is followed by the
conclusion section.
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Fig. 1. Transition probabilitites of one signal for 7 = 0.1 (left plot), and the experi-
mental setup (right plot)

2 Signal and Mixing Models

2.1 Convolutive Mixing Model

Consider the measurements of L source signals by an array of D sensors. In time
domain the mixing model is z4(t) = Zle hai* si(t) +nq(t), 1 <d < D where
ni,...,np are sensor noises, and hq,; are the impulse responses from source [
to sensor d. We renormalize the sources by absorbing hi; into the definition of
source s;.

We denote by X4(k,w), Si(k,w), Na(k,w) the short-time Fourier transform
of signals z4(t), s;(t), and nq(t), respectively, with respect to a window W (t),
where k is the frame index, and w the frequency index. Then the convolutive
mixing model turns into Xg(k,w) = Zlel Agi(w)Si(k,w) + Ng(k,w). When no
danger of confusion arises, we drop the arguments k,w in Xy, S; and Ny.

2.2 Signal Model

Consider a source signal s(¢), 1 <t < T, and its associated short-time Fourier
transform S(k,w), 1 < k < Kpae, 0 < w < 2. Each time-frequency coeffi-
cient S(k,w) is modeled by the product b(k,w)G(k,w) as before, where b is a
Bernoulli (0/1) random variable, and G is an unknown deterministic complex
amplitude. In previous work we assumed {b(k,w) ; k,w} is a set of independent
random variables. In this paper we preserve independence along the frequency
index, but we introduce a Markov dependence along the time index. The in-
dependence in frequency is supported by the remark that local stationarity in
time domain implies decorrelation of frequency components. Along the time in-
dex, our assumption amounts to P(b(k,w)|b(k — 1,w),b(k — 2,w),...,b(1,w)) =
P(b(k,w)|b(k — 1,w)) = mu(b(k,w),b(k — 1,w)) where {m,} is the set of 2 x 2
matrices of probabilities of transition. By successive conditioning we obtain that:
P({b(k,w) ; k,w}) = T[, PO, w)) kK:’";’” 7w (b(k,w),b(k — 1,w)). For each
source in the mixture we assume we have a database of training signals where we
learn the matrices of transition probabilities and the set of initial probabilities
(see Section [)).
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For a collection of L source signals, we assume that only N Bernoulli variables
are nonzero; the rest are zero. We denote by {(b;(k,w))1<i<r; k,w} the collection
of Bernoulli random variables, o(k,w) = {l ; b;(k,w) = 1} the N-set of nonzero
components of S(k,w), (7),)1<i<1,0<w<n the collection of transition probability
matrices, (P!)1<i<1.0<w<g the collection of initial probabilities. Then the joint
pdf becomes:

P({bu(k,w) 5 1 k,w}) = [ Q%o (1,0)) [T Qulo(k,w),o(k - 1,w)

k>2

where Q,(0(k,w),o(k — 1,w)) = Hlel 7L (by(k,w), bi(k — 1,w)), Q°(a(1,w)) =
Hlel P!(bj(1,w)). The collection of all subsets o(k,w) defines a trajectory
through the selection space ST, the set of N-subsets of {1,2,..., L}. Thus for
each frequency w we associate X, = {o(k,w) ; 1 < k < K42} the selection
space trajectory. Source estimation is then equivalent to estimating both the
selection space trajectories (X, ), and the complex amplitudes {G;(k,w) ; | €
olk,w)}.

In this paper we assume that the mixing model is given by a convolutive
mixture, signals S;(k,w) satisfy the signal model above, and noise components
Ny(k,w) are Gaussian i.i.d. with zero mean and spectral variance o2.

Our problem is: Estimate the source signals (s1(t), ..., sp(t))i<i<r given
measurements (x1(t), ..., p(t))i1<i<r of the linear convolutive mixing model,
and assuming the following:

1. The mixing matrix A = (A4 (w))1<d<p,1<i<r is known;

2. The noise {n(t)} is i.i.d Gaussian with zero mean and known spectral
power o2;

3. The components of signal S are independent and satisfy the stochastic model
presented before, with known probabilities of transition (7)), and initial
probabilities P!;

4. At every time-frequency point (k,w) at most N components of S(k,w) are
non-zero, and NN is known.

3 MAP Signal Estimation

In this paper we estimate the signals (s;(t));,; by maximizing the posterior distri-
bution of the Bernoulli variables, and the likelihood of the complex amplitudes.
Alternatively, using a uniform prior model on the amplitudes, our solution is a
MAP estimator of both the selection variables and the complex amplitudes. The
criterion to maximize is:

I=]]PUX(k,w);1 <k < Kpmaa}[{bi(k,w), Gk, w); 1,1 < k < Koo })

xP({bi(k,w); 1,1 <k < Kpnax}) (1)

We replace the Bernoulli variables by the set-valued variables X, = (o(k,w))k,w,
and we consider the reduced complex amplitude N-vector G, (k,w) correspond-
ing to nonzero components of S (in turn selected by o(k,w)). We let A, (k,w)
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denote the D x N mixing matrix whose columns corresponds to the nonzero com-
ponents of S(k,w): (Ay(k,w))dm = Ad,i(m)(w), where [(m) is the m'" element
of o(k,w). The first term decouples into a product of likelihoods at each time k;
the second term is estimated before. Putting these two expressions together, the
criterion to maximize becomes (up to a multiplicative constant term):

1
12,Gy) = [T [T eont-—5 11X - 4G, )
k

w

X H Qw(o(k,w),a(k - 17w)) Qg(o(lvw))

k>2

Given o(k,w), at every (k,w) we can solve for G,.(k,w) and obtain G, (k,w) =
(AxA,)"1AzX. Taking the logarithm, flipping the sign, ignoring some constants,
and replacing G, by the above estimate, we obtain the following optimization
problem

ming > 3 [X (1 — Ar(AfA)TTADX — 07 log Qu (o (k, w), o(k — 1,w))] — 02 log Q7 (c(1, w))
w k

Let us denote by
Co(k,w)) = X (k,w)" (1 — Ar(k,w) (A (k,w)Ar(k,w)) " AL (k,w)) X (k,w)
and
D(o(k,w),o(k —1,w)) = —c%log Q(o(k,w),o(k — 1,w))
for k > 2. Then the optimization becomes
rgtnz C(o(k,w)) + D(o(k,w), ok — 1,w)) + C(o(1,w) — Q% (o(1,w))

at every frequency w. The solution represents a trajectory X, in the selec-
tion space (S )Kmaes. The optimization can be efficiently implemented using
a backward-forward best path propagation algorithm (Viterbi) widely used in
channel decoding problems. The algorithm is as follows:

Algorithm

Step 1. (Initialization) Set k = Knaz, and J; (s) = 0 for all s € SV.
Step 2. (Backward propagation) For all s € SY N-subsets of {1,2,...,L}
repeat
— For all s’ € S compute J(s,s") = Ji(s') + C(s') + D(s', s)
— Find the minimum over §', and set J;_,(s) = mingJ(s,s’)
Step 3. Decrement k =k — 1, and if £ > 1 go Step 2.
Step 4. At k = 1, replace C(s') by C(s') — 0%logQ’(c(1,w)) and
perform Step 2. Denote o*(1,w) = argmingJy(s).
Step 5. (Forward iteration) Set £ = 2 and repeat until k = K,,q4:
— For all s € SV compute J(s) = C(s) + D(s,0*(k — 1,w))
— Find the minimum and set o*(k,w) = argmingJ(s)
— Increment k =k 4 1.
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4 Model Training

4.1 Transition and Intial Probabities Estimation

For training we used a fixed sentence uttered by the corresponding speaker.
We assumed the recorded voice is made of two components: one part which is
critical to understanding, and a second component which can be removed loss-
lessly from an information point of view. Thus s = S¢ritic + Sextra. Assuming
the first component has a Laplace (or even peackier) distribution in frequency
domain whereas the second component is Gaussian, the estimation of Scpizic iS
done by (soft, or hard) thresholding of the measured signal. We chose a thresh-
old proportional to square root of signal spectral power. Thus, in case of hard
thresholding Seriticai (K, w) = S(k,w) if |S(k,w)| > 74/ Rs(w), and is zero other-
wise. The factor 7 is chosen so that the thresholded signal sounds almost iden-
tical to the original signal s. Subjective experimentation showed that a factor
7 = 0.1 satisfies this requirement. Once {S¢ritical(k,w); k,w} has been obtained,
we estimate the binary sequence {b(k,w);k,w} simply by setting b(k,w) = 1
for Seriticai(k,w) # 0, and 0 otherwise. From the binary sequence {b(k,w); k, w}
we estimate the transition probability matrices m, and initial probabilitites P,

by maximum likelihood estimators: m,(0,0) = %, 7w (1,0) =1 —m,(0,0),
mo(1,1) = b, m(0,1) = 1 -7, (1,1), Pu(1) = 528 Pu(0) = 1 - P,(1),

where Ny, N1, Noo, No1, N1g, N11 are, respectively, the number of 0’s, 1’s, 00’s,
01’s, 10’s, 11’s in the binary training sequence (b(k,w))y. Figure [l plots an ex-
ample of the distributions 7, (0,0) and 7, (1,1).

4.2 Mixing Parameters Estimation

Consider the case one source only is active. Then the frequency representation
of the recorded signal turns into X (k,w) = a(w)S(k,w) + N(k,w), where a(w)
is the “steering vector” associated to source S. We use the maximum likelihood
estimation to estimate a. Assuming Gaussian i.i.d. noise, the resulting maximum
likelihood estimator yields a(w) the eigenvector corresponding to the largest
eigenvalue of the sampled covariance matrix, normalized so that a; = 1, Ra =

i, R(w) =3, X(k,w)X*(k,w).

5 Experimental Evaluation

Consider the setup of a meeting recording system as depicted in Figure [
L = 7 speakers placed around a conference table are recorded by a video camera
(for eventual postprocessing) and an array of microphones. During the calibra-
tion phase both the source model parameters and the mixing parameters were
learned. In our simulations we used a linear array with inter-microphone dis-
tance d, = 5 cm and sampling frequency f; = 16 KHz. The simulated mixing
environment was weakly echoic with a reverberation time below 10ms. We used
4 female and 3 male speakers from the TIMIT database at positions located at
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multiple of 30 degrees. Testing was done on wavefiles of around 10 seconds of nor-
mal speech. We added Gaussian noise with ¢ = 0.1 (note o is an absolute value
rather than relative to signals). We tested for N = 1 and N = 2 (the number
of simultaneous speakers), even though all L = 7 speakers were active most of
the time. We estimated each source using the MAP-based Estimation Algorithm
presented in Section Ml for four choices of priors: 1) use the initial distribution and
transition probabilities learned from the training database as presented before;
2) use uniform initial distribution probabilities but the transition probabilities
learned from the training database; 3) use uniform transition probabilities, but
initial probabilities learned from the training database; 4) use uniform distrib-
utions for both the initial distribution and for the transition probabilities. This
last combination of priors turns our MAP algorithm into the extended DUET
presented in [12].

We compared these algorithms with respect to the Signal To Interference Plus
Noise Ratio (SINR) Gain. The SINR gain for component [ is defined by:

SINRg; = 0SINR — iSINR = 10log,,, %
=51

where E(z) is the energy of signal z, and 1, s;, §; are respectively, the microphone
1 measured signal, input signal  at microphone 1, and the I*" estimated signal.
The larger the SIN Rg the better. We experimentally verified that the choice for
initial distribution probabilities does not have almost any effect on the outputs.
In Figure 2l we plot the SINR gain as function of number of microphones D, for
our setup with L = 7 sources, and a variable number of microphones ranging
from 2 to 6, for two hypotheses: N = 1 and N = 2, respectively. We notice the
gain is an increasing function of number of microphones, and our MAP algorithm
(called Markov, in Figure) outperforms DUET by about 1 dB in average.

SINR Gain [dB]
‘o
SINR Gain [08]
o

is 2 25 3 B 55 6 65 2 25 3 35 55 6 65 7

35 4 a5 4 45 5
Number of Microphones D Number of Microphones D

Fig. 2. SINR Gain for N =1 (left plot) and N = 2 (right plot), for L = 7 sources and
a variable array ranging from 2 to 6 microphones
6 Conclusions

In this paper we presented a novel signal separation algorithm that extends our
past DUET algorithm. The algorithms works for underdetermined cases, when
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there are fewer sensors than sources, and in the presence of noise. The main
assumptions are: (i) source signals have sparse time-frequency representations
(although another representation, such as time-scale, would work as well); (ii)
each frequency is independent from one another; (iii) the binary selection vari-
ables obey a homogeneous Markov process model, with transition and initial
probabilities learned from a training database. We derived the MAP estimator
of binary selection variables and ML of the complex signal TF coefficients, and
show it can be efficiently implemented using a Viterbi decoding scheme. Next
we validated our solution in a 7-voice, and 2 to 6 calibrated microphone array
setup. We obtained an improvement of about 1 dB compared with the previous
DUET algorithm, and no noticeable distortions.
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