On Lipschitz Bounds of General Convolutional
Neural Networks

Dongmian Zou,

Abstract—Many convolutional neural networks (CNN’s) have
a feed-forward structure. In this paper, we model a general
framework for analyzing the Lipschitz bounds of CNN’s and
propose a linear program that estimates these bounds. Several
CNN’s, including the scattering networks, the AlexNet and the
GoogleNet, are studied numerically. In these practical numerical
examples, estimations of local Lipschitz bounds are compared to
these theoretical bounds. Based on the Lipschitz bounds, we next
establish concentration inequalities for the output distribution
with respect to a stationary random input signal. The Lipschitz
bound is further used to perform nonlinear discriminant analysis
that measures the separation between features of different classes.

Index Terms—Lipschitz bounds, convolutional neural net-
works, scattering networks, linear programming, adversarial
perturbation

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNN’s) have

proved to be an effective tool in various image processing
tasks. The convolutional layers at different levels are capable
of extracting different details from images. As a feature
extractor, a CNN is stable to small variations from the input
and therefore performs well in a variety of classification,
detection and segmentation problems.

The scattering transform [1]], [2] is a special type of CNN
that can be represented with a multilayer structure (thus also
called a scattering network). Although the filters are designed
wavelets rather than learned, the scattering transform proves to
be an effective feature extractor. In the mathematical analysis
of scattering network, it is proved [1, Theorem 2.10] that the
scattering transform is invariant to translation. However, this is
true only if we take the full representation where the limiting
scale J — oo. In practice, we take a finite .J and therefore only
have stability with respect to translation. The mathematical
analysis for the stability properties of scattering networks is
not limited to wavelets: for instance, it is generalized by using
semi-discrete frames as filters in [3[], [4], and time-frequency
atoms as filters in [5]. In all these cases, the scattering
transforms are Lipschitz continuous with Lipschitz constant

D. Zou is with School of Mathematics, University of Minnesota, Min-
neapolis, MN 55455; he was with Department of Mathematics, University of
Maryland when writing the first draft of the paper and with the Institute for
Mathematics and its Applications, University of Minnesota when revising the
draft of the paper. e-mail: dzou@umn.edu

R. Balan is with Department of Mathematics, University of Maryland,
College Park, MD 20742. e-mail: rvbalan@cscamm.umd.edu

M. Singh is with Verisk Analytics, Jersey City, NJ 07310. e-mail: Ma-
neesh.Singh@verisk.com

Copyright (c) 2017 IEEE. Personal use of this material is permitted.

Radu Balan, Maneesh Singh

L =1, which is an important factor for the provable stability
properties.

A scattering network extracts features from every convo-
lutional layer. This is not the case for a general CNN. In
[6] a CNN is defined as a neural network which has at least
one convolution unit. Many widely-adapted CNN models have
either a sequential structure (e.g. the AlexNet [7]) or a more
complex feed-forward structure (e.g. the GoogleNet [8]]). For
those models, stability is still an important issue. Intuitively,
keeping the same energy in the feature, we should train the
network so that the features are as stable as possible to small
perturbations before using dense layers to do the classification.
In [9]], the authors use the large Lipschitz bound of each single
layer to illustrate that the AlexNet could be very unstable
with respect to small perturbation on the input image. In fact,
changing a small number of pixels could “fool” the network so
that it produces wrong classification results. In general, a small
Lipschitz bound of the entire transform implies the robustness
of a CNN to small perturbations.

“Fooling” networks is naturally connected to adversarial
networks. Indeed, Lipschitz bounds are already used in train-
ing adversarial networks other than just quantitatively showing
the robustness. In [10], the authors propose an objective
function for training generative adversarial networks where
they use (the distance between) the Lipschitz constant (and 1)
as a penalty term. However, there is no direct way to impose
it. Later in [[11], the authors use a gradient penalty inspired by
the fact that a function is 1-Lipschitz if its gradient is bounded
by 1.

Although it plays an important role in deep learning, the
study of Lipschitz bounds is not completely addressed by
existing literature. The frameworks in [L]-[5] analyze the
1-Lipschitz transformations but are limited to the scattering
transforms and do not generalize automatically to general
CNN’s. [9]] provides a Lipschitz bound using the product of
Bessel bounds of each layer, but in general lacks tightness
for non-sequential models such as the scattering network. Our
paper fills in the gap between these approaches, by providing
a unified stability analysis that applies to both the scattering
networks (as in [1]-[3]]) and to the more general convolutional
networks. Our framework is flexible and compatible with
architectures that may or may not generate outputs from
hidden layers. The results presented in this paper are optimal
for scattering networks and in general tighter than taking
the product of Bessel bounds in each layer. Our focus is on
estimation of these Lipschitz bounds, and how they relate to
stochastic processes. We discuss how the Lipschitz bounds can
be used for classification, but we do not focus on extending

Soutpus

.rl'wn)1

Pooling filters ————* (feature) Qutput nodes

" Psdden
Inout nod Jiap Convolutional Dilation Detection (hidden)
pul noces filters operations operations Output nodes
Geony

Fig. 1: The structure of a network layer. The network we consider consists of a number of layers, which makes the structure

“deep”.

these results to generative adversarial networks. Instead we
study numerically a few examples, including the AlexNet and
the GoogleNet.

For practical CNN’s such as the AlexNet and the
GoogleNet, we discovered that the estimated bounds are
about three orders of magnitude more conservative than the
numerically estimated local Lipschitz bounds. We give a
detailed discussion on the source of looseness in the main
text. Surprisingly, even the local Lipschitz bounds are not
close to the empirical bounds evaluated over pairs of inputs.
Specifically, the empirical bounds are still three orders of mag-
nitude smaller: the largest local Lipschitz bound is obtained
numerically to be of order 1, whereas on an extensive study
using ImageNet [12] images, the ratio between the energy
of output variation to the energy of input variation is of the
order 1073, To bridge this gap, we observe the change of
the effect of ReLU units and max poolings, and propose a
simple model that estimate the “empirical” ReLU units and
max poolings. Interestingly, the resulting estimate based on the
local Lipschitz bound is much closer to the empirical bound.

Before discussing our framework in mathematical details,
we first overview the CNN architecture considered in this
paper (the details are given in the main text) and provide some
guidance to the notations. The framework is applicable to the
scattering network [[1]], [2], the AlexNet [7] and the GoogleNet
[8]. It can also be used to analyze models such as Long-Short
Term Memory [[13]. We state the theory for continuous signals,
but explain how to adapt it for the discrete case (which is the
case for AlexNet and GoogleNet). We focus on the feature
extraction part of the network and do not discuss the fully
connected layers that are usually put on top of the structure,
though the fully connected layers can be regarded as a special
case of convolutional layers. The CNN that we consider has
a feed-forward structure and consists of different layers (it is
possible to use infinitely many layers to represent a feedback
structure). We define the layers according to the convolutions.
Specifically, each layer consists of input nodes, convolutional
filters, detection / merge operations, pooling filters, output
(feature) nodes and (hidden) output nodes.

o The input nodes are signals passed to the current layer.
That could come from the hidden output nodes in the
previous layer, or the input signal to the network.

e The convolutional filters are the filters that perform
convolution with the signal from the input nodes. Suppose

y is the signal in an input node, and g is the convolutional
filter, the output is

2(t) = yrglt) = / y(t—s)g(s)ds = / y()g(t - 5)ds |

e The pooling filters are low-pass convolutional filters that
lower the complexity before the feature is extracted as
output. Note that these are still linear translation-invariant
operations which are commonly used in scattering net-
works. The nonlinear operations such as max pooling and
average pooling are contained in the detection operations.

o The (feature) output nodes are outputs of the convolu-
tional neural network. As we specified earlier, these nodes
form a subset of the representation. Once the represen-
tation is extracted, the specific machine learning tasks,
such as classification and prediction, will be performed
on the representation.

e The dilation operations are “changes of scale” on the
space variables. A dilation operation on a signal f(z),
x € R, can be represented using a d x d invertible matrix
D. The dilated signal is f(Dzx).

e The detection operations are nonlinear operations that
apply pointwise to the output of the convolutional filters.
The nonlinearities have Lipschitz constant 1 (e.g. ReLU
functions). In addition to applying the nonlinearity, the
outputs can be aggregated by merge operations to produce
a single output for dimensionality reduction. The max
pooling and average pooling are modeled in this manner.

e The (hidden) output nodes are signals that propagate
to the next layer. The signals at the output nodes are
identical to those at the input nodes of the next layer.

In this paper, unless otherwise specified, we use f to denote
the input and output signals of a CNN, h to denote the hidden
features, and g to denote filters. The input signal on the d-
dimensional Euclidean space has finite energy, that is, f €
LQ(Rd). The Fourier transform of f, denoted by f , is defined
formally to be

f(w) = f(m)e_%i”'mdx ., weR?.
R

and we refer the readers to [14] for rigorous definitions for f
when f € L?(R%) or when f is a generalized function. The
filters of CNN are taken from the Banach Algebra of tempered

distributions with an essentially bounded Fourier Transform,
that is,

B={ge SR, ||gll, <oo} . (1)

We have a detailed discussion of this algebra in Appendix
I We use |-, to denote the LP-norm corresponding to
the Lebesgue 1ntegral For a matrix A, A' denotes its
transpose, and A* denotes its conjugate transpose. We use

[All,, = maxg,=1[|Az|], to denote the operator norm of
A, ||A||, = trace(VA*A) to denote its nuclear norm, and
|Allg = +/trace(A*A) to denote its Frobenius norm.

A. Contribution of the work

In this paper, we analyze the Lipschitz bound of a general
CNN and its application in stationary processes and nonlinear
discriminant analysis. We first introduce a general framework
which is able to model CNN specific operations. According
to the framework, we derive a linear program of which the
optimal value is a Lipschitz bound of the CNN with respect
to the Bessel bounds of the layers.

For large classes of scattering networks the linear program
yields an optimal estimate of the Lipschitz bound. In other
feed-forward networks, the estimate is usually conservative. To
address this issue, two different local estimates are proposed.
The first estimate is based on local linearization around the
operating input. The second estimate takes into account long-
range interactions between activation maps for two different
inputs. Extensive experiments were performed to compare the
three Lipschitz constants with empirical divided differences
from CNN outputs corresponding to input samples.

For clarity, the three notions of Lipschitz constants are
summarized in Table [

In this paper, Lipschitz constant is defined with respect to
changes in the input. Such Lipschitz constants are then used to
perform nonlinear discriminant analysis. In contrast, [L1]], [15],
[16] utilize the gradient with respect to the input instead of
the Lipschitz constant. It is worth noting also that many other
papers on neural networks discuss gradients with respect to
the network parameters, for instance, the neural tangent kernel
[17], [18]] and the mean-field analysis [19]. This, however, is
different than the approach in the current paper.

The paper is organized as follows. Section |lI] sets up the
mathematical problem by defining the layers of a CNN. Sec-
tion [IT]] states the results on estimating the Lipschitz bounds.
Section [[V]illustrates examples from the scattering network to
the AlexNet and the GoogleNet. Section [V] discusses how the
Lipschitz bounds relate to concentration results for stationary
processes on CNN’s. Section |VI| discusses using the Lipschitz
bounds to construct a nonlinear discriminant.

II. DEFINING A CNN

The overall structure of an M-layer CNN is illustrated in
Figure 2] The picture shows how an input propagates through
the layers while generating outputs at each layer. The details
of the layers are described in the following two subsections.
If no merge operation is present at a certain layer, the
convolutional layer is modeled as a linear operation followed

by nonlinearity; if there are merge operations, different types
of merge operations are modeled separately.

A. A layer without merge operations

If a certain layer does not contain any merging, we can
model the filters as a linear transform from signals on all the
input nodes. In the m-th layer, the set of input nodes is denoted
by Z,, = {Nm.1, Nm 9, -~-, Nm nm} and the set of output
nodes by O, = {N}, 1, Ny 9. -+, Ny, v }. Further, the set
of output generating nodes is denoted by V ={Vin1, Vin2

-+, Vinn,, ;- With this notation, let hy, 1, A2, -+, Apmon,,
be the signals on the input nodes, a linear operator 7™ is a
n -by-n,, array of filters T() in 5 such that

MNm ()
m
m n’ T § :Tn n

is received before downsampled by the d-by-d invertible
matrix D,, , and sent into a nonlinearity o, , to output

P (@) = Omsr (W (D))

Moreover, let ¢, 1, -, @, n,, define the filters for the output
generating nodes. The signals at the feature output nodes are

fm,n =h

m,n ¥ ¢m,n .

For the m-th layer, we define three types of Bessel bounds
as follows. For each w € RY, denote 7" (w) to be the n/, x
n,, matrix that contains the Fourier transform T(mn of Tr?m)
atw, for 1 < n < ny, 1 <n <n, Alsoforeachw
denote W(m) (w) to be the 1, X Ny diagonal matrix that has
(Z)m,n (w), the Fourier transform of the convolutional filter at w,
as its (n,n) entry. Let A™) be the n/, x n/, diagonal matrix
with (detD,, ,)~1/2 as its (n/,n’) entry. The Ist type Bessel

bound for the m-th layer is defined to be

B _ AT M) ()
- g (m) ()

m ; 2

sup
weRd

op
the 2nd type Bessel bound for the m-th layer is defined to be

. 2
B2 = sup ||AMT™) () 3)
weRd op
and the 3rd type Bessel bound is defined to be
R 2
B = sup %™ (w) &)
weRd op

In general, the Bessel bound quantifies how the energy is
magnified by convolution. The bound is finite if the filters form
semi-discrete frames (see [4, Appendix A]). Our definition
acts in the spectral domain and it naturally yields estimates
of the the Lipschitz bounds: see in Appendix [Al The
need for three types of Bessel bounds is related to different
types of energy mixing: input-to-combined hidden and feature
output nodes, input-to-hidden outPut nodes, and input-to-
feature output nodes. Intuitively, B,/ is the Bessel bound for
the frame composed of both Tgn)b and ¢, 1, BJ(\/I) is for the

frame of T(mr)t and B([is for the frame of ¢,, , only. For

n’

TABLE I: Summary of the three notions of Lipschitz constants.

Lipschitz constant | Method for computation | Remarks
Analviical estimate Linear program involving several Optimal for scattering networks
¥) types of Bessel bounds but conservative in other cases
. L Linearize activation functions and Accurate locally but very local
Local linearization
pooling operations around an input | and expensive to compute
. . Consider stochastic model and Agrees with empirical divided
Stochastic estimate
an average effect of nonlinearities differences but inaccurate locally
. . (hidden)
Ugjd?tl) Input (]cﬂ;:de‘ij Input QOutput Input
nodetffor nodes for nodes for nodes for nodes for nodes for
Laver 1 Layer 2 Laver 2 Layer 3 Layer LayerM
v Y (M-1)
& —| +O——>| F>O——@— —(O———>
Input C
odes Layer 1 Layer 2 v Layer M
L] . 9 . "W L L I
*— O —O———— —O——8—
(feature) (feature) (feature)
Qutput Output Output
nodes nodes nodes

Fig. 2: The detail of an M-layer CNN. The signals at output nodes are identical as at input nodes in the next layer. There
may or may not be output generation in each layer.

fmoa
!
B 1 h: L m,1
N 1 Dpa Om,1 ON/,1
ol m,2

hm,Zi : - A
/ Y D2 ome © N ?
7n 2

7 (m) e

h7n,nm ' hl

/
m,n! m,n,,

Nmn
sMm !
Vm’nm

f mM,Nm

Fig. 3: The detail of the m-th layer with no merge operations. N,, , denote the input nodes, N, .. denote the hidden output
nodes, V,, , denote the feature output nodes. ¢,, , denote the pooling filters, D, - denote the d1lat10n factors, and o, p/
denote the 1-Lipschitz nonlinearities. The notations in blue represent the signals at each node. h,, ,, denote the input 51gnals
of the layer. hm . denote the hldden output signals that are passed to the next layers. hm s denote the signals received after

passing the linear operator 70" fm » denote the signals at the feature output nodes.

a layer with merge operations, the Bessel bounds share the
same intuition, but their estimates have different mathematical
representations. We describe that in the next section.

B. A layer with merge operations

There are three types of merging. Type I takes inputs

Y1, ,yr from k channels, applies a nonlinearity function
o1,--- ,0 respectively, and then sums them up. That is, the
output is

k
2= 0y - 5)
j=1

Type II takes inputs yi,---,yx, from k channels, apply a
nonlinearity on each signal, and then aggregates them by a
pointwise p-norm. That is, the output is

5 1/p
2= loi ()l , if p<oo; (6)
j=1
and
2= max |oj(y;)], if p=oo.)
j=1,-,k

Type III takes inputs yi,---,y, from k channels, apply a
nonlinearity on each signal, and then performs a pointwise
multiplication. The nonlinearity o; should satisfy [|o;|| <1
for each j. The output is

k
z=1]os) - ®)
j=1

We point out that the standard pooling operations in most
discrete CNN’s can be modeled in the continuous case by these
merge operations. Specifically, max pooling is the operation of
taking the maximal element among those in the same sub-
regions. We can use translations and dilations to separate
elements in a sub-region to distinct channels, as illustrated in
Figure [5a Then the L>°-aggregation select the largest element
and performs the max pooling. Average pooling replaces
“taking the max” by “taking the average”. Similarly to max
pooling, it can be done by taking the sum as illustrated in Fig-
ure [5b] A concrete example illustrates max pooling as imple-
mented by this framework. Similar implementation can realize
average pooling. Consider the finite signal (1, 3,4,2,1,5,6,7)
in Figure [6] for which we want to apply max pooling with size
= 2 and stride = 2. Then the max pooled signal is (3,4,5,7),
where each entry is the larger value within each pair. Consider
now the (circular) translation by 1 pixel of the first signal, that
is (3,4,2,1,5,6,7,1) together with the original signal (the
middle two signals in the figure). Apply the dilation operator
where we discard the second pixel in each consecutive pair of
pixels. Thus we obtain (1,4,1,6) and (3,2,5,7) respectively.
Now a Type II aggregation with p = oo selects the larger value
between two pixels at the same position, and therefore results
in (3,4,5,7), which is the same as the max pooling operation
applied on the original signal.

Suppose there are n,, nodes in the m-th layer (this works
for m < M but m = M is a similar case in which there is no
hidden output node). The set of these input nodes is denoted

by Zp, = {Nm.1, N2, s N, +- Within the layer, each
node is connected to several filters. The filter can be either a
pooling filter, or a convolutional filter. Associated with IV, ,,
for 1 < k < n,,, the pooling filter is denoted to be ¢,, ., and
the convolutional filters to be G, n = {Gm.ni1, - 'gm,n;kmyn}.
The set of filters in the m-th layer is thus

Gm =u,m Gm,n . (9)

n=1

Each filter g, n:k,, , is naturally classified into one of three
categories according to the three types of merging: if a filter is
merged using Type I operation, then it is classified as a Type
I filter; in the same manner we define Type II and Type III
filters. If a filter is not merged with other filters, we classify
it as Type I (with £k = 1 in the first picture in Figure [4).
We denote the sets of all Type-I, II, III filters by 7y, 72, 73,
respectively.

Note that each filter is associated with one and only one out-
put node. Let Oy, = {Ny, 1, N}, o,-++, N}, .., } denote the
set of output nodes of the m-th layer. Note that nr = N1
and there is a one-one correspondence between O,, and Z,,, 1.
The output nodes,automatically divide G,, into n,, disjoint

subsets G, = UZZ”ZlG;n,n/, where G, ., is the set of filters
merged into N, ... Further, Vi, = {Vin 1, Vin2, -+ s Vinny,
denote the set of output generating nodes. The detail of one
layer is illustrated in Figure

For each filter gy, 1, we define the associated multiplier
I n;i in the following way: suppose g n:k € G;nm,, let K =
|G, | denote the cardinality of G, Then

m,n’*

s if Im,n;k enUrs

. (10)
s if Im,n;k € T2

K
lm,n;k = Jmax{0,2/p—1}

We define the 1st type Bessel bound for the node Ny, , to
be

Em,n
A 2 -
B%?n = ¢m,n + Z lm,n;k:D;L(’in;k |gm,n;k|2 5 (1 1)
k=1 -
the 2nd type Bessel bound to be
km,n
Br(r%)n = Z lmyn;kD;:in;k |§m’n;k|2) (12)
k=1 -
and the 3rd type Bessel bound to be
@ |4, |
Bmﬂl = ¢m,n (13)

Further, we define the 1st type Bessel bound for the m-th layer
to be

BW = max BWM (14)
m 1<n<ng, m,n
the 2nd type Bessel bound to be
B® = max B® (15)
m 1<n<ng, m,n
and the 3rd type Bessel bound to be
B® = max BJ) . (16)

1<n<nm,

uonegdai3de wrou-d

Fig. 4: The three types of merge. Left: Type I - taking sum of the inputs; middle: Type II - taking p-norm aggregation of the
inputs; right: Type III - taking pointwise product of the inputs.

[l
8
v
Joic
%
&
3
g

(a) max pooling

(b) average pooling

Fig. 5: In the continuous case, the max pooling is modeled as Type II aggregation for p = oo, and the average pooling is
modeled as Type I aggregation. Here T,, denotes translation by v: T, g(x) := g(z — v).

»“f/--_ ‘\w »’f/ H\w -.-'"'/ \.’ / | -H\‘w
L+ [e] 2 [+ [T e [
l translation
L+ [s [«] 2 | 1+] 5 [6 | 7 |
L3 [« [2 [+ [s [e [7 [1 |
| diation
| 1 | 4 | 1 | |
| | | |
I 3 | 2 | 5 | 7 !
Fig. 6: A concrete example for the max pooling.
III. CALCULATING THE LIPSCHITZ BOUND A norm ||| - ||| defined on [L?(R%)]IVI by

Suppose we are given a CNN within the framework given
in Section For any input signal f and f, let fy be the
output for f from the node N, and fN be the output for f
from the node N. Let V = UM_,V),, be the collection of all
output generating nodes. We say L is a Lipschitz bound for
the CNN if

~ 112 ~112
> il =21, am
NeVy
The map ® : L*(R?) — [L?(R%)]/V! induced by the CNN
is defined by

O(f) = (fv)Nev - (18)

1/2
flommerll] = (1)
Ney

is well defined and L. = v/L is a Lipschitz constant in the
sense that

et~ <zefr-F], - a9

We have the following theorem for calculating the Lipschitz
bound.

Theorem III.1. Consider a CNN in the framework of Section
II, with M layers and in the m-th layer it has 1st type Bessel

fm,l

-—Mm,l O Vm,l

4 Dt Om,1;1
. Cmap L omaa] W
m,1 :Nl 1
m,
Nmyl L Dm 1; a. .
u m,1;2
P,
5 — —ON,.2
W,l Im, Lk
hmi/v
N, Detection /
\ o o e Merge /
Pooling
fm,nm
h wL Dmn T Om,nm; /
Mo N T [Zrmonmi] P
Nm Tom, O
Nv/n,ngn

Fig. 7: The detail of one layer with merging. N,, ,, denote the input nodes, N/ v denote the output nodes, V,,, , denote the

m

output generating nodes. ¢, ,, and g, ,, denote the filters, D,, ,,.;, denote the dilation factors. o, ;1 denote the 1-Lipschitz
nonlinearities (for illustration we put them outside the merge box, but they belong to the merge operations where we defined
the three types of merge). The notations in blue represent the signals at the nodes. h,, , denote the input signals of the layer.

h/

m,n’

bound Bﬁi), 2nd type Bessel bound Bﬁf) and 3rd type Bessel
bound BSS). Then the CNN induces a nonlinear map ® that is
Lipschitz continuous, and its Lipschitz bound is given by the
optimal value of the following linear program:

M
max Z Zm
m=1
S.t. Yo = 1

Ym+ 2m < BWym_1, 1<m<M-1 (20

Ym < BPym_1, 1<m<M-—1
Zm < st))ym—l, 1<m<M

Yms 2m > 0, for all m .

The proof of Theorem is given in Appendix [A] We
remark here that the linear program presented as (20) is
feasible, since one obvious feasible point is y,, = 0 for
1<m<M—-—1and z,, =0 for 1 < m < M. More-
over, the solution is bounded since all z,,’s are bounded by
B Hz,_:ll st,) according to the third and fourth inequalities
in (20). In practice, either the simplex method or the interior
method (see, for instance [20, Chapter 13-14]) can be used
to solve this linear program, and they run in polynomial time
with respect to the number of layers. If we are in the discrete
case, say for pixel images, then we need to compute the Bessel
bounds, which relies on the Fast Fourier Transforms that grows
as O(Nlog N) with the dimensionality of filters. Although
the complexity is not high, a Lipschitz bound computed via

denote the output signals that are passed to the next layers. f,, ,, denote the signals at the feature output nodes.

a linear program is still not intuitive. We give more explicit
estimates of the Lipschitz bound in the following corollaries.

Corollary II1.2. Consider a CNN in the framework of Section
II, with M layers and in the m-th layer it has st type Bessel
bound B,(é). Then the CNN induces a nonlinear map that is
Lipschitz continuous, and its Lipschitz bound is given by

M
H maX{LBg)} . 21
m=1

Corollary IIL.3. Consider a CNN in the framework of Section
II, with M layers and in the m-th layer it has 2nd type Bessel
bound By(,%) and generating bound Bﬁ,?) . Then the CNN induces
a nonlinear map that is Lipschitz continuous, and its Lipschitz
bound is given by

M m—1
B + 5" B [] BY .
m=2

m’/=1

(22)

The proof of Corollary is an immediate consequence
of Theorem specifically from the third and fourth in-
equalities of (20). The proof of Corollary is given in
Appendix We remark here that both corollaries give a
more conservative bound compared to the linear program
(20) because both results restrict the variables to a subset of
the feasible region. The idea of using Bessel bounds is also
addressed in [9] where the authors compute the Bessel bounds
of each layer of the AlexNet, and in [4]] where the authors set

B,, <1 to make the CNN a 1-Lipschitz map. We return to
the AlexNet in the following section.

Subject to the knowledge of the three types of Bessel bounds
in each layer, the estimate given by the linear program
is tight. However three issues may prevent its tightness. First,
except for the scattering network when defined for continuous
inputs, most of CNN’s consider discrete time inputs only.
Second, even subject to the same Bessel bounds, different
filters may produce much smaller Lipschitz bounds. Sub-
optimality occurs in cases where the signal that achieves the
Bessel bound for Layer m + 1 is not in the range of Layer m.
Third, in some practical applications when signals are modeled
as samples drawn from certain distributions, then the emphasis
is on local stability around the operating distributions, whereas
the global Lipschitz bound may be irrelevant.

We address these issues by looking at three examples: the
scattering network, a toy network that includes all three types
of merge operations we consider in this paper, and the well-
known AlexNet and GoogleNet.

IV. EXAMPLES
A. Scattering network

The scattering network in [1], [2]] is a 1-Lipschitz map. In
each layer the filters are designed to form Parseval wavelet
frames using multi-resolution analysis. Such design leads to

Bfrlb)n = Bg)n = B,(,‘?)n = 1, for all m, n. Then Corollary [[IL.2]

simply yields a Lipschitz bound L = 1 which is tight. We refer
the readers to [21) Section 4.1] for a detailed discussion.

B. A toy example that contains merge operations

The scattering network enjoys Bﬁ,i)n = Bg)n = quif)n =1
for all m,n since it is tightly related to wavelet decompo-
sitions. In many CNN’s we don’t have feature output from
hidden layers and therefore B%)n = Bg,%)n whence the results
in Corollary coincide with the optimal value by the linear
program (20). However, Corollary can be suboptimal. To
see this, we take a toy example of CNN that contains merge
operations. The same network structure appears also in [21]]
with different filter weights. The parameter p is set to p = 2.

Figure [§] is an illustration of the CNN. According to
Appendix [C] we can translate it into a CNN within our
framework, as illustrated in Figure E}

Define the smooth “gate” function on the Fourier domain

supported on (—1,1) as
4w? + 4w + 1

F(w) =exp < 107 T+ 4o
X(—1/2,1/2)(w)+
dw? — 4w + 1
exp A —dw X(1/2,1)(W) .

With this, we define the Fourier transforms of the filters to be
C*° gate functions

$1(w) = F(w)
01w = Flw+2j—1/2) + Flw—2j +1/2),
j=1,2,34.

> X(~1,-1/2) (w)+
(23)

2
$o(w) = exp (M) X(—2,-3/2)(w)+
X(—3/2,3/2)(W)+
4w? — 12w+ 9
€Xp <4a12—12w—|—8> X(3/2,2) (w)
g2,j(w) = F(w+2j)+ Fw—2j),
j=1,2,3.
Gaw) = Fw+2)+ F(w—2)
Gg25(w) = F(w+5)+ F(w—05)
2
¢A53(W) = exp (W) X(=3,—5/2) W)+

X(=5/2,5/2) W)+
4w? — 20w + 25 ()
P\ 4w Z 20w + 25) X623 W) -

Table lists the Bessel bounds for all the layers. The
optimal value of the linear program ([20) gives a Lipschitz
bound of L = 2.866; the Lipschitz bound as derived in

Corollary [II.2]is L = 8[exp(—1/3)]? = 4.102; Corollary |[I.3

gives an estimate of the Lipschitz bound of L = 5. We see
that the output of the linear program is more optimal than

the product given in Corollary and

TABLE II: The Bessel bounds of the example in Figure

H m [1 2 3 4 H
B [0e-1/3 90-1/3 5 1
BP |1 1 2 0
BY |1 1 1 1

C. AlexNet and GoogleNet

In this subsection, we analyze the Lipschitz properties of
AlexNet and GoogleNet. First, we apply the analytical results
derived in earlier sections to these networks and compare
their results to empirical estimates. To accomplish this, we
need to extend the theory hitherto developed to processing
of discrete signals. Second, we construct a local Lipschitz
analysis theory and explain the gap between the analytical
and empirical estimates. In this process, we obtain additional
information on local stability and robustness of the network,
which we exploit in the third part of this subsection where we
apply these results to adversarial perturbations.

1) Extending to Discrete Signal Processing: The AlexNet
and the GoogleNet have filters trained on specific datasets,
with no closed form parametric description of their weights
such as the wavelets. Therefore, instead of using approxima-
tions of the continuous signal theory to these networks, we
extend the theory to discrete signal processing. We do this
by computing the Bessel bounds using the Discrete Fourier
Transform along the lines in [9, Section 4.3] subsequent to
the computation of the operator norms of the discrete linear
operators. Given the Bessel bound, the Lipschitz bound is
computed using the same estimates derived earlier to the case
of continuous signals.

1st layer 2nd layer 3rd layer 4th layer

Fig. 9: Equivalent representation of the CNN in Fig. [8| The four layers of the network are illustrated in blocks.

o
5 1t —
S osf v
‘15 3
E 0.6}
- 04t
=
So02f
=]
[V
0 1 1 1]]
4 3 2 1 0 1 2 3 4 5

Fig. 10: Ilustration of the filters ¢1, ¢o and ¢3 in the frequency domain. Note that they are all C*° smooth functions.

First we compute the Bessel bounds. Note that both net- the fourth line of (20) forces z,, =0 form =1,--- M — 1,
works do not generate feature outputs in hidden layers. There- which makes the second and third lines equivalent. Note that
fore, B,(é) = By(,?), Bg,?{) =0 foreachl <m < M — 1. Now Corollary is derived from the third and fourth lines of

(20). Consequently, the linear program (20) and Corollar
provide the same Lipschitz bounds L = Bz(v?}) H%;ll BY?

There are several versions of trained networks for
AlexNet and GoogleNet. We consider the MatConvNet
[22] pretrained networks that are trained using ImageNet
(ILSVRC2012) dataset [[12] (the trained networks for both
AlexNet and GoogleNet are retrievable at http://www.vlfeat.
org/matconvnet/pretrained/). For both pretrained models, there
are no cross-channel response normalizations (which appears
in the original model [7]]). The features are extracted after the
last convolution layer in each network.

We present the Bessel bounds (Br(,%) fori1<m<M-1
and Bﬁ,‘?) for m = M) for each layer of the AlexNet in
Table [[I] and the GoogleNet in Table Since we are in the
discrete case (previous sections discuss signals f € L?(R%)
and continuous convolutions), we need to adjust the way the
Bessel bounds in (3) and () are computed. The adjusted com-
putations for the AlexNet follows [9, Section 4.3], which uses
the Discrete Fourier Transform and takes striding into account.
For the GoogleNet, we treat the inception modules (see [8}
Figure 2(b)]) as two layers: the first layer is the scattering
with the dimension reductions (denoted as “icpxreduce” in
Table [[V), and the second layer is the merging after taking
convolutions (denoted as “icpxconv” in Table [[V).

TABLE III: The Bessel constants (=
bounds) for each layer of the AlexNet.

square root of Bessel

H Layer ‘ Lip const H

convl 0.2628
conv2 6.7761
conv3 6.5435
conv4 13.3898
convS 16.0937

TABLE IV: The Bessel constants (= square root of Bessel
bounds) for each layer of the GoogleNet.

H Layer [Lip const H Layer [Lip const ‘
convl 5.8608 icp3reduce 2.6642
reduce2 3.4147 icp3conv 6.0129
conv2 3.0309 icpdreduce 2.6403
icplreduce 3.6571 icp4conv 5.1029
icplconv 5.2917 icpSreduce 2.9825
icp2reduce 3.7994 icp5conv 5.5389
icp2conv 7.6367 icpbreduce 3.1758
Layer Lip const ‘ ‘

icpbconv 6.7737

icp7reduce 2.2093

icp7conv 6.5312

icp8reduce 2.2947

icp8conv 5.5561

icp9reduce 2.8567

icp9conv 7.0353

Using the computed Bessel constants and Corollary
the estimated Lipschitz constant is 2.51 x 103 for the AlexNet
and 9.67 x 1012 for the GoogleNet. Subject to the Bessel com-
puted computed above (which are tight), the CNN Lipschitz
bound estimates cannot be improved analytically. Instead we
perform an empirical study. Specifically, we randomly take
two images f; and f, from ImageNet, and compute the ratio

[®(f1)=P(f2)lIl/ ||fr = f2lly, where @ is the Lipschitz map
induced by the network. The empirical Lipschitz constant is
the largest ratio among all samples that we take. We sample
108 pairs for this experiment. The resulting empirical constant
is 7.32 x 1072 for the AlexNet, and 4.84 x 10~2 for the
GoogleNet.

The empirical constants are of significantly smaller order
than the analytical constants. In general, two factors ex-
plain the gap between the analytical and empirical Lipschitz
constant estimates: first, the principal singular vector that
optimizes the operator norm in a given layer in not in the range
of signals reachable by the previous layer; second, whenever
we have ReLU nonlinearity and max pooling, the distance
between two vectors tends to shrink.

The first factor can be partially addressed by considering the
norm of tensorial product of all layers instead of considering
the product of tensor norms in each layer individually (similar
to computing the operator norm of a product of matrices
directly instead of upper bounding it by the product of operator
norms of each matrix). Both this and the second factor can be
addressed by a framework that locally linearizes the network
for analysis. We demonstrate how to do this in the following
subsection.

2) Local Lipschitz Analysis: To begin with, we estimate the
Lipschitz constants without the ReLU functions to illustrate
the impact of the nonlinearity. We construct the AlexNet and
GoogleNet without the ReLLU units by replacing them with
the identity functions, and repeat the experiments of taking
ratios from pairwise random samples. Empirically, the ratio
estimated in this way is 9.08 x 102 for the AlexNet and
1.10 x 102 for the GoogleNet. Note that these constants are
larger than the empirical Lipschitz constants for the networks
with the ReLU units.

The nonlinearities also have a non-negligible impact on the
Lipschitz constant. To handle them in the analysis, we linearize
them locally and compute the local Lipschitz constants. The
local Lipschitz constant of ® at f € D for e-neighborhood is
defined by

e e —enll -,
(he):= s T, 29
T

Note that for the case of the AlexNet and the GoogleNet (and
similarly for all other discrete networks), the input signal is
from a compact domain D = J where J is the interval for
the pixel values, and D is the dimensionality (the number of
pixels). Since D is convex, the Lipschitz constant of & is the
maximum of the local Lipschitz constants on D. The rigorous
proof of this claim is given in Appendix [E|

Using the linearization formulas, we estimate numerically
the local Lipschitz constants. The procedure is described
as follows. We vectorize |'| the input image and the output
feature vector. Also, we use Toepliz matrices 77,75, --- , T
to represent filters in each layer. For any input sample f, the
CNN generates the output feature vector ®(f) by propagating

'For a matrix A = [a1|az|---|ap] € RPXD where a1,a2,--- ,ap are
D-dimensional vectors, we vectorize A to be A¥ = [a}|ab|---|al)]t

http://www.vlfeat.org/matconvnet/pretrained/
http://www.vlfeat.org/matconvnet/pretrained/

f through T,,’s and the nonlinearities that activate only a
subset of the pixels for the hidden layer outputs. For the m-
th layer, we delete (remove) the rows that correspond to the
pixels not activated by the ReLU units and max pooling (if
they exist) in 7T;,, and the corresponding columns in 7}, 1.
In this way we obtain matrices 77,73, -- ,T},. The product
T'[f] = Ty Ty - T5T7] represents the locally linearized
operator for the CNN acting at f. For a small ¢, the local Lip-
schitz constant at f is estimated by L'°°(f,€) ~ omax(T'[f]),
the largest singular value of 7. Specifically, when € is so small
that the effect of ReLU units and max pooling does not change
in the e-neighborhood of f, we have L°°(f, €) = omax(T"[f]).
To see the reason, note that ®(f’) = T'[f]f’ for any f’
such that || f" — f]|, < e. Consequently, |||®(f") — ®(f)||| =
T F1F = TR < O (T'1F]) I = Fll» in which the
equality is achieved when f’ — f is in the direction of the
principal singular vector. Therefore, omax(T’[f]) is indeed the
local Lipschitz constant.
As a result, the Lipschitz constant for ® is estimated by

L — LIOC — max T/ ,
e = max L¥(f,€) = max omax(T"[f])

where the second equality follows if we take the maximum
over the entire compact convex set J” (see Appendix @)
However, for numerical reasons, we replace 30 with a finite
number of samples F thus obtaining an approximate (lower)
bound:

L.~ max (T T]).
——Cr)

Before discussing the numerical results based on this
method, we remark here that there are two limitations of
this local Lipschitz analysis. First, since the nonlinearities
have very different effects for different samples, it requires
a different computation of the equivalent Toepliz matrix on
each input sample and in practice it is slow if the size of
F is large. Second, it is based on local linearization and the
linearized region is small in practice, which causes a difference
between the local bounds and the empirical bounds since a pair
of images from the dataset are usually far from each other.

We follow the procedure described above to estimate the
Lipschitz constant for the AlexNet, with F having 500 random
samples drawn from the ImageNet (ILSVRC2012) dataset.
Figure [TT]illustrates the histogram of these results. We see that
the local Lipschitz constants in our case are between 0.2 and
1.6, hence of order 1. Table m summarizes the results of the
analytical, empirical and numerical local Lipschitz constants
analysis for the AlexNet.

One would naturally ask if the 500 random samples we
chose for this analysis are sufficient to infer an accurate
estimate of the Lipschitz constant. To address this question we
performed two sets of experiments. First we test if the local
Lipschitz constant is narrowly distributed over samples in each
class and whether the distribution changes for random input
signals (i.e. artificial noise input images). Figure [I2] depicts
the histogram of local Lipschitz constants for images from
class “tench” (left plot), and compares it with the histogram of
local Lipschitz constants for i.i.d. Gaussian noise images (right
plot). We note that the local Lipschitz constants for Gaussian

noise are much more concentrated around a significantly
smaller mean than for the class “tench”. This implies that the
AlexNet behaves differently for different ImageNet samples
from the same class. On the other hand the distribution of
local Lipschitz constants for images from same class reflects
the same range of values as the distribution over all 500 images
considered in Figure [T1]} This experiment gives us confidence
that the estimated Lipschitz constant over the 500 ImageNet
images is nearly tight.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Local Lipschitz constant

Fig. 11: The histogram of the local Lipschitz constants for
the AlexNet for 500 sample images taken from the ImageNet
dataset.

On the other hand, as observed from Table M the Lips-
chitz constant computed by taking the maximum of the local
Lipschitz constant is about 3 orders of magnitude larger than
the empirically computed constant. This surprising observation
implies that the direction of maximum variation (the principal
singular vector) varies significantly from one ImageNet sample
to another. This variation is caused by different effects of
ReLU and max pooling on different image samples. To bridge
the gap between the local Lipschitz bound and the empirical
bound, one could assume an “average” effect of ReLU and
max pooling, and conclude with an estimated empirical bound
via a corresponding linear version of the CNN. We describe
this method in Appendix [D| and conclude with an estimated
bound of 1.78 x 1072,

Furthermore, the local Lipschitz constant is large only in a
small neighborhood around each sample. In order to estimate
the largest perturbation that achieves the local Lipschitz bound
we performed the following experiment. For input signal f, let
v denote the principal singular vector of norm ||v|[, = 1 that
corresponds to the largest singular value oy,,x. By definition,
we have

Lo LB 2 w) = e
t—0 t

Figure [13] shows how the quotient |||®(f + h-v) — ®(f)|l|/h
changes with /. Note that the convergence as h approaches 0
is very slow. In particular, this experiment confirms that the
local Lipschitz constant is achievable, hance the numerical

lim L'°(f,¢) =

e—0

= Omax-

TABLE V: The Lipschitz constant estimation using three methods for the AlexNet.

H Method [Lip const H
Analytical estimate: compute Bessel bounds and follow Corollary [I11.2 2.51 x 103
Empirical bound: take quotient from pairs of samples 7.32 x 1073
Numerical approximation: compute local Lipschitz constants and take the maximum 1.44

14 T T T T

Counts

0.4 0.6 0.8 1 1.2 1.4
Local Lipschitz constant

Counts

0.2 0.22

0.24 0.26
Local Lipschitz constant

0.28 0.3

Fig. 12: Two histograms of local Lipschitz constants for the
AlexNet: the left plot contains the results of 50 samples from
the class “tench”; the right plot contains the results from 50
samples from i.i.d. Gaussian distribution of same size (224 x
224 x 3).

estimates in Table |Z| are not just numerical artifacts, but
actual achievable ratios. On the other hand, Figure ﬂ;ﬁl shows
that the largest relative variation of the output (i.e. the ratio
N®(f)—®(HII/|1f—fl|2) is achieved by small perturbations
only. In general, given a pair of different image samples from
ImageNet, their /2-distance is much larger than 10~°, so they
cannot reflect the local oscillation of ®.

3) Adversarial Perturbation Induced by the Local Lipschitz
Constants: CNN’s such as the AlexNet and the GoogleNet
are shown to be vulnerable to small perturbations [9], [23]],
[24]]. This kind of instability of those deep networks not only
leads to difficulties in cross-model generalization, but also

0.35

|

Y

\
03r |
\.
Y
\.
025F |\
@ A
k] ‘-\
é 02 i
@ \
® A
."; "\.
£ o045t \
@ \
= \
\.
L \
0.1 \
\
.05} S~
- e
o . ' P im———: —— s
10°° 10 102 102 10! 10°

stepsize

Fig. 13: The ratio |||®(f + h-v) — ®(f)|||/h for different h.

causes serious security problems in practice [25], [26]. An
adversarial perturbation is a small perturbation of the input
signal that changes the classification decision of the CNN. The
perturbation can be constructed by solving an optimization
problem where the wrong classification is considered as a
loss in the objective function, as described in [9]. Various
optimization settings can be found in [23]], [24] where specific
restriction on the perturbation is required.

The local Lipschitz analysis carried out in the previous
section characterizes the impact of varying the direction of
signals perturbations on the output of the CNN. It can be
seen that for the same amount of input perturbation, different
directions can be chosen to achieve a better adversarial impact
on the network performance. We use this observation to
create adversarial perturbations below. We show that a relative
change of the order of 1072 can lead the network to wrongly
characterize the input image.

Since a local Lipschitz constant is associated with a singular
vector vy with |lvg||, = 1 which is the direction that ® varies
the most at f, we expect this direction gives a perturbation that
“fools” the CNN more than other directions. The task is to find
the smallest h for which f and f' = f + h - vy are labeled
differently by the CNN. We use the AlexNet and empirically
search for h. For each sample, we find the smallest h that
fools the AlexNet. One such example is given in Figure [T4]
We take 50 samples and find that the optimal hp’s have order
of magnitude 103, which is relatively small compared to || f||,
(we have 227 x 227 x 3 input with pixel values in [0, 255],
so the relative change is of the order 10~2). Note that this
order of h is also observed in [23], where the 2-norm of the
perturbation is chosen to be 2000. Further, for each sample,
we take 1000 random directions vr,ng, and compare the labels

given by the AlexNet for f and f+ (hopi+ AR) - Vrana for a set
of different values of Ah. We plot the percentage of directions
that fools the AlexNet on average for these samples in Figure
[I3] Surprisingly, the direction informed by the local Lipschitz
constant performs better than most directions, although at for
h > 10? the quotient |||®(f+h-v)—®(f)|||/h is much smaller
than the Lipschitz constant at f. Empirically, this implies
that the local Lipschitz constant is still important although
it decreases fast outside a small region.

V. LIPSCHITZ BOUNDS IN STATIONARY PROCESSES

Signals (audio or image) are often modeled as random
processes. In our case, there are two ways to model the input
signal of a CNN: one is to consider X (¢) as a random process
(field) with some underlying probability space (2, §,P) with
finite second-order moments (see [1, Chapter 4]); the other is
to regard X as a random variable such that

X:(Q,5,P) — L*(RY) .

We first present the former model for our framework in Section
In the following, we use the notation X (¢) to emphasize
the time (space) variable t € R? and X,(w) to emphasize
w €). We are interested in studying stationary signals. Fix a
realization X (t) = X,,(¢) for some w € Q. X (t) is said to be
strict-sense-stationary (SSS) (see, for instance, [27], Chapter
16) if all of its finite-order moments are time-invariant (its
cumulative distribution does not change with time). The output
of a CNN is SSS provided that the input X is SSS. This is
stated as the following lemma.

Lemma V.1. Consider a CNN in the framework of Section [[]]
in which there is no dilation operation. Let ® be the induced
Lipschitz continuous map as defined in (I8). If X is an SSS
process, then so is ®(X).

Remark 1. In general, if we apply dilations for random
processes, the signals are no longer stationary after the
merge operations. To see a concrete example, let 0 be a
random variable taking values uniformly in [0, 27). Consider
X(t) = cos(t + 0) which has i.i.d. distribution over time and
is thus SSS. Note that Y (t) := X (t) + X (3t) = cos(t + 0) +
cos(3t+6) = 2 cos(2t+0) cos(t) has different distributions at
t =0andt = /2, and is thus not SSS. Therefore, throughout
this section, we assume that there is no dilation operation in
our CNN.

Now we state the result that connects the Lipschitz bound
derived in Section III with stationary processes.

Theorem V.2. Consider a CNN in the framework of Section
[f1] in which there is no dilation operation. Let X and Y be
SSS processes with finite second-order moments. Then

E(H‘@(X)—@(Y)mz) §L-E<|X—Y|2> . (25

leCONIP < - E(1XP).

In particular,

The proof for Theorem [V.2] parallels that of Section III. We
present it in Appendix [E]

As mentioned above, we can also follow the second way to
model the signal as a random variable X : Q — L?(R%). In
this case, we have a random variable with values in a Banach
space (see a detailed discussion of such random processes
in [28]], [29]). In particular, let & be the map induced by
the CNN, and L, = V'L be the Lipschitz constant. Denote
Y = ® o X to be the received random variable. Then by
[29, Proposition 1.2], we have the concentration function
a(L2(RY),Py)(r) < a(L*(RY),Px)(r/L.). Suppose X is
Gaussian (see [28, Chapter 2] for the definition in this case)
and let 0 = o(X) = sup(E ||X|2)/2. Then similar to the
concentration inequality in [29, Lemma 3.1], there exists a
median 99t > 0 for which we have both

Py (Y —E(Y)[l, <) > 1/2

and
Py(IY —E(Y)[l, <) <1/2;

and we have
2
P{IY = E(Y)ll, — 9| > t} < exp (QUQL) :

In signal classification tasks, if we view signals in each
class as realizations from a common distribution, then we
have the same E(Y") for all signals in this class. If the feature
Y generated by the CNN is concentrated around E(Y'), and
E(Y)’s are separated for different classes, then features from
different classes will naturally form clusters. Although we
do not have exact concentration (9t = 0), Inequality
demonstrates that Y concentrates in a “thin” shell of radius 9t
around E(Y") provided that we have a small Lipschitz bound
L. We further promotes making the Lipschitz bound small in
designing CNN’s in the next section.

(26)

VI. LIPSCHITZ BOUND IN CLASSIFICATION

In addition to analyzing stochastic processes, we present
here another application of the Lipschitz bounds which is
similar to the linear discriminant analysis (LDA) (see, e.g.
[30], [31]). In LDA, itis desired to maximize the “separation”,
or the “discriminant”, which is the variance between classes
divided by the variance within each class (see [31, Eq. (1)]
and the discussion that follows). We use a similar notion
in our (nonlinear discriminant) analysis, albeit its nature of
nonlinearity. We define the discriminant of two classes Cy
and Cy to be

_E[@()If € C1] —E[@(f)|f € Ca]l|I?
[Cov(@(f)If € Co)ll, + [|Cov(@(f)]f € Ca)ll.

in which @ is the nonlinear map induced by the CNN, as
defined in (18), ||-||, denotes the nuclear norm, and Cov
denotes the covariance matrix.

To see how the Lipschitz bound is associated with the
separation S, we look at the nature of the variance of the
output feature ®(f). Suppose we have a Gaussian noise
v ~ N(0,I) and apply a linear transform A, then Av is
also Gaussian with covariance AA*!. The nuclear norm of its
variance is given by

|[Cov(Av)|, = traceAA" = ||A|]Z, ,

, (27

(a) The original image

(b) The perturbation (scaled for visibility)

(c) The perturbed image

Fig. 14: An example of the perturbation along the direction of the singular vector. The left is the original image, the middle
is the perturbation which is amplified 1000 times for clear illustration, and the right is the perturbed image. The AlexNet
recognizes the original image as “king snake” but the perturbed one as “loggerhead turtle”.

0.7

0.6 [

05| =

o
-
N,

Percentage
[=]
(o)

0.2

01

0
0 1000 2000 3000 4000 5000 6000 7000 BOOD 9000
Stepsize Ah

Fig. 15: Average percentage of successful perturbations in
1000 random directions. Ah = 0 is the smallest stepsize
where the perturbation along the direction informed by the
local Lipschitz constants successfully fools the AlexNet.

where |[|-||, denotes the Frobenius norm. Since A is linear, its
Lipschitz constant is given by [|Al|,, and its Lipschitz bound
is given by ||A||zp. Note that the Frobenious norm and the
operator norm are equivalent norms, since [|All,, < [[A|lg <
\/ﬁ ||A||op'

Motivated by the linear case, we look into replacing
[ICov(-)]|, in (27) with the Lipschitz bound for general CNN’s.
We consider a CNN with a Gaussian white noise input
v ~ N(0,I). We assume two classes of signals, C; and
C5 where each class C, (¢ = 1,2) contains samples from
a colored Gaussian noise v, ~ N (., W.W!). We use L, to
denote the Lipschitz bound for the whole system, as illustrated
in Figure [T6

We define the Lipschitz discriminant to be
5 _ NERISf € Ci] —E[@(f)|f € Clll”

L+ Ly ’
where L, and Ly are the Lipschitz bounds for Class 1 and

(28)

CNN

— Y

Fig. 16: Illustration of the Lipschitz bounds L.. Suppose f is
an image filtered by W, (and a bias p.) from a white Gaussian
noise v ~ N (0, I). Then the Lipschitz bound L. for the class
c considers both processes of W, and the CNN. This bound
is not the same for different classes since it depends not only
on the CNN but also on W..

Class 2, respectively.

In Figure [I7] — 20} we report the experiments on the
discriminative behavior of randomly generated CNN’s. We
take two classes (number “3” and “8”) of test images from
the well-known MNIST database [32], and randomly build
CNN’s with three or four convolutional layers and record their
discriminant according to (Z7) (plotted on the left-hand-side
in each figure) and (28) (plotted on the right-hand-side in each
figure). We then train a linear SVM for each network and plot
the error rate of classification against the discriminants. The
purpose of this experiment is to show that larger discriminants
lead to better classification results. The reason we use SVM’s
is to examine the quality of the CNN (feature extractor)
given different discriminants, and therefore we choose to train
linear SVM’s (which works for two classes) with the same
regularization parameter. The numerical implementation is
done using MATLAB 2016b. We use MatConvNet [22] for
constructing the CNN, and the Machine Learning Toolbox in
MATLAB for training the SVM’s.

As seen from the results, the error rate tends to decrease
as the discriminant and the Lipschitz discriminant (28)
increase. The trend is clearer when we have more layers.
Therefore, either the discriminant or the Lipschitz discrimi-

45 3 layers, randn generated weights . 3 layers, randn generated weights
4 B 4
35 o o 35
o
o
3 1
2 o ®
P)
B 25 4 ®
g g
I I N
2 o 1 2 .
8 ° >
o k)
15 5 b o o° o
1
05 . . . 05 . . .
[005 015 02 025 03 0 005 01 015 02 025 03 035

Fig. 17: Plots of error rate

0.1 .
(ELB(x, JER (x,D/(IVare (x,)I+IVar (x,)il

(ERR(X, FELB (DAL, L)

15

versus discriminant for a three-layer CNN with randomly (normal distributed) generated weights.

3layers, rand generated weights

3layers, rand generated weights

Error rate / %

Errorrate / %

01 0.15 0‘2 025
(ELB(X, JFER 0,))/(IVart x,)I+1IVar (¢,)I)

0.35

0.004 0.006 0.008 0.01 0.012
(ELR(x,JERR O AL +L)

Fig. 18: Plots of error rate versus discriminant for a three-layer CNN with randomly (uniformly distributed) generated weights.

4layers, randn generated weights

4layers, randn generated weights

Error rate / %

Error rate / %

Fig. 19: Plots of error rate versus discriminant for a four-layer

Error rate / %
3

0.1 0.15 02
(ERR(x, J-EL(x, /(11Var®(x)1+ Var®(x,)l

4layers, rand generated weights

0.01 0.02

0.03 0.04 0.05 0.06 0.07 0.08
(E[@ () FERR 0L, +L,)

CNN with randomly (normal distributed) generated weights.

4layers, rand generated weights

>

o

Error rate / %
n
2

N
8

Fig. 20: Plots of error rate versus discriminant for a four-layer CNN with randomly (uniformly distributed) generated weights.

01 0.15 02 025 03

(EER(x, JFELD(x, D/(11Var®(x,)1+ Var®(x,)l

035

0.4

0.006 0.008 0.01 0.012 0.014 0.016
(ED(x, JFEIR()AL, +Ly)

nant is a reasonable penalty term for the training objective
function of the CNN. Our analysis in previous chapters can
be effectively used to estimate the Lipschitz discriminant for
these optimization problems. However, it remains open how
to design a training algorithm using the discriminants since
the weights appear in both the numerators and denominators

in and (28).

VII. CONCLUSION

In this paper we proposed a general framework for Lipschitz
analysis of CNN’s. We showed that after calculating the Bessel
bounds for each layer, the Lipschitz bound can be calculated
by solving a linear program. We also demonstrated that the
Lipschitz bounds play a significant role in the second order
statistical description of CNN’s. Further, we illustrated that the
Lipschitz bounds of CNN’s can be used to form a discriminant
that works effectively in classification systems.

In addition to the Lipschitz bounds derived from the Bessel
bounds, we discussed the Lipschitz bounds from local singular
value and from empirical ratios by taking pairs of samples.
The Bessel bound method can be over conservative due to
looseness from cascading the upper bound and from neglecting
the effect of nonlinearities. However, the local Lipschitz bound
also has limitations due to the expensive local computations
and the rapid variation of the effect of nonlinearities. We
believe the hope to overcome these limitations may come
from stochastic models. From the numerical experiments in
Section we found interesting results on gaps between these
bounds. We provided a simple stochastic model that bridges
the gap between the local bounds in the worst-case sense
and empirical bounds, but we believe the analysis needed for
completely understanding the behaviors of these bounds are
more complicated and requires further treatment. Given the
importance of Lipschitz bounds in understanding the stability
and adversarial perturbation, we believe this deserves future
work.

In future works, we will pursue more systematic analysis
based on the stochastic models for both the upper bound
cascading and the effect of nonlinearities. Specifically, this
requires modeling both the filters and nonlinearities. Note
that if we adopt the same model as given in the text for the
nonlinearites, then we can linearize a CNN by looking at the
product of the corresponding Toepliz matrices. It is likely that
an estimation of the principal singular value can be estimated
given some assumptions on the distribution of the entries of
the filters. Potentially, the distribution of Lipschitz constants
will be reached given these models. We will also seek for
the application of these analyses in training CNN’s robust to
adversarial perturbation.

ACKNOWLEDGEMENTS

DZ was partially supported by NSF Grant DMS-
1413249. RB was partially supported by NSF Grant DMS-
1413249, ARO Grant W91INF-16-1-0008, and LTS Grant
H9823031D00560049. The authors thank the anonymous re-
viewers for their careful reading of the manuscript and con-
structive suggestions.

APPENDIX A
PROOF OF THEOREM [[IT1]

We are going to show that the optimal value for the linear
program (20) is a L1psch1tz bound. In particular, we study

ZNGV HfN fNH as sz 1 ZNGV HfN fNH

For the m-th 1ayer we mark the signals at the input nodes
to be N1, Amon,, and the signals at the output nodes
to be Ay, 4, ,hm n, - We estimate the Lipschitz bound by
comparing the output ‘nodes and input nodes for each layer,
and then derive a relation between the outputs and the input at
the very first layer. Note that with our notation here, h1 1 = f
and h171 = f

We first look at the case of no merging. Before we study
the input-output relation, note that for the dilation operation
illustrated in Figure for two outputs yp, 7o from inputs
y1, 71 € R? respectively, we have

Fig. 21: The dilation operation. 3; € R? is the input and o
is the output given as yo(z) = y1(Dzx).

/ ly1(Dz) — 51 (Dz)|? da

_ =2
= (detD)"" [ly1 —aull; -
Now we look at the illustration in Figure [3] Since the

nonlinearity oy, s is 1-Lipschitz, and also according to (29),
we have

o — doll3
(29)

~ 2 2
o = Bl < (QetDy) [0 = 0
o ol 2
Therefore,
",) o
Z ‘hm,n’ - hm,n’ fm,n - fnz.n
n'= 2 =1 / 2
n;n ‘ 2
< detD Hh R
MNom, B 2
Z Hfm,n - fm,n
2
n=1
7L;YL " 2
= > (detDy)" Hh"‘ —n
n’/=1
MNm ~ 2
Z fm n fm.n
Alm) - 2
- { { T)(w)] (™ (@) - ﬁ<m>(w))} deo
<

. AT ()] '
et ||l ¥ @)

n=1

2
) (30)

m,n

= B imj [
n=1

where in the last two steps, h(m) s the column vector whose
n-th entry is ﬁmyn (and similarly for fz(m)), and {-},, denotes
the n-th entry of a vector.

In the same manner, we have

’
m 2 N 2
- hm,n

)
2

We have completed the analysis of one layer without
merging. Now we focus on the merging case, in which the
definition of the corresponding Bessel bounds will be clear
immediately after we study the three types of merging. Now
we look at the relation between the output and input of the
merging blocks.

Y1— J1

Yo2—s| 09 Yo
YK—> O
Fig. 22: Type I merging. yo is the sum of o1 (y1), - , ok (YK)-
For Type I, as illustrated in Figure 22] we have
K
vo =Y ok(yr) €2
k=1
and
K
o= k(i) (32)
k=1
Therefore

2

K
> onlye) = onlin)
k=1 2

~ 112
HyO*yOHQ =

K> llow(y) = ox i) 15

< (33)
k=1
K
< Kk —alls -
k=1
For Type II, as illustrated in Figure we have
K 1/p
Yo = (Zm(yknp) : (34)
k=1

Y1— o1 — T
3
Yo—>| 02 4 5
E
@
L] L] L] U'Q
=
YKk—> T [g
Fig. 23: Type II merging. 7o is the aggregate of
o1(y1),- - ,0k (YK) using p-norm.
and

(35)

K 1/p
o = <Z|0k(:§k)|p> ;
k=1

Therefore if p < 2 we have

llyo — Z]o”g
K 1/p K /e 2
- H (Zm(yw’) - (Zlak@k””)
P k=1 2
K 1/p ?
< H(Z ok (yx) — 0k(?7k)|p)
P 2
1/2
- g ’(o4) — o))
—1 2
K
— K2/p—1 Z llow (yx) *Uk(yk)nz
i
< K770 lge — il
k=1
and if p > 2 we have
llyo — Z]o”g
K 1/p K /e 2
- (Zm(ykﬂp) - (Zlak@k””)
=1 k=1 2
K 1/p ?
< | (X tontm) - ouaor)
k=1 2
K 12|
< (Z'U’“) — or(yk)|2)

2

K
= 3" lowly) — o)

el
Il
—

-2
||yk—yk||2 :

]~

=~
Il

1

For Type 111, as 1llustrated in Figure 24] we have y, =
Hk 10k (yx) and Go = Hk 1 0%(Jx). Therefore,

llvo — Follo

N— o1

Ya—>| 02 Yo

Yg—> OK

Fig. 24: Type III
o1 (Y1),

merging. yo 1is the product of
, 0k (yx). Here |joj|| <1forj=1,--- K.

k=1 k=1 2
K K-1 J K
= || TT oxlwr) + [*Hak(yk) IT o+
k=1 J=1 k=1 k=J+1
J K K

H o 11 Uk@k)] + [T o)

k=1 k:J+1 k=1 2

-1 K-1J-1

K
(0s(ys) —04(9s)) H o (Jk)+
k=J+1
(o1(y1) — 01(F1)) HUk r.)
K-
< H loe(Wi)lloo - lox (yx) — ok (Fx)llo +
- K—-1J-1 K
> [lorwlle TT lloxt@m)ll
J=2 k=1 k=J+1
los(ys) = o (@)l +
K
I low(i) e -l n) = r)l
< ZH% Yi) — ok (J) Il
e
< Z”yk_gknz ;
k=1
and thus
K
lyo — dolls < K> llye — aiel5 - (36)
k=1

Therefore, when we compare the input nodes and output
nodes of the m-th layer for the merging case, using the above
relations and the definition of BT(,}L), we have (see Figure)

’
T

D

n'=

I 7
m,n’ m,n’ 9

~ 2
fm,n
2

fm,n -

- 2

S Br(i) Hhm,n - hm,n
2

By the one-one correspondence of the output nodes in the
(m + 1)-th layer and the input nodes in the m-th layer, we
know that

Nm41

h h ’ 0 e
— ‘ m+1ln = 'm+1ln 2— n 9) ()
and therefore,
nm,+1
‘hm—&-ln_hm-i-ln +ZHfmn fmn
< B(l) Hhmn_ m,n
< By g
(38)

forl<m< M-—1.
If we do not consider the output generating, then the forward
propagation relation is

Mm, Mm 2
bl

> LB |
n=1 (39)

for 1 < m < M — 1, and similarly, considering the output
generating nodes alone gives

hm+1,n - hm+l,n m,n hm,n

Nom, B 2 MNom, _ 2
m,n ~ Jm,n <B(3) Hhmn_hmn 40
> [= B, < B2 S [= o] @0
for1<m< M.
Since we would like to compare

_2
Z%ﬂ nm Hfmn fmn , with th’l—h1’1‘2, by
@)-@), we see that the maximal value of the linear
program (20) gives a Lipschitz bound.

APPENDIX B
PROOF OF COROLLARY-

From the definitions of B,(i)n, Bg) and B

is obvious that

n ()3 i

B, < BY, + B, @
and from (T4)-(T6), as well as 2)-(@), we have hence
BV < B?) L B (42)
for each m. Then note that if {y,,}2 25 and {z,,})Z; are
the maximums of the linear program (@) then
2 S B Ymo1 —ym, 1<m<M-1, (43)
and
m < Biyna (44)
(note that B](VII) = B](\i)).
We take the sum over all m’s to get (denote ya;s = 0)
M M
Z Zm S Z By(rpym—l —Ym
m=1 m=1
M-1
= > BU iy - Z Yim (45)
m=0

BV + Z (Bl = Dy -

Also, yp, < B/,(rf)qu implies y,, < B,(i)qu, SO Ym <
[17._, B\ and thus

m/=1
M-1
Bgl) + Z ((max{l Bfill 1) .

M
Z Zm <
m=1

(max{l Bm+1} H
m/=1

= BW - MZ ﬁ max{1, B) }-+
m

m=1m/=1

Z l_L[max{1, Bm

m2m’1

H max{1, B(1 } = H max{1, B(l)}

m’/=1

max{1, BS,) }>

IA

APPENDIX C
THE BANACH ALGEBRA ()

We first show that we indeed have a Banach algebra in (1.

Lemma C.1. B as defined in is a Banach algebra, where
the + operation is pointwise addition, and the - operation is
the convolution defined by

f*xg= (f@)v ;

where “V 7 denotes the inverse Fourier transform.

(46)

Proof. Note that 5 is closed under the convolution in the sense
of (46) because fj € L>(R%) and therefore is also in S’ (R%).
Since the Fourier transform is an isomorphism on S’(R%), the
inverse Fourier transform of f§ also lies in S'(R%).

After the closedness is clear, it is trivial to check that B is
indeed an algebra. The fact that 3 is a Banach algebra is due
to the norm inequality

9| _ <

(47)

fOO

N

O

The definition of the Banach Algebra becomes natural after
the Bessel bounds (TT)-(I3) are defined. Of course, in practice
we can consider only filters lie in the space L'(R?). The
Banach Algebra (I) is a larger space, and it also has some
practical consideration. Suppose we have a network where
there is aggregation of two layers, then we notice that this
does not fall in our general model. Nevertheless, we can add
several layers of d-function, to make it fall in our framework.
This is illustrated in Figure 25|

In the definition (I), the L°° norm is considered in the usual
sense, that is, we only consider f to be a well-defined ordinary
function in L>°(R?). Then the convolution operation should
be understood as f*g = (f -§)¥. Then obviously the Banach

Algebra B is closed and well-defined under the convolution
operation.

Under this definition, if we don’t choose a smooth (in the
frequency domain) filter, then in the signal domain we do
not have good decay and it is possible to have infinite L'
norm. Even if we choose signals whose Fourier transform is
in C>°(R?), we have a coarse approximation by using Young’s
inequality. Details can be seen in the example given in [21]].

/ gm,1 H Om,1 ‘9m+1,2}7‘ ||']|p}< A

fm—l

‘ gm,1 H Om,1 ‘9m+1,2}—" ||Hp}< AR

R

Fig. 25: Use § function to equivalently represent a CNN.

fm—l

APPENDIX D
ESTIMATING EMPIRICAL LIPSCHITZ BOUNDS

In Section Table [V] we observe that the Lipschitz
constant computed by taking the maximum of the local Lips-
chitz constant is about 3 orders of magnitude larger than the
empirically computed constant. It is natural to ask whether
this gap can be bridged by looking at the empirical effects of
ReLU and max pooling operations.

By the Lebesgue’s differentiation theorem, a CNN @ with
ReLU activation map is differentiable almost everywhere. At
points of differentiability, its linearization is described by the
product

F=PyDyTyvPy—1Dy—1Th—1---PiDyTy, (48)

where T7,---,7T) are the Toeplitz matrices corresponding
to the filters; Dq,---, Djys are diagonal matrices whose di-
agonals consist of entries equal to 1 if activated by the
ReLU unit and 0 otherwise; P, --- , Pys are slanted diagonal
matrices whose each row is zero except for one value equal to
1 corresponding to the entry selected by the max pooling.
In general, T,,’s do not change with the input signal, but
D,,’s and P,,’s are constant locally. Let fy and f; be two
different inputs for which ® has different local linearizations.
Take a point f; on the line segment between fy and fi:
fi=7f@t)=0Q-=-tfo+tfi, 0 <t <1, then F in
is defined almost everywhere in ¢,

F(t) =P (t) D (8) Taas Prr—1 () Dar—1 () Thr—1 - - -

Py (t)Dy ()T, 0<t<1. “9)

Consider the partition of [0, 1] where F is piecewise constant:
let {to,t1, -+ ,tg} suchthat 0 =ty <t1 <--- <tg =1and

F(t)=F,:=F(t;+0) fort, <t <tg41,9¢=0,1,--- ,Q—
1. Consequently, by continuity of &,
O(f(tgr1)) = ©(f(tg)) = (tgsr — L) Fy(fr = fo) - (50)
Summing over ¢ =0,1,--- ,Q — 1,
Q-1
®(f1) — 2(fo) = (Z(tqﬂ - tq)Fq> (fi—=1fo) . (5D
q=0
Q-1 .
Denote Fy 1= " (tg+1 — tq)Fy. We rewrite as
®(f1) = @(fo) = Fu(fr = fo) - (52)

When we compute the empirical Lipschitz constant in Table
we take the largest quotient of the norm of ®(f1) — ®(fo)
and the norm of f; — fy over pairs of samples. For each pair of
fo and f1, the quotient will be bounded by the largest singular
value of F,. In contrast to the local singular value, which
corresponds to the variation between two inputs arbitrary close
to each other, omax(Fy) corresponds to the variation between
two input images at order 1 distance apart. For this reason we
call F, the effective Jacobian for the input pair (fo, f1)-

In the following we present a stochastic model designed to
compute the effective Jacobian on a specific dataset, and then
we compare our model prediction with the empirical Lipschitz
constant in Table [V]

The first assumption is an ergodic hypothesis: the time
average in definition of F, can be replaced by an expectation
over realizations of P,,’s and D,,’s:

Q-1
Jo =Y Fyltgpr —tq) = E[F], (53)
q=0

The second assumption is independence of D;, P;, Ds,
Py, ---, Dy, Pps. While this assumption is obviously not
true when conditioned to a specific input pair (fy, f1), the
independence between various channels and layers increases

when the random variables are analyzed over a large dataset.
Consequently, the effective Jacobian is estimated by

J. ~ (EPy)(EDy)Tas -+ (EP)(EDN)TL . (54)

Finally, the third assumption is specific to the two types of
matrices: (i) In each layer m, the Bernoulli random variables
in D,, have the same distribution dependent on the layer index
only. Thus E[D,,,] = p,,I; (ii) Each row in P, is a realization
of one of 9 possible row vectors (each corresponding to
selecting one of the 3 x 3 entries in the sliding window);
The assumption is that these realizations occur with equal
probability; The consequence of this is that E[P,,] can be
replaced by the average pooling operator.

Next we estimate empirically the five constants
D1, P2, P3, P4, P5 for the AlexNet. We compute the expected
terms in (54) based on 10k pairs of image samples. For
each pair, we take the line segment between them and
sample at t,41 — t; = 1. We compute the empirical D,,’s as
Dy, = pn - I, where p is the percentage of entries being
activated in the m-th layer and I, is the identity matrix. The

20

estimation are based on the average of the samples along
the line segment and the pairs of images. Numerically, we
obtain p; = 0.4115, py = 0.3184, p3 = 0.3587, py = 0.2733,
ps = 0.1943. For the five convolutional layers, we get only
the 1st, 2nd and 5th layers have max pooling operations.
Those max poolings consider 3 x 3 areas and on average we
expect the effect is an average pooling with a multiplier of
1/9 for each entry. Indeed, from Figure the histogram of
average ratio of being activated by max poolings concentrates
around the mean of 0.1111. Replacing the expected terms by
the matrices described above, the modified effective Jacobian
has the largest singular value 1.78 x 1072, This value is
about twice the empirical Lipschitz constant estimated at
7.32 x 1073 in Table

4000 T T
3500
3000
2500
2000
1500
1000
500
0 L
0.05 0.2 0.25 0.3 0.35

Fig. 26: The histogram of activation ratios of max poolings.
Each sample corresponds to an entry of the input of max
pooling, and the x-axis is the percentage of time that entry
is activated by max pooling among all the samples we take in
our experiment.

APPENDIX E
LIPSCHITZ CONSTANTS AND LOCAL LIPSCHITZ
CONSTANTS

For CNN’s such as the AlexNet and the GoogleNet, the
Lipschitz constant is the maximum among all the local Lips-
chitz constants (see Section [[V-C). In particular, we have the
following result.

Proposition E.1. Let ® : D — R be a Lipschitz continuous
function on a compact convex domain D € RP with the
Lipschitz constant

D(f)— @
Loim oy B9
jUS -
%9 9ll2
where ||| - ||| is a well-defined norm on R. Suppose the local

Lipschitz constant at f € D for some ¢ > 0 is L'(f ¢) as
defined in (24). Then

Lc: Lloc) . 55
max (f.€) (55)

Proof. Assume on the contrary that (53) is not true. Then L. >
maxsep L(f,€). Suppose L. = 26 + maxsep L(f,€).
Then there exists f, g € D for which

l12(f) = 2(g)lll
1f =gl

Let I={h|h=(1—-1t)f+1t9,0<t<1} CD be the line
segment that joins f and g. Take
cea . ’GH’I}‘
2’ 2 |e

Let N = |I’| denote the number of elements in I’. Let h,, =
(1 —ne/2)f + (ne/2)g forn=1,--- N —1and hy = g.
Then since ||y, — hny1]ly < €,we have

5 Loe) 56
> +r}1€ag< (f,e) (56)

I'={h|h=(0—t)f+tg, t=0,

112 (7n) = @(hara)ll] < LR, €) - [|hn = Bl
n=12- N—1.
But L'¢(h,,, €) < maxsep L'°(f,€), so we have
1@ (hn) = @(hnia)l] < Igleangoc(fa €) 1hn = hntally s

n=1,2-- ,N—1.

Summing over n = 1,2,--- | N — 1 and applying the triangle
inequality for norms, we have

112(f) = 2(g)lll < Z l|®(h (hn)Ml
N—
1
£ X =,

— Lloc _
max L2(f,)Hf gllz

where the last equality come from the fact that h,,’s are all on
the same line. But this implies

O(f)—
N(F) = I) ploc 5. o
ol =B
which contradicts (56). Therefore the assumption cannot be
true and we conclude with (33). O
APPENDIX F

PROOF OF LEMMA [V 1]

The proof of Lemma [V.I] lies on the following two facts.
1) If X is SSS, then (X (¢)), where o is a pointwise function,
is also SSS;

2) If X is SSS, then X x g(t) defined as

(X x9g)w /X (t—s)g(s)ds , 57)
is also SSS. To see 1), we need to show
P{O’(Xt1+7—) S Al, e 70'(th+-,—) € An}
(58)

- P{U(th) €Ay, 0(X,) € An}

21

for any ti,---,t,,7 € R? and any A;,---,A, € §. Let
Bj=0"1(A)—{CG(C o(c) e A;} for j=1,--- ,n. The
above equality reads
]P){th—‘rT S Bly e ath-‘r'r S Bn}
(59

= P{Xy €B1,+ , Xi, € B},

which holds true due to the assumption that X is SSS.
To see 2, note that since X is SSS there exists a semigroup
of measure-preserving transformation

t.
{1": Q- Q}teRd
associated with X such that
TSTt — Ts+t

for each s,¢ € R%; and a function f such that

f(T'w) = Xi(w) (60)
for each w € , t € R?. Thus
X xg(t) = /f (T**w) g(s)ds (61)
For any t,--- ,t, € R%, Ay, --- A, €T, let
Qr={weQ: (X*g9)yir(w) €A+,)
(X *g)t,+r(w) € An} .
For w € (), note that 77w satisfies
(X xg)p (W) € Ar, -, (X g)t, (w) € An
Since T is measure-preserving, we have P(Q.) = P(Qp).

Thus X * g is SSS.

Given the two facts and that there is no dilation, Lemma
is proved by tracking from the input to each output of the
CNN.

APPENDIX G
PROOF OF THEOREM [V.2

Since the input X and Y are SSS, so are the signals at all
input and output nodes of the CNN. Therefore we can apply
the Wiener-Khinchin Theorem to relate the auto-correlation
with the power spectrum.

Consider an SSS process Z that are filtered by some fixed
g € B. Denote W = Z x g. Then we have Ry (0) =

f SW)dw. Note that we have the transfer relation
Sw(w) = Sz(w) - [§(w)[? (63)
That is to say,
B (W) = [Rw)la)lds. 6

More generally, due to linearity of E, if we have two inputs
Z and Z and a family of filters {g;};c.j, we have

(65)

IN

E (’Z — Z‘2> : z]: 13,12

With this, we can compare the correlation on the first input
nodes with the outputs of the CNN similar to what we did
in the proof of Theorem Note that for mergin;, the
inequalities still hold when ||-||5 are replaced with [E |-|*.

o0

REFERENCES

[1] S. Mallat, “Group invariant scattering,” Communications on Pure and
Applied Mathematics, vol. 65, no. 10, pp. 1331-1398, 2012. [Online].
Available: http://dx.doi.org/10.1002/cpa.21413

[2] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 8, pp. 1872-1886, Aug 2013.

[3] T. Wiatowski and H. Bolcskei, “Deep convolutional neural networks
based on semi-discrete frames,” in Proc. of IEEE International
Symposium on Information Theory (ISIT), Jun. 2015, pp. 1212-
1216. [Online]. Available: http://www.nari.ee.ethz.ch/commth//pubs/p/
ISIT2015

[4] ——, “A mathematical theory of deep convolutional neural networks
for feature extraction,” IEEE Transactions on Information Theory, Dec.
2015. [Online]. Available: http://www.nari.ee.ethz.ch/commth//pubs/p/
deep-2015

[5] W. Czaja and W. Li, “Analysis of time-frequency scattering transforms,”
Applied and Computational Harmonic Analysis, vol. 47, no. 1, pp. 149

- 171, 2019.

[6] 1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[71 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1-9.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” CoRR, vol. abs/1312.6199, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6199

[10] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
International Convention Centre, Sydney, Australia: PMLR, 06-11 Aug
2017, pp. 214-223. [Online]. Available: http://proceedings.mlr.press/
v70/arjovsky17a.html

[11] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANs,” CoRR, vol. abs/1704.00028,
2017. [Online]. Available: http://arxiv.org/abs/1704.00028

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252, 2015.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]

(31]

[32]

22

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997. [Online]. Available:
http://dx.do1.org/10.1162/neco0.1997.9.8.1735

J. J. Benedetto, Harmonic analysis and applications. CRC Press, 1996,
vol. 23.

C. Finlay, J. Calder, B. Abbasi, and A. Oberman, “Lipschitz regularized
deep neural networks generalize and are adversarially robust,” arXiv
preprint arXiv:1808.09540, 2018.

A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural
networks: analysis and efficient estimation,” in Advances in Neural
Information Processing Systems 31. Curran Associates, Inc., 2018,
pp. 3835-3844.

A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Advances in neural
information processing systems, 2018, pp. 8571-8580.

——, “Freeze and chaos for dnns: an NTK view of batch normalization,
checkerboard and boundary effects,” CoRR, vol. abs/1907.05715, 2019.
[Online]. Available: http://arxiv.org/abs/1907.05715

S. Mei, A. Montanari, and P.-M. Nguyen, “A mean field view of the
landscape of two-layer neural networks,” Proceedings of the National
Academy of Sciences, vol. 115, no. 33, pp. E7665-E7671, 2018.
[Online]. Available: https://www.pnas.org/content/115/33/E7665

S. Wright and J. Nocedal, “Numerical optimization,” Springer Science,
vol. 35, no. 67-68, p. 7, 1999.

R. Balan, M. Singh, and D. Zou, “Lipschitz properties for deep convo-
lutional networks,” Contemporary Mathematics, vol. 706, pp. 129-151,
2018.

A. Vedaldi and K. Lenc, “Matconvnet — convolutional neural networks
for MATLAB,” in Proceeding of the ACM Int. Conf. on Multimedia,
2015.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” pp. 1765-1773, 2017.

J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
2019.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Security and Privacy (SP), 2016 IEEE Symposium on. 1EEE, 2016,
pp. 582-597.

F. Zhang, P. P. Chan, B. Biggio, D. S. Yeung, and F. Roli, “Adver-
sarial feature selection against evasion attacks,” IEEE transactions on
cybernetics, vol. 46, no. 3, pp. 766777, 2016.

L. Koralov and Y. G. Sinai, Theory of probability and random processes.
Springer Science & Business Media, 2007.

M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer—
Verlag, 1991.

M. Ledoux, The concentration of measure phenomenon. American
Mathematical Soc., 2005, no. 89.

P. Xanthopoulos, P. M. Pardalos, and T. B. Trafalis, Linear Discriminant
Analysis. New York, NY: Springer New York, 2013, pp. 27-33.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher
discriminant analysis with kernels,” in Neural networks for signal
processing IX, 1999. Proceedings of the 1999 IEEE signal processing
society workshop. 1EEE, 1999, pp. 41-48.

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

http://dx.doi.org/10.1002/cpa.21413
http://www.nari.ee.ethz.ch/commth//pubs/p/ISIT2015
http://www.nari.ee.ethz.ch/commth//pubs/p/ISIT2015
http://www.nari.ee.ethz.ch/commth//pubs/p/deep-2015
http://www.nari.ee.ethz.ch/commth//pubs/p/deep-2015
http://arxiv.org/abs/1312.6199
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
http://arxiv.org/abs/1704.00028
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1907.05715
https://www.pnas.org/content/115/33/E7665
http://yann.lecun.com/exdb/mnist/

	Introduction
	Contribution of the work

	Defining a CNN
	A layer without merge operations
	A layer with merge operations

	Calculating the Lipschitz bound
	Examples
	Scattering network
	A toy example that contains merge operations
	AlexNet and GoogleNet
	Extending to Discrete Signal Processing
	Local Lipschitz Analysis
	Adversarial Perturbation Induced by the Local Lipschitz Constants

	Lipschitz bounds in stationary processes
	Lipschitz bound in classification
	Conclusion
	Appendix A: Proof of Theorem III.1
	Appendix B: Proof of Corollary III.2
	Appendix C: The Banach Algebra (1)
	Appendix D: Estimating empirical Lipschitz bounds
	Appendix E: Lipschitz constants and local Lipschitz constants
	Appendix F: Proof of Lemma V.1
	Appendix G: Proof of Theorem V.2
	References

