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Abstract—A game-theoretic model is proposed to study the
cross-layer problem of joint power and rate control with quality
of service (QoS) constraints in multiple-access networks. In the
proposed game, each user seeks to choose its transmit power and
rate in a distributed manner in order to maximize its own utility
while satisfying its QoS requirements. The user’s QoS constraints
are specified in terms of the average source rate and an upper
bound on the average delay where the delay includes both
transmission and queuing delays. The utility function considered
here measures energy efficiency and is particularly suitable for
wireless networks with energy constraints. The Nash equilibrium
solution for the proposed non-cooperative game is derived and
a closed-form expression for the utility achieved at equilibrium
is obtained. It is shown that the QoS requirements of a user
translate into a ‘“size'" for the user which is an indication
of the amount of network resources consumed by the user.
Using this competitive multiuser framework, the tradeoffs among
throughput, delay, network capacity and energy efficiency are
studied. In addition, analytical expressions are given for users’
delay profiles and the delay performance of the users at Nash
equilibrium is quantified.

Index Terms—Energy efficiency, delay, quality of service, game
theory, Nash equilibrium, power and rate control, admission
control, cross-layer design.

I. INTRODUCTION

UTURE wireless networks are expected to support a

variety of services with diverse quality of service (QoS)
requirements. Because of the hostile characteristics of wireless
channels and scarcity of radio resources such as power and
bandwidth, efficient resource allocation schemes are neces-
sary for design of high-performance wireless networks. The
objective is to use the radio resources as efficiently as possible
and at the same time satisfy the QoS requirements of the users
in the network. QoS is expressed in terms of constraints on
rate, delay or fidelity. Since in most practical scenarios, the
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users’ terminals are battery-powered, energy efficient resource
allocation is crucial to prolonging the battery life of the
terminals.

In this work, we study the cross-layer problem of QoS-
constrained joint power and rate control in wireless networks
using a game-theoretic framework. We consider a multiple-
access network and propose a non-cooperative game in which
each user seeks to choose its transmit power and rate in such
a way as to maximize its energy-efficiency (measured in bits
per Joule) and at the same time satisfy its QoS requirements.
The QoS constraints are in terms of the average source rate
and the upper bound on the average total delay (transmission
plus queuing delay). We derive the Nash equilibrium solution
for the proposed game and use this framework to study trade-
offs among throughput, delay, network capacity and energy
efficiency. Network capacity here refers to the maximum
number of users that can be accommodated by the network.
While the delay QoS considered here is in terms of average
delay, we also derive analytical expressions for the user’s
delay profile and quantify the delay performance at Nash
equilibrium.

Joint power and rate control with QoS constraints have
been studied extensively for multiple-access networks (see for
example [1] and [2]). In [1], the authors study joint power
and rate control under bit-error rate (BER) and average delay
constraints. [2] considers the problem of globally optimizing
the transmit power and rate to maximize throughput of non-
real-time users and protect the QoS of real-time users. Neither
work takes into account energy-efficiency. Recently tradeoffs
between energy efficiency and delay have gained more at-
tention. The tradeoffs in the single-user case are studied in
[3]-[6]. The multiuser problem in turn is considered in [7]
and [8]. In [7], the authors present a centralized scheduling
scheme to transmit the arriving packets within a specific time
interval such that the total energy consumed is minimized
whereas in [8], a distributed ALOHA-type scheme is proposed
for achieving energy-delay tradeoffs. Joint power and rate
control for maximizing goodput in delay-constrained networks
is studied in [9].

Recently, game theory has been used for studying power
control in code-division-multiple-access (CDMA) networks
[10]-[24]). Each user seeks to choose its transmit power in
order to maximize its utility. In [11] and [12], the authors use
a utility function that measures the number of reliable bits that
are transmitted per joule of energy consumed. The analysis
is extended in [19] by introducing pricing to improve the
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efficiency of Nash equilibrium. Joint energy-efficient power
control and receiver design is studied in [22]. In addition, a
game-theoretic approach to energy-efficient power allocation
in multicarrier systems is presented in [23]. Joint network-
centric and user-centric power control is discussed in [16].
In [17], the utility function is assumed to be proportional
to the user’s throughput and a pricing function based on
the normalized received power of the user is proposed. S-
modular power control games are studied in [21]. The prior
work in this area does not explicitly take into account the
QoS requirements of the users. While [24] proposes a delay-
constrained power control game, it considers the transmission
delay only and does not perform any rate control.

This work is the first study of QoS-constrained power
and rate control in multiple-access networks using a game-
theoretic framework. In our proposed game-theoretic model,
users choose their transmit powers and rates in a competitive
and distributed manner in order to maximize their energy
efficiency and at the same time satisfy their delay and rate
QoS requirements. Using this framework, we also analyze the
tradeoffs among throughput, delay, network capacity and en-
ergy efficiency. While centralized resource allocation schemes
can achieve a better performance compared to distributed
algorithms, in most practical scenarios, distributed algorithms
are preferred over centralized ones. Centralized algorithms
tend to be complex and not easily scalable. Hence, throughout
this article, we focus on distributed algorithms with emphasis
on energy efficiency.

The remainder of this paper is organized as follows. In
Section II, we describe the system model. The proposed joint
power and rate control game is discussed in Section III and
its Nash equilibrium solution is derived in Section IV. We
then describe an admission control scheme in Section V. The
users’ delay performance is analyzed in Section VI. Based on
our analysis, the tradeoffs among throughput, delay, network
capacity and energy efficiency are studied in Section VII using
numerical results. Finally, we give conclusions in Section VIII.

II. SYSTEM MODEL

We consider a direct-sequence CDMA (DS-CDMA) net-
work and propose a non-cooperative (distributed) game in
which each user seeks to choose its transmit power and rate
to maximize its energy efficiency (measured in bits per joule)
while satisfying its QoS requirements. We specify the QoS
constraints of user k by (ry, Dy) where rj is the average
source rate and Dy is the upper bound on average delay.
The delay includes both queuing and transmission delays. The
incoming traffic is assumed to have a Poisson distribution with
parameter \; which represents the average packet arrival rate
with each packet consisting of M bits. The source rate (in bit
per second), 1y, is hence given by

re = M. (1)

The user transmits the arriving packets at a rate Ry (bps)
and with a transmit power equal to p; Watts. We consider an
automatic-repeat-request (ARQ) mechanism in which the user
keeps retransmitting a packet until the packet is received at
the access point without any errors. The incoming packets are
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System model based on an M/G/1 queue.

Fig. 1.

assumed to be stored in a queue and transmitted in a first-
in-first-out (FIFO) fashion. The packet transmission time for
user k is defined as

= e g @)
where € represents the time taken for the user to receive
an ACK/NACK from the access point. We assume ¢, is neg-
ligible compared to RMk. The packet success probability (per
transmission) is represented by f (i) where -y, is the received
signal-to-interference-plus-noise ratio (SIR) for user k. The
retransmissions are assumed to be independent. The packet
success rate, f(7y), is assumed to be increasing and S-shaped!
(sigmoidal) with f(0) = 0 and f(oco) = 1. This is a valid
assumption for many practical scenarios as long as the packet
size is reasonably large (e.g., M = 100 bits) [22].

We can represent the combination of user k’s queue and
wireless link as an M/G/1 queue, as shown in Fig. 1 where
the traffic is Poisson with parameter A (in packets per second)
and the service time, Sk, has the following probability mass
function (PMF):

Pr{S, =mm.} = flw) 1 — fOp)™ " form=1,2,-
3)
As a result, we have
- m— Tk
ESk = mTy ].—f’yk 1: . (4)
{Si} mZ: (1= o)™ = 20
Consequently, the service rate, p, is given by
1 f(vw)
= = 5
me=g Se} e Q)
and the load factor pj, = 2—: = ;\(kwlk)

To keep the queue of user & stable, we must have p, < 1 or
f(vk) > ATk Now, let Wy, be a random variable representing
the total packet delay for user k. This delay includes the time
the packet spends in the queue, W,gq), as well as the service
time, S). Hence, we have

Wi = W9 + 8. 6)

'An increasing function is S-shaped if there is a point above which the
function is concave, and below which the function is convex.
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It is known that for an M/G/1 queue the average wait time
(including the queuing and service time) is given by

Wi = N @)

2 )\2 2
where Ly = pr + ;+ *7% with O'% being the variance of
the service time [25]. Therefore the average packet delay for
user k is given by

_ 1— Aule
W@:=Tk<}?ﬁyj%ggg> with f(yk) > M. (8)

It should be noted that the above expression for average
packet delay can also be obtained using discrete-time queueing
analysis with geometric service times (see for example [26]).

We require the average packet delay for user &k to be less
than or equal to Dy, i.e.,

Wi < Dy, 9
This translates to
>\k 7'2

>\ LA 10
J () ETk + Dk 2D, (10)

However, since 0 < f(x) < 1, we must have?

)\k’ 7'2

0< A\ — ik 11
KTk + Dk 5D, (11)

This means that r, = MM\, and D, are feasible if and
only if they satisfy (11). Note that since the upper bound
on the average delay cannot be smaller than the transmission
time, i.e., ?—: > 1, then we must have Ry > M/Djy. This

2
)\ka

> 0.
. Then, (10) is

automatically implies that A\p7x + 5= —
)\ka

Let us define np, = A7 + = —
equivalent to the condition y > 4, Where

) (12)

with n, < 1 and Ry > M/Dj. This means that the delay
constraint in (9) translated into a lower bound on the output
SIR.

e =f

III. THE JOINT POWER AND RATE CONTROL GAME

Consider the non-cooperative joint power and rate con-
trol game (PRCG) G = [K,{ Ak}, {ur}] where K =
{1,2,---, K} is the set of users, Ay = [0, Ppqz) % [0, B]
is the strategy set for user k with a strategy corresponding to
a choice of transmit power and transmit rate, and uy is the
utility function for user k. Here, P, 4, and B are the maximum
transmit power and the system bandwidth, respectively. For
the sake simplicity, throughout this paper, we assume P4, is
large. Each user chooses its transmit power and rate in order to
maximize its own utility while satisfying its QoS requirements.
The utility function for a user is defined as the ratio of the
user’s goodput to its transmit power, i.e.,

Ty,

up = —, (13)
Pk

Note that f(v) = 1 requires an infinite SIR which is not practical.

where the goodput T}, is the number of bits that is transmitted
successfully per second and is given by

Ty, = Ri.f (k) (14)
Therefore, the utility function for user & is given by
g :ka(')/k). (15)
Pk

This utility function, which was first introduced in [11], [12],
has units of bits per joule and is particularly suitable for
wireless networks where energy efficiency is important.

Fixing the other users’ transmit powers and rates, the utility-
maximizing strategy for user k is given by the solution of the
following constrained maximization:

max ur st Wi <Dy, (16)
Pk, Rk
or equivalently
max up St Ye > Yk 17
Pk, Ry
with 0 < 7, < 1 where
A= F7H0me), (18)
and u M
r r
M= —= + L (19)
R,  DiRy 2Dy Ry

Note that for a matched filter receiver and with random

spreading sequences, the received SIR is approximately given
hy

Prh . (20)

by
()
W= 2=
Ry 02+Zj;ﬁkpjh]

where hj is the channel gain for user k£ and o
power in the bandwidth B.

Let us first look at the maximization in (17) without any
constraints. Based on (20), we can write

max BﬁkM.
Ve, R Yk

2 is the noise

21)

Proposition 1: The unconstrained utility maximization in
(21) has an infinite number of solutions. More specifically,
any combination of p; and Ry that achieves an output SIR
equal to v*, the solution to f(v) = v/’ (y), maximizes u.

Proof: Notice from (21) that when the other users’
powers and rates are fixed (i.e., fixed fzk), user k’s utility
depends only on ~ and is independent of the specific values
of pr and Ry. In addition, by taking the derivative of &)
with respect to v and equating it to zero, it can be shown
that £ is maximized when v = ~*, the (unique) positive
solution of f(vy) = ~vf/(v). Therefore, u) is maximized for
any combination of pj, and Ry, for which 7, = v*. This means
that there are infinitely many solutions for the unconstrained
maximization in (21). [ |

Now, considering that 7, = M/R) must be less than or
equal to Dy, the condition 0 < i < 1 is equivalent to

R > (M) 1+Dk)\k+\/1+D2>\2
k

Dy,

(22)
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Let us define

oo_( ) 1+Dk>\k+\/1+D2>\2
Dy,

P =

Note that for R, = §23°, we have 1, = 1 and hence 7, = co.
Also, define €2} as the rate for which 4, = v*, ie.,

«_ (M
= (Dk) 21
(23)

where f* = f(v*). It is straightforward to show that 4y is
a decreasing function of Ry for all R, > Qg°. Therefore,
A > v for all Q° < Ry, < QF. This means that user k has
no incentive to transmit at a rate smaller than O} . Furthermore,
based on Proposition 1, any combination of py and Rj > €},
which results in an output SIR equal to v* is a solution to the
constrained maximization in (17). Note that when Rj =
and v, = 7", we have Wi, = Dy,

If v* is not feasible due to the maximum transmit power
limitation, the user has to adjust its transmission rate and target
SIR to satisfy its QoS constraints. In particular, user £ would
choose 2, as its transmission rate such that its transmit rate
and target SIR such that

- (3)

where

1+ DA+ /1+ D222 +2(1 — f*)Dip)i

14 Dihe ++/1+ D3N3 +2(1— (7)) DiAe
2f ()

’Yk - (B/Qk) mawﬁk

This, of course, results in a reduction in the user’s energy
efficiency.

IV. NASH EQUILIBRIUM FOR THE PRCG

For a non-cooperative game, a Nash equilibrium is defined
as a set of strategies for which no user can unilaterally improve
its own utility [27]. We saw in Section III that for our proposed
non-cooperative game, each user has infinitely many strategies
that maximize the user’s utility. In particular, any combination
of pr and Ry, for which v, = +* and R, > QF is a best-
response strategy.

Proposition 2: If Zszl @

< 1, then the PRCG

k
has at least one Nash equilibrium given by (pj,}), for
1
o2 [ Mg
hi 1-2 K
QJ* *
2 is given by (23). Furthermore, when there are more

than one Nash equilibrium, (pj,(2}) is the Pareto-dominant
equilibrium.

k = , K, where pj, and

J=1 14

Proof: i K il T + < 1 then p; =
m .
0_2 1+QP»\,* . .. . .
I i is positive and finite. Now, if we let
L (e S e -

pr = py, and Ry, = %> then the output SIR for all the users
will be equal to +* which means every user is using its best-
response strategy. Therefore, (pj, R}) for k =1,--- /K is a
Nash equilibrium.

More generally, if we let R, = Rk > €} and provided
that Z] (e B < 1, then (py, Ry) is a Nash equilibrium
.7

1
B
2B
m*

1— ZJ L B*
i

Based on (15), at Nash equlhbrlum the utility of user £ is
given by

~ 2
where p = 7-

S
B (y*)hs 2= T

0-2,)/*

ur =

1
Bf(v*)hy, L E]?fk 1+ R]B'y*

24
0-2,)/* ( )

Therefore, the Nash equilibrium with the smallest Rk
achieves the largest utility. A higher transmission rate for a
user requires a larger transmit power by that user to achieve
~*. This not only reduces the user’s utility but also causes
more interference for other users in the network and forces
them to raise their transmit powers as well which will result
in a reduction in their utilities. This means that the Nash

equilibrium with Ry = Qf and pj for k = 1,--- , K is the
Pareto-efficient Nash equilibrium. ]
We define the “size" of user k as
1
o = ——— . (25)
Based on this definition, the feasibility condition
Zk 1 77—z <1 can be written as
Q
K
> o<1 (26)
k=1

Note that the QoS requirements of user & (i.e., its source rate
r, and delay constraint D) uniquely determine £2;, through
(23) and, in turn, determine the size of the user (1 e., ®7)
through (25). The size of a user is basically an indication of the
amount of network resources consumed by that user. A larger
source rate or a tighter delay constraint for a user increases the
size of the user. The network can accommodate a set of users
if and only if their total size is less than 1. In Section VII, we
use this framework to study the tradeoffs among throughput,
delay, network capacity and energy efficiency.

V. ADMISSION CONTROL

In Section IV, we defined the ‘“size" of a user based on
its QoS requirements. Before joining the network, each user
calculates its size using (25) and announces it to the access
point. According to (26), the access point admits those users
whose total size is less than 1. While the goal of each user is
to maximize its own energy efficiency, a more sophisticated
admission control can be performed to maximize the total
network utility. In other words, out of the K users, the access
point can choose those users for which the total network utility
is the largest, i.e.,

max Uy 27)
L£c{1,- ,K} ;



F. MESHKATT et al.: ENERGY-EFFICIENT RESOURCE ALLOCATION IN WIRELESS NETWORKS WITH QUALITY-OF-SERVICE CONSTRAINTS 5

under the constraint that ), . ®7 < 1.
Based on (24), the utility of user ¢ at the Pareto-dominant
Nash equilibrium is given by

Bhof(v)\ 1 = Yice ¥
w = () i (28)
¢
As a result, (27) becomes
1-— ) d*
max Zheizzei L
£l K} o=~ - &7
or equivalently
max (1->"@r | he (29)
£t K} il Z e 1%

under the constraint that ), . ®7 < 1.

In general, obtaining a closed-form solution for (29) is
difficult. Instead, in order to gain some insight, let us consider
the special case in which all users are at the same distance
from the access point. We first consider the scenario in which
the users have identical QoS requirements (i.e., ?7 = --- =
o1 = &*). If we replace Zle he by LE{h}, then (29)
becomes

A E{h}(L — LQcIJ*).
L 1—o*
Therefore, the optimal number of users for maximizing the
total utility in the network is L = [51=] where [z] represents
the integer nearest to x.

Now consider another scenario in which there are C' classes
of users. The users in class ¢ are assumed to all have the same
QoS requirements and hence the same size, ®*(©)_ Since we
are assuming that all the users have the same distance from
the access point, they all have the same channel gains. Now, if
the access point admits L(®) users from class ¢ then the total

utility is given by
C
L©
(e) = -

Bhf(y
o ( 2"

provided that Zc:l L(C)@*(C) < 1. Without loss of generality,
let us assume that ®*() < @) < ... < ®*(©) Tt can
be shown that ur is maximized when L(}) = [ﬁ] with
L) =0 for ¢ = 2,3,---,C. This is because adding a user
from class 1 is always more beneficial in terms of increasing
the total utility than adding a user from any other class.
Therefore, in order to maximize the total utility in the network,
the access point should admit only users from the class with
the smallest size. While this solution maximizes the total
network utility, it is not fair. A more sophisticated admission
control mechanism can be used to improve the fairness.

(30)

VI. DELAY PERFORMANCE

In Section II, we defined the delay requirement of a user as
an upper bound on the average total packet delay for that user
where the total delay, Wy, is given by the sum of the queuing
delay and service time. We have considered a scenario in
which users choose their transmit powers and rates in a selfish
and distributed manner such that they maximize their own
energy efficiency while satisfying their delay requirements.

In Section IV, we showed that at the Pareto-dominant Nash
equilibrium, the transmit power and rate of a user are such
that the delay bound is met with equality. However, it would
be useful to obtain the delay profile of a user so that the
deviations of the true delay from the average value can
be quantified. More specifically, we would like to find a
closed-form expression for Pr{iW}, < ¢} for all c. This is
particularly useful for applications where delay tail is an
important measure of quality of service.

To that end, let us define wy(t) as the probability density
function (PDF) of Wj. Then, we have

Pr{W, <c} = /C wy(t)dt . 31)
0

Let W} (s) represent the Laplace transform for wy(t), i.e.,

o0
Wi(s) :/ e Sty (t)dt . (32)
0
It is known that for M/G/1 queues, we have
. (1 — pk)sBj(s)
Wi(s) = (33)
k() s — Ai[1 = Bj(s)]
where Bj(s) = [ e”*'by(t)dt with by(t) being the PDF of

the service tlme Sk [25]. Based on (3), b(t) is given by

D= 0w

m=1

Fl)™ (5(t — mTg) (34)

where J(-) is the Dirac delta function. Therefore, we have

f (k)

P o 35)

Bi(s) =
As a result,
(1 —pr)f(k)s
s (e — 14 f(yk)) — Aw (e — 1)

However, obtaining a closed-form expression for wy(t) based
on Wi (s) in (36) is very difficult. But, recall from Section II
that

Wi (s) =

(36)

W, = W9 4+ 8.

Based on this we have
Wi(s) _
B (s)

(1= pr)s(e™ =1+ f(w))

s(e™ =1+ f(y)) — M (e = 1)°
(37)

While finding the inverse Laplace transform of (37) is also
difficult, we will shortly derive an accurate approximation for
w,(cq) (t). Before doing that, let us first obtain the mean and

WD (s) =

variance of ngq) and Sj. For simplicity of notation, we will
drop the subscript k& but it should be noted that all of our
results are user dependent. Also, we replace f(v) by f.

Based on (3), the mean and variance of S are, respectively,
given by

S=- (38)

and
(39)
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From the known properties of M/G/1 queues [25], the mean
and variance of W (9 are, respectively, given by

(-5 (%)

wo =T = (40)
- F
and
02<>:T—2(1—f) ! +f2(/\_;)(4_)\_;) -1
v (1_)\_;)2 12(1 - f)(1 = F)?
(41)

Based on the above expressions, it can be shown that at
the Pareto-dominant Nash equilibrium, in many cases the
variations in the total delay are caused mainly by the variations
in W(9_ Therefore, in many cases, the variations in the total
delay can be accurately approximated by the variations in the
queuing delay.

Now let (9 (t) be the PDF of the queuing delay. According
to (37), the Laplace transform of w(? (¢) is given by

(1—p)s(e™ =14 1)
s(esT =14 f) = Mes™ — 1)’

We can equivalently write W (9)*(s) as

W D*(s) = Py(s) + Pi(s) + Pa(s)

W(Q)*(s) =

where
Py(s) = (1 —p), (42)
1— p)A(es™ — 1
Pi(s) = AT 5 3 3
and
- (1= p)A%(e —1)?
R P Y y T
(44)
Based on (42), we have
pi(t) = (1 = p)é(t). (45)

Proposition 3: The inverse Laplace transform of (43) is
given by
pi(t) = A1 =p)(1 = )i,

where |z | represents the nearest integer smaller than x.
Proof: The proof is straightforward by taking the Laplace
transform of (46). [ |

(46)

As a result of Proposition 3, we have
w () = (1= p)d(t) + A1 = p)(1 = ) +pa(t). @7

Now if we restrict our attention to 0 < t < t,,4. Where
tmaz >> D, then we can approximate p(¢) numerically using
(48) to get

N-1
N tmax . tmax
( )PQ(ZW)_ZPQ< n>ezw N
tmax ne0 N

Now, since the FFT of a discrete signal z,, is given by

N—-1
_ i 2nkn
Zy, = E zpe VTN

n=0

p2 ({me2n) can be obtained by taking the IFFT of

) Po(s)],_; 12075%3. In Section VII, we use this approx-

max

imation along with (47) to obtain w(? (¢) and, consequently,
approximate Pr{I¥(9) < c}. This allows us to quantify the
delay performance of the users at Nash equilibrium.
Alternative to the delay analysis shown in this section, one
can use discrete-time queueing analysis in [26] to derive the
probability generating function for the packet delay. However,

. obtaining a closed-form expression for the delay CDF from

the probability generating function is still difficult.

VII. NUMERICAL RESULTS

Let us consider the uplink of a DS-CDMA system with
a total bandwidth of 5MHz (i.e. B = 5MHz). A useful
example for the efficiency function is f(v) = (1 —e= )M,
This serves as an approximation to the packet success rate
that is very reasonable for moderate to large values of M. We
use this efficiency function for our simulations. Using this,
with M = 100, we have v* = 6.48 = 8.1dB. Each user
in the network has a set of QoS requirements expressed as
(rig, Di) where 7 is the source rate and Dy is the delay
requirement (upper bound on the average total delay) for
user k. As explained in Section IV, the QoS parameters of
a user define a “size" for that user, denoted by ®; given by
(25). Before a user starts transmitting, it must announce its
size to the access point. Based on the particular admission
policy, the access point decides whether or not to admit the
user. Throughout this section, we assume that the admitted
users choose the transmit powers and rates that correspond to
their Pareto-dominant Nash equilibrium.

Fig. 2 shows the user’s utility as a function of delay for
different source rates. The total size of the other users in the
network is assumed to be 0.2. The user’s utility is normalized
by Bh/c?, and the delay is normalized by the inverse of the
system bandwidth. As expected, a tighter delay requirement
and/or a higher source rate results in a lower utility for the
user.

Fig. 3 shows the user size, network capacity, transmission
rate, and total goodput as a function of normalized delay
for different source rates. The network capacity refers to
the maximum number of users that can be admitted into
the network assuming that all the users have the same QoS
requirements (i.e., the same size). The transmission rate and
goodput are normalized by the system bandwidth. The total
goodput is obtained by multiplying the source rate by the
total number of users. For example, a user with a source
rate of 50 kbps and an average delay constraint of 50 ms
(i.e., » = 50 kbps and D = 50 ms) has a size equal to
0.072. As the QoS requirements become more stringent (i.e., a
higher source rate and/or a smaller delay), the size of the user
increases which means more network resources are required
to accommodate the user. This results in a reduction in the
network capacity. For » = 50 kbps and D = 50 ms, the
transmission rate is equal to 59.65 kbps, the network capacity
is equal to 13, and the total goodput is 650 kbps. It is also

3Since p2 (t) is real, before taking the IFFT, we have to make sure that the
samples of P> (s) satisfy the symmetry properties associated with the FFT of
real signals.
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Fig. 2. Normalized utility as a function of normalized delay for different

source rates (B = 5 MHz). The combined “‘size" of other users in the network
is equal to 0.2.

observed from the figure that when the delay constraint is
loose, the total goodput is almost independent of the source
rate. This is because a lower source rate is compensated by
the fact that more users can be admitted into the network. On
the other hand, when the delay constraint in tight, the total
goodput is higher for larger source rates.

Now, to study admission control, let us consider a network
with three different classes of users/sources:

1) Class A users for which 7(4) = 5 kbps and D) =

10 ms.

2) Class B users for which r(B) = 50 kbps and D(B) =
50 ms.

3) Class C users for which r(©) = 150 kbps and D(©) =
1000 ms.

We can calculate the size of a user in each class using (25)
to get " =0.0198, 7 = 0.0718, and &*'” = 0.1848.
This means that users in classes B and C respectively consume
approximately 3.6 and 9.3 times as much resources as a user
in class A.

For the purpose of illustration and to keep the comparison
fair, let us assume that there are a large number of users in
each class and that they all are at the same distance from the
access point (i.e., they all have the same average channel gain).
The access point receives requests from the users and has to
decide which ones to admit in order to maximize the total
utility in the network (see (29)). We know from Section V
that since users in class A have the smallest size, the total
utility is maximized if the access point picks users from class
A only with LW = [1/2@*(’4) = 25. However, this solution
does not take into account fairness. Instead, we may be more
interested in cases where more than one class of users are
admitted. Table I shows the percentage loss in the total utility

(48)
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Fig. 3. User size, network capacity, normalized transmission rate, and

normalized total goodput as a function of normalized delay for different source
rates (B = 5 MHz).

TABLE I
PERCENTAGE LOSS IN THE TOTAL NETWORK UTILITY FOR DIFFERENT
cHOICES OF L(4) | L(B) anp L(9),

[ L ] L) T L1 | Loss in total utility |

25 0 0 -

23 1 0 10%
20 0 1 30%
18 1 1 38%
0 7 0 1%
0 0 3 87%

(energy efficiency) for several choices of L(*), L(B) and L(©).
It is observed that admitting “large" users into the network
results in significant reductions in the energy efficiency and
capacity of the network.

Let us now focus on the delay profile of a user in class B.
For this user, we have r(B) = 50 kbps (or A(B) = 500 pps)
and D®) = 50 ms. Therefore, d'®) = 25. From (38)-(41),
we have S(B) = 2 ms, UgB) = 0.74 ms, W@(B) = 48 ms
and 0"(/5()(1) = 48 ms. It is clear that for this user the queuing
delay is the dominant component of the total delay. Therefore,
the cumulative distribution function (CDF) of wW®B) e,
Pr{W () < t}, can be very accurately approximated by the
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Fig. 4. Cumulative distribution function of the queuing delay for a user with
a source rate of 50 kbps and an average delay of 50 ms.

CDF of W(@(B), Hence, we can use (47) to numerically
compute the CDF of the queuing delay. This CDF is plotted in
Fig. 4. It is seen from the figure that about 63% of the time,
the delay experienced by a packet is less than the average
delay bound and 85% of the time, the delay is less than twice
the average delay.

VIII. CONCLUSIONS

We have studied the -cross-layer problem of QoS-
constrained power and rate control in wireless networks us-
ing a game-theoretic framework. We have proposed a non-
cooperative game in which users seek to choose their transmit
powers and rates in such a way as to maximize their util-
ities and at the same time satisfy their QoS requirements.
The utility function considered here measures the number of
reliable bits transmitted per joule of energy consumed. The
QoS requirements for a user consist of the average source
rate and an upper bound on the average delay where the
delay includes both transmission and queuing delays. We have
derived the Nash equilibrium solution for the proposed game
and obtained a closed-form solution for the user’s utility at
equilibrium. We have shown that the QoS requirements of a
user translate into a "size" for the user which is an indication
of the amount of network resources consumed by the user.
Using this framework, we have studied the tradeoffs among
throughput, delay, network capacity and energy efficiency,
and have shown that the presence of users with stringent
QoS requirements results in significant reductions in network
capacity and energy efficiency. The delay performance of users
at Nash equilibrium have also been analyzed.
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