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LETTER TO THE EDITOR

An Uncertainty Inequality for Wavelet Sets

Radu Balan®
Communicated by Guy Battle on April 22, 1997

Abstract — The purpose of this note is to present an extension and an
aternative proof to Theorem 1.3 from G. Battle (Appl. Comput. Harmonic
Anal. 4 (1997) 119-146). This extension applies to wavelet Bessel sets which
include wavelet Riesz bases for their span, wavelet Riesz bases (including

orthogonal and biorthogonal wavelet bases), and wavelet frames.  © 1998 Academic
Press

Let ¥ € L?(R) and a > 1, b > 0 be given data. We denote by
Wi = { VYma; M NE Z}, Urnan(X) = a™2W(a™x — nb) (1)

the wavelet set associated to the wavelet ¥ and parameters a, b.

DeriNITION  We call Wy, a wavelet Bessel set if there exists a constant B > 0
such that for every f € L?(R):

> K Wanan)[* < BIIF[I2. (2)

We shall use the notations of [1] for P, X, og(X), cg(P), (P)s, {(X)s. Then, the
main result can be stated as

THEOREM  Suppose Wy, o, is a wavelet Bessel set. Then

IX]-|PE| = 3. (3)

Furthermore, if (P); = 0 (for instance, when W is real-valued) then

v (X)Ow o (P) = ou(X)ow(P) = 3. (4)
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Proof. If X, P¥ do not both liein L(R), then either | X ¥| or |P¥| is infinite
and (3), (4) trivialy hold.

Suppose now that both X ¥, P¥ are in L?(R), which means, equivaently, x¥, ¥’
€ L%(R). Thus ¥ and ¥ are integrable (i.e., in L*(R)) and continuous.

On the other hand, the same technique that C. K. Chui and X. Shi used to prove
Littlewood—Paley type inequalities for wavelet framesin [ 2] allows usto obtain these
two conditions on ¥ because Wy, o, is a Bessdl set,

PALICSTES (5)

ae. £ € R and, since ¥ is continuous, it follows that (5) holds for any ¢ € R. By
integration from 1 to a we get the second relation,

1 LI
2b|ogafw |€] d <B. (6)

Since ¥ is continuous we obtain that necessarily ¥ (0) = 0 which means
f P(x)dx = 0. (7)

Consider now two linear spaces (Sis the space of the rapidly decreasing functions):

s={ves [omd=0, (®)
Vo={fe LZ(R),Xf,PfeLZ(R),andff(x)dx:O}. (9)
We claim that S, is dense in V, with respect to the norm ||| f ||| = ||f] + |IXf] +

|[Pf (for which, by the way, the space V, is closed). To see this, consider f € V,
and a sequence ¢, € Ssuch that |||¢, — f||| = 0 (i.e, llen — fIl 2 0, [ Xpn —
Xf |- 0, |Pg, — Pf| = 0). Choose G € Ssuch that [ G(x)dx = 1 and set ¢, =
J on(x)dx. Then 8 = ¢, — .G € Sand ||| —f|]| = 0, sincec,— 0. Thus §
is densein V.

For ¥ € &, Battle proved that (3) holds and, when (P)y = 0, (4) holds as well.
We extend now his result to V, by a density argument.

Consider now ¥ € V,. Choose ¢, € § converging to ¥ innorm ||| -|||. Then,
obviously

X @all = X WL, ([Pl = [[PE] (10)
and thus (3) is established.

For (4) we first note that (10) implies (P),, = (P)y = 0,{X)sn = (X)y, and, since
ou(X) = (IXT|2 = ((X))?)Y2, ou(P) = (IPY? — ((P)s)?)*?, we get as well
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that o,n(X) = oy(X) and o,,(P) = o4(P). Finaly, as has been observed many
times before (for instance in [ 3]), the uncertainty product oy ( X)oy(P) is invariant
aong the wavelet set. This ends the proof of (4) and of the theorem. |

Remark We point out that the inequality (3) holds as well for every element of
Wy ap, 1.€.,

IX Wyl * [P el = 3, (11)
since (7) holds for every W, ap-
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