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ABSTRACT

Consider a sensing system using a large number of N microphones
placed in multiple dimensions to monitor a broadband acoustic
field. Using all the microphones at once is impractical because of
the amount of data generated. Instead, we choose a subset of D
microphones to be active. Specifically, we wish to find the set of D
microphones that minimizes the largest interference gain at multiple
frequencies while monitoring a target of interest. A direct, combi-
natorial approach – testing all N choose D subsets of microphones
– is impractical because of problem size. Instead, we use a convex
optimization technique that induces sparsity through a l1-penalty to
determine which subset of microphones to use. We test the robust-
ness of the our solution through simulated annealing and compare
its performance against a classical beamformer which maximizes
SNR. Since switching from a subset of D microphones to another
subset of D microphones at every sample is possible, we construct
a space-time-frequency sampling scheme that achieves near optimal
performance.

Index Terms— array processing, multi-frequency beam pattern
design, sensor location selection, very large scale arrays, convex op-
timization, simulated annealing

1. INTRODUCTION
Consider a large scale sensor array having N sensors that monitors
a surveillance area. Using all sensors simultaneously may be unrea-
sonable in terms of power consumption and data processing. For ex-
ample, for N = 10000 sensors and a data sampling rate of 100000
samples per second, the bandwidth requirement is 1Gsamples/sec.
We could poll a subset of D sensors at any one given time instead.
The N choose D number of choices of sensors allows for a myriad
of sensor configurations, and the task is then to choose a subset that
achieves our objective.

Alternatively, our problem is to placeD sensors in a constrained
region of space. We convert this non-convex optimization problem
into a combinatorial problem by discretizing the possible set of sen-
sor locations. In this context our approach can be seen as an optimal
test design.

Assume the surveillance area consists of a set of point-like
sources. We seek designs that minimize the largest interference
gain from a potentially very large number of locations while still
maintaining target unit gain. Throughout this paper, we assume the
following four hypotheses:

H1. Sensor locations (x, y, z-coordinates) are known. Their lo-
cations however can be arbitrary.
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H2. The number of real interferences, their locations and spec-
tral powers are unknown.

H3. The maximum number of sensors active at any time, D, is
fixed in advance.

H4. The signals that we wish to monitor are wide band.
When sensors have local computational processing power, we

make an additional hypothesis:
H5. Sensors can band-pass signals and they can switch data

transmission on a sample-by-sample basis.
Under H5, the system can sample selectively the space-time-

frequency domain.
Our system divides the surveillance area into a large number of

small, non-overlapping target areas. For each fixed target area, we
find a subset of sensors that minimizes the gain of a large number
of virtual interferences. By doing so, the system is robust to a wide
variety of unknown interference configurations. It then begins to
iteratively scan each target area. By measuring the signal strength
in each fixed target area, we are able to locate and then monitor the
actual targets.
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Fig. 1. Sample Scenario: L = 193 sources (1 target and 192 inter-
ferences), N = 200 sensors.

2. PROBLEM FORMULATION
Consider the setup described earlier and sketched in Figure 1. We
assume we know the sensor locations and then fix a target area. Since
the number, locations, and power distributions of the interferences
are unknown, we assume a large number of virtual interferences,
say L. Our objective is to minimize the largest gain from this set of
virtual interferences which guarantees a small gain for any one actual
intereference located at any of the virtual interference locations.

Assume the zero indexed source is the target and the remain-
ing L sources are interferences. For these ”virtual” L + 1 sources



we use the direct-path model, where the transfer function between
source l and sensor n at frequency fi is given by Hl,n(fi) =
exp(−2πific‖rl − rn‖)/‖rl − rn‖, 0 ≤ l ≤ L, 1 ≤ n ≤ N ,
where rn, rl denote the position vectors of sensor n and source l
respectively, and c is the wave propagation speed (e.g. speed of
sound for acoustic signals). We use this simple direct-path model
because we do not want to assume prior knowledge of wall locations
and their reflection coefficients. For evaluation, we use a direct-path
plus one reflection off each wall model.

Let wn(fi) denote the processing weight for sensor n at fre-
quency fi. If wn(fi) = 0 then sensor n is inactive at frequency fi.
Assume that we haveF distinct frequencies of interest,f1, f2,. . .,fF .
Given F sets of N sensor weights, each interference l has F differ-
ent gains, one for each frequency. Note that for each of the F fre-
quencies, we use a different set of N sensor weights to calculate the
interference gains at that frequency. Our objective is to minimize the
maximum sum of gains across F frequencies while still achieving
target unit gain at each frequency. Assumption H3, however, limits
us to D simultaneously active sensors.

In this multi-frequency setup, when H5 is not satisfied, sensor n
becomes active if wn(fi) 6= 0 for any i. Thus the number of non-
zeros in the N -dimensional vector max

1≤i≤F
|wn(fi)| is then an appro-

priate measure of the number of active sensors. Let ‖w‖0 denote the
pseudo-norm which counts the number of non-zeros in the vector w.
We can now state our optimization problem:

min
(wn(fi))

F,N
i=1,n=1

max
1≤l≤L

F∑
i=1

|
N∑

n=1

Hln(fi)wn(fi)|

subject to
N∑

n=1

H0n(fi)wn(fi) = 1 for i = 1, 2, . . . , F

‖ max
1≤i≤F

|wn(fi)|‖0 ≤ D

(1)
Note that this is a non convex optimization problem due to the l0

pseudo-norm constraint ‖ max
1≤i≤F

|wn(fi)|‖0 ≤ D. When hypothesis

H5 is satisfied, we can solve the optimization problem (1) indepen-
dently for each frequency, and then implement an adaptive space-
time-frequency sampling. We shall compare both sampling scenar-
ios.

3. CONVEX OPTIMIZATION STRATEGY
Our method is inspired by LASSO regularization [1], a regression
technique that minimizes the sum of squares of residual errors sub-
ject to the l1 norm of the coefficients being less than a constant. Sim-
ilar to the sparse signal and model estimation approach in [2], the
l0 pseudo-norm is replaced by the l1 norm ‖w‖1 =

∑N
n=1 |wn(f)|

which is then incorporated into the optimization criterion using a La-
grange multiplier λ. The optimization problem (1) is then replaced
by the following convex optimization problem which we call the λ-
method:

min
(wn(fi)) F

i=1
N

n=1

max
1≤l≤L

F∑
i=1

|
N∑

n=1

Hln(fi)wn(fi)|+ λ

N∑
n=1

max
1≤i≤F

|wn(fi)|

subject to
N∑

n=1

H0n(fi)wn(fi) = 1 for i = 1, 2, . . . , F

(2)

For very large λ, the penalty term forces many of the sensors to be-
come inactive. Specifically, let W be the N by F matrix of sensor
weights produced by the optimization. With a large λ penalty, many
of the rows of W contain only values very close to zero. If the nth
row only contains such small values, sensor n is then inactive. As
λ decreases the penalty term becomes less expensive and more sen-
sors become active. At the limit, λ = 0, all sensors are allowed to be
active. We fine tune λ until we get D non-zero components. Specif-
ically, this is accomplished when gnD+1 is significantly smaller than
gn1 (e.g. by 3 orders of magnitude), where gn = max

1≤i≤F
|wn(fi)|.

We then solve (2) using this λ. The final weights are obtained by
solving a second time (2) restricted to the sub matrix indexed by A
and λ = 0, commonly known as the debiasing step [1].

When we optimize over multiple frequencies (2), the support of
the chosen microphones remains fixed over the frequencies. How-
ever, we can also run (2) for each individual frequency of interest.
Then the support of the microphones can vary over frequencies. If
the frequencies are chosen with uniform spacing, we can use non-
uniform sampling to reconstuct the signals of interest at each fre-
quency. Specifically assume we have a total of R frequency bands
(e.g. R = 4 as in the results below). Then each sensor has an
additional R-channel filter bank each processing disjoint frequency
bands. The filter bank outputs are downsampled by R and the corre-
sponding sample streams are sent according the transmission pol-
icy obtained in the optimization step. The central controller re-
constructs the broadband signal by putting together the disjoint fre-
quency bands.

4. SIMULATED ANNEALING
We test the robustness of the solution found by convex optimization
through simulated annealing (SA). Simulated annealing is a simple
randomized technique for iterative improvement introduced in [3].
SA will probabilistically accept worse transitions in order to avoid
local minima. In our case, SA minimizes the objective function
given by the largest gain for all interference positions for a fixed-
size subset of microphones over locations of the microphones in the
subset. More precisely, given a fixed number of D microphones, we
run the same convex optimization problem as the λmethod (e.g. find
the filter weights that minimize the maximum valid interference over
a coarse grid while maintaining a target gain of unity) but with λ set
to 0. The objective function value f is then the largest gain of the
valid interferences. If the optimization program fails for any reason,
the objective function value is set to infinity. The initial temperature
is set to 100, and the annealing schedule decreases the temperature
by 5% each iteration. We limit the length of the Markov walk to a
total length of 1200 iterations. The initial search point is the point
produced by the λ found through an iterative binary search that pro-
duces D = 32 microphones. We assume that the target location,
room size, and the frequency of interest are fixed.

5. RELATION TO PRIOR WORK
In this section we compare and relate our approach to four problems
in the literature: the beam pattern design, grid-based beamforming,
compressive sampling, and greedy selection.

Beampattern Design
Lebret and Boyd [4] showed that given arbitrary microphone lo-

cations, finding the set of sensor weights that minimizes the maxi-
mum interference for multiple frequencies could be formulated as
a convex optimization problem. They modeled sources as point
sources, complex exponentials decaying as a function of distance.
Specifically, the problem could be showed equivalent with a Sec-
ond Order Cone Programming (SOCP) problem and thus efficiently



solved by interior point methods [5]. Our work differs in that we
simulatenously search for filter weights for each frequency of inter-
est that minimize the maximum interference at the corresponding
frequency. In contrast, Lebret and Boyd search for only a single set
of filter weights that minimizes the maximum inteference for mul-
tiple frequencies. Our approach is similar in spirit to that of Ling
et al. [6]. The authors followed the approach of [4] but added an
additional l1 norm penalty to the weights. The l1 penalty sparsifies
the sensor weights and therefore sensor locations. Specifically, the
l1 penalty on weights causes many of the filter weights to be close
to zero in magnitude. Our work differs in the following three as-
pects. First, our l1 penalty encourages the use of sensor locations
that perform well across frequencies when the sensor is allowed to
use a different weight for each frequency. Second, we allow both
sensors and intereferences to lie in multiple dimensions. Third, we
do not add an l2 penalty on the weights to protect against large gains.
Instead, after optimizing over a large set of sensors with a l1 penalty,
we select the sensor locations with the largest weight values across
frequencies and then reoptimize over this subset of locations. During
the reoptimization, we exclude the l1 penalty.

Grid-based Beamforming Brandstein and Ward modeled an
acoustic enclosure as a rectangular grid of point sources that in-
cluded reverbeations by allowing for sources to lie outside the room
[7], an idea drawn from the ”image” model where reflections of
sources off of walls are modeled as virtual sources lying outside the
room [8]. Grids were labeled either as sources or interferences based
on prior knowledge. Sensor weights were calculated to maximize
the optimization criterion given by the ratio between source gains
and interference gains.

Compressive Sampling The widespread compressive sampling
problem (see [9, 10]) is to to minimize the l0 pseudo-norm of a vec-
tor x subject to a linear constraint Ax = b (in the absence of noise),
or an inequality ‖Ax − b‖p ≤ ε (in the presence of noise). Using
Lagrange multipliers this problem becomes

min
x
‖Ax− b‖p + λ‖x‖0 (3)

Problem (1), in the single frequency case (F = 1), can be brought to
this form if we make the additional assumption that a specific sensor
is active. For simplicity of notation assume that we know wN (f) 6=
0. Then we solve for wN from the linear constraint 〈w, H̄0〉 = 1
and substitute back into Hw. Denoting w̃ the N − 1 vector of the
first N − 1 components of w, and A the L × (N − 1) matrix of
entries Al,n = Hl,n −

H0,nHl,N

H0,N
and b the L vector bl = −Hl,N

H0,N
,

(1) becomes
min

‖w̃‖0≤D−1
‖Aw̃ − b‖∞ (4)

which turns into a problem similar in form to (3):
min
w̃
‖Aw̃ − b‖∞ + λ‖w̃‖0. (5)

In the multi-frequency case,A,b, and w̃ are all frequency dependent.
In (3), the 0 quasi-norm becomes the mixed-norm (∞, 0), where
(∞) is the maximum acorss frequenices and (0) is the number of
non-zeros among these maximums. In (4), the ∞-norm becomes
the mixed-norm (1,∞) norm, where (1) is the summation across
frequencies and (∞) is the maximum of across this resulting sum.
Greedy Selection In [11], Bertrand and Moonen propose two al-
gorithms, greedy addition and greedy deletion, to select a subset
of sensors. In greedy addition, they choose D subset of sensors
out of N possible sensors by running D trials. At the n-th trial
(n = 1, 2, . . . , D), N − n + 1 individual candidate sensors are
tested by adding each candidate sensor to the previously selected
n − 1 sensors and measuring the n sensors performance. The sen-
sor which produced the most improvement in the objective function

when added to the previous n−1 sensors is then added to the selected
group of sensors. In a corresponding fashion, in greedy deletion,
they choose D sensors by starting with N sensors and then deleting
N − D members one by one. N − D trials are run and during a
trial a sensor is deleted if its contribution to the group’s performance
is least among the other group members. A sensor’s contribution
to the group performance is measured by how the group performs
without the sensor. Though their objective function of minimizing
mean square error in signal estimation is different from ours, their
greedy approaches provide alternative strategies to choosing a sub-
set of sensors. However, their approach differs from ours in that it is
combinatorial by nature.

6. EXPERIMENTAL RESULTS
We run experiments by optimizing over a simpler model and then
evaulating over a more sophisticated model. Our optimization model
is as follows: The room size is 10m by 8m. The target of interest is
located at (3m,4m). There are 1000 possible microphone locations
located along the perimeter of the rectangular room. We optimize
over four freqencies of 250,500,750,and 1000 Hz. There are 6200
virtual interferences, and a direct path model is used to calculate the
transfer functions. We do not place these interferences within 0.5 m
of the perimter of the room or the target. The evaluation model dif-
fers from the optimization model in two ways: There is a denser set
of interferences, 620000, and we include reflections for each of these
virtual interferences. We run five types of experiments to compare
the performance of the λ-method. First, we run the optimization
problem (2), simultaneously optimizing over the four frequencies.
This setup fixes the support of the microphone setup across all 4 fre-
quencies. Second, we run the optimization problem (2) again four
times, once at each individual frequency. The support of the cho-
sen microphones are then allowed to vary over frequencies. Third,
we randomly perturb the set of sensors found by the multi-frequency
optimization of experiment (1) using simulated annealing to see how
much better a solution we can find. Fourth, we again use simulated
annealing the perturb the set of microphones found by the single-
frequency optimization of experiment (2). Fifth, we test the perfor-
mance of the beamformer that maximizes the signal to noise ratio
(SNR). This beamformer can be shown to be the set of sensors that
lie closest to the target.

Table (1) shows the worst interference gain in dB for the five
setups using the evaluation model. The results show our multi-
freqency λ-processor (column 2) outperforming the beamformer
that maximizes SNR (column 1) for every frequency. The single-
frequency λ-processor performs better than multi-frequency λ-
processor since microphone locations are allowed to vary across
frequencies. Simulated annealing sometimes but not always finds
better performing solutions when measured with the evaluation
model. By algorithm construction, simulated annealing finds a solu-
tion at least as good as the initial point when measured on the opti-
mization model. The below figures show the beam patterns for both
the λ-method and the maximum-SNR beamformer at 1000 Hz along
with the placement of the microphones. Results are in dB, with unit
target gain (0 dB). We also compare the expected value and variance
of the maximum gain among a varying number of randomly placed
interferences in the survelliance area. Finally, we show the sharp
drop in filter weights produced by the multi-frequency λ-processor.

7. CONCLUSIONS
We aim to utilize a very large number of available sensors by us-
ing customized subsets of sensors to monitor specific areas of in-
terest. This selective sampling of sensors then produces reasonable
amounts of data to be processed. An equivalent problem to our sen-



f[Hz] BF MF λ SA MF λ SF λ SA SF λ
250 15.6 9.2 3.9 -1.19 -3.1
500 14.5 7.6 4.3 3.3 2.1
750 12.5 3.4 4.1 -0.9 -0.2
1000 10.4 2.4 5.8 1.5 0.1

Table 1. Worst interference gains[dB] for: Beamformer, MultiFreq
λ-processor, SA MultiFreq λ, SingleFreq λ-processor, SA Single-
Freq. λ

sor subset selection is sensor spacing. Our optimization criterion
finds sensors that suppresses a large number of interferences across
multiple frequencies while monitoring a target location. We allow
the subset of sensors we choose to have different weights for dif-
ferent frequencies of interest. We show that our multi-frequency
LASSO-inspired convex optimization technique can find subsets of
sensors that give reasonable performance on evaluation models that
contain large number of virtual interferences and reflections even
though the optimization criterion assumes many fewer virtual inter-
ferences and no reflections. If frequencies of interest are uniformly
spaced, we can acheive even better performance by allowing the ac-
tive sensor subset to change over frequencies and then reusing space-
time-frequency sampling to recover our signal of interest.

Fig. 2. Comparison of mean and variance of maximum gain for
varying number of randomly placed interferences at 1000 Hz8. REFERENCES
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