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1 Introduction

The paper presents an adaptive robust discrete solution for a stabilization problem. As

an application of this solution, a SAS (Stability Augmentation System) for an aircraft is

presented.

The general scheme of this system is given in the �gure 1. Throughout this paper two

hypothesis are assumed:

1) Full-information about the state of the system (yk = xk);

2) The Identi�cation block gives the best �tting of the linearized time-varying nonlin-

ear system (i.e. xk+1 = Akxk +Bkuk). (see for instance [1])

The sample time of the control loop is much less than that of the identi�cation and

optimization loop. This allows on-line identi�cation and optimization procedures.

A convenient criterion to be optimized is sought such that the control (uk) will be

given by a linear state-feedback: uk = Fkxk. This criterion will include two terms: one

involving the performance requirements and the other the stability robustness:

CPR = �CP + CR

where � is a weighting parameter.
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2 The Optimization Problem

The feedback matrix Fk will be given by a Riccati equation, but instead of a classical

Discrete Algebraic Riccati Equation (DARE) a modi�ed DARE will be used such that

the eigenvalues of the stable closed-loop matrix are to be within some disk included in the

unit disk (according to reference [2] this is called the D-pole assignment problem). Let us

consider the disk D(�; r) of center � and radius r in the complex plane such that � is a

real number and j�j+ r � 1 (i.e. D(�; r) � D(0; 1)). In order to state the criterion, the

following DARE is considered:

~AT
kKk

~Ak �Kk � ~AT
kKkBk(R +B

T
kKkBk)

�1
B
T
kKk

~Ak +Q = 0 (1)

where: ~Ak = (Ak � �I)=r is the modi�ed A-matrix and Q;R > 0 are positive matrices

related to the quadratic cost:
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X
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(xTj Qkxj + u
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(3)

and the linear dynamics: xj+1 = Akxj +Bkuj j � k.

It is known that there exists a unique stabilizable solution Kk = K
T
k > 0 of (1) (see

[3]). Let us set:

Fk = �r(R +B
T
kKkBk)

�1
B
T
k Kk

~Ak (4)

and:

As;k = Ak +BkFk (5)

Since �( ~Ak +BkFk=r) � D(0; 1) one can obtain:

�(As;k) � D(�; r) (6)

(here �(�) denotes the eigenvalues set of the matrix �).

Now the criterion to be minimized could be stated as follows:
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� the performance part:

CP = x
T
kKkxk (7)

� and the stability robustness part:

CR = x
T
kA

T
s;kAs;kxk =k As;kxkk

2
(8)

The �rst part of the criterion is related to the quadratic cost (2) of the dynamics and the

matrices Q and R are chosen to ful�l the performance requirements.

The second part gives an 1-norm bound along the trajectory: the goal is not to

minimize the H1-norm of As (which is maxkxk=1 k Asx k) but just the k Asx k along

the trajectory; since it is not known a priori the trajectory, in an on-line solution only

k Asx k with x taken to be the actual state (x = xk) is to be minimized. The form of CR

is suggested by the constrained stability measure introduced in reference [4] taking for G

the real trajectory of our system and also P = I in the formula (17) of the cited paper.

Putting these two expressions together in the criterion one can obtain a trade-o�

between performance and stability. Indeed, while to minimize the �rst part means to

approach the unit circle (this is the solution of the LQ problem), the second part leads to

minimizing the radius of the circle around same center (depending on xk). The optimum

of the criterion (which is the minimum) gives us the solution.

The criterion is:

CPR = x
T
k (�Kk +A

T
s;kAs;k)xk (9)

where Kk is given by (1) and As;k by (5) (and (4)). The Optimization Problem is then:

min
�; r

r � 0 ; j�j+ r � 1

CPR(xk; Ak; Bk;�; r) (10)

3 The Algorithm

Assuming that the model (Ak; Bk) is slowly time-varying, an on-line algorithm to solve

(10) is proposed. The idea is not to solve (1) directly but to approach recursively to the

solution using the �x point method.
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To initialize the algorithm it is supposed that an initial estimation (A0; B0) of the

model and K0 which is the exact solution of DARE (1) and minimizes (10) are known.

Then, at the kth step:

Given: xk; Ak; Bk;Kk�1 (and Q;R)

Set: U = (R+B
T
kKk�1Bk)

�1
B
T
kKk�1

Search the minimum :

min
�; r

r � 0 ; j�j+ r � 1

( ~C = x
T
k (�Kk +A

T
s;kAs;k)xk)

subject to the relations:

~Ak = (Ak � �I)=r

Fk = �r U ~Ak

As;k = Ak +BkFk

Kk = ~AkKk�1(As;k � �I)=r +Q

using a gradient procedure with convex restrictions (given by � and r) and variable step.

The control: uk = F̂kxk 2

4 Simulation Results

The longitudinal dynamics of the airplane is given in [5] and has the form:

dv

dt
= �p

S

m
(CD � CT cos�)� g sin 


d


dt
= p

S

mv
(CL + CT sin�) � g

cos 


v

dq

dt
= p

S C

Iy
CM (11)

d�

dt
= q

dH

dt
= v sin 


where v is the airspeed, p is the dynamic pressure, S is the wing area, CD is the drag

coe�cient, CL is the lift coe�cient, CM is the moment coe�cient, C is the chord, Iy is the
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moment of inertia, 
 is the 
ight path angle, q is the pitch rate, � is the angle of attack,

� is the attitude angle, H is the altitude.

The problem is to bring the system to follow the programmed trajectory given by the

attitude angle �p(t). Then the model state (xk) will contain the tracking error and its

derivatives with respect to t. This nonlinear model can be linearized arround the actual

error and can be brought into a controllable and observable parametrized state space

model of the form:

x(k + 1) = A(�k)x(k) +B(�k)u(k) ; x(0) = x0

where the control u is given by the elevator command and linearly modi�es the moment,

lift and drag coe�cients (CM ; CL; CD). The actual values of parameters A and B are

obtained from the Identi�cation block. The open-loop model is unstable. The dimension

of the model has been chosen n = 3. The state of the system is then x = (e = �� �p; _e; �e).

In the criterion (2) we have taken Q = I3, R = 2 and the weighting parameter � = 0:02.

For a reference trajectory �p pictured with dash line an attitude angle, both drawn in

�gure 2, is obtained. In �gure 3 is represented the control variable which is the elevator

de
ection. In the �rst second the Identi�cation has caused a lot of oscillations for the

computed control. Moreover, it has been simulated gust as in [6]. One could see that the

system tracks well the reference trajectory (this achieves the performance requirement).

The presence of gust does not generate instability (this suggests the achievement of the

robustness properties). The value of � has been chosen as above in order to obtain the

same order for the two terms CP and CR in the criterion (9).

As a conclusion, our controller tracks the desired trajectory and achieves a trade-o�

between the performance requirements and the robustness of the stability.

5 Conclusions

In this work an on-line solution for a robust stabilization problem is presented. As an

application, a Stability Augmentation System for an aircraft is realized and the results

are discussed.

The idea behind the robustness criterion is to place the poles of the closed-loop system

within some disk included in the unit disk such that the criterion is minimized. The
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freedom degrees are in this case the radius and the position of the center of the disk.

Since � must be a real number, one could see that only symmetric disks with respect to

the real axis are allowed.

The criterion to be minimized has two parts (see (9)): one involving some performance

requirements, related to the stabilizable solution of a certain modi�ed DARE (equation

(1)) and another part giving the robustness of the stabilized system. We stress out that

the stability robustness part (CR from (8)) is given by the norm of a state vector and

not by the norm of a transfer matrix. This part of the criterion has been chosen like this

because of the adaptivity of the solution.

The algorithm presented here to solve the optimization problem uses the �x point

method in order to solve the modi�ed DARE. This fact allows an on-line implementation

with a faster adaptivity.

In the last section the simulation results of the SAS are presented and discussed.
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