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ABSTRACT

When mixing of sources is degenerate the known blind
source separation methods fail, since in general the de-
generate BSS is an ill-posed problem. Here we report
that if signal transmission is modeled by AR(p) pro-
cesses one can reconstruct the processes and estimate
the sources from their degenerate mixture using only
second order statistics. We also prove that the ap-
proach fails for a general ARMA (p,q) model. The the-
oretical results are verified in the case of degenerate
mixing of two voices and on synthetic data.

1. INTRODUCTION AND STATEMENT OF
THE PROBLEM

Current Blind Source Separation (BSS) literature ad-
dresses the case when the number of sources is equal
to the number of microphones [JH91, Com94, BS95,
Ama96, Tor96, Car97, PP96]. Little work has been
done to address the degenerate case when this con-
straint is not satisfied. Particularly hard is the case
of interest for many BSS applications when there are
more sources than the number of microphones.

This report demonstrates that separtion in such
a degenerate case is feasible. We propose a source
separation architecture where sources are modeled as
AR processes. We solve a special case of the singular
multivariate AR identification problem, namely when
the measurement is scalar but the noise term is a 2-
dimensional vector. Our current approach is based on
the second order statistics only. Methods based on sec-
ond order statistics have for regular mutivariate AR
identification and signal separation (see for instance
[S.M88, S.N96, WF093]). In contrast to these stud-
ies, our work concerns the singular case for both the
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mutivariate AR identification and signal estimation in
the BSS problem.

We apply ths approach to the degenerate case of
the BSS problem, specifically when a scalar mixture of
independent source signals is recorded with one micro-
phone. The theory for singular multivariate AR process
identification that is developed here can be extended to
higher dimensions (i.e. more sources than two voices).

Let us consider two independent univariate AR(p)
processes of order p and the measurement given by
the sum of the two outputs (see Figure 1). The time-
domain evolution equations are the following:

si(n) ==>7_, agsi(n — k) + Giri(n)
sa(n) = = >0 _1 brsa(n — k) + Gara(n) (1)
£y = s1(n) + 52(n)

where v; and 15 are two independent unit variance
white-noises, ai,...,a, and bq,...,b, are the param-
eters of the first and second AR process respectively
and GG and G5 are real constants.

The problem is to identify the 2p 4+ 2 real parame-
ters ai,...,ap,b1,...,bp, G1 and Gy based on the mea-
surement {z(n)},_; y, of a realisation of (1). Our
solution is based on the second order statistics of the
measurements practically given by the sampled auto-
covariance coefficients

#(l) = % ;x(k)x(l{ ~ 0.

The organization of the report is the following: sec-
tion 2 presents the main theoretical results. First we
show how the spectral density of z can be decomposed;
second we derive a modified ARMA estimator by a
polynomial system that involves second order statis-
tics of the measurements. Section 3 presents a gradi-
ent algorithm to solve these equations together with
some other algorithm to address the estimation prob-
lem. Section 4 contains numerical experiments showing
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Figure 1: The Singular Multivariate AR Model

a successful application of the theory and is followed by
conclusions.

2. THE MAIN RESULTS

Since the two signals s; and s, are independent, the
process (1) has the spectral power density given by the
following formula:

Gt G3

Rz(z) = Pl(Z)Pl(%> P2(Z>P2(%)

(2)

Now it is easy to prove the following decomposition
(factorization) result:

THEOREM 1 Suppose we are given the sum x of two
independent and stable AR(p) process outputs s1 and
so. Furthermore suppose the processes have no common
poles. Then the second order statistics is generically
enough to uniquely identify the two AR processes.

Remarks 1. By generical we mean that the set
of “bad” AR processes form an algebraic manifold of
positive codimension in the 2p+ 2 dimensional space of
parameters. Actually we can say a lot more about this
algebraic manifold. These results will apear shortly in
a full-length report.

2. We point out that the uniqueness of the decom-
position (2) holds only for AR processes. If we replace
them by ARM A processes, the result no longer holds
true, as can be easily seen.

3. Equation (2) shows that z(n) is second-order
statistics equivalent with an ARMA (2p,p) process whose
transfer function Q(z)/P(z) is related to our AR(p)
processes by:

P(z) = P1(2)Ps(z2)
Q(2)Q(3) = GIP(2)Pa(1) + G3PL(2) Pi(3)

This would suggest the following identification algo-
rithm:

ALGORITHM 1 (ARMA (2p,p) Identification)
1. Identify the process {x(n)} as an ARM A(2p, p) pro-

cess Q(z)/P(=);

2. For each partition of the 2p roots of P into two
subsets of p zeros each, construct the polynomials Py
and P that have these roots and compute G1 and G2
that best fit the second equation above (we explain what
we mean by best fit in the next section after the Algo-
rithm 2);

3. Choose the partition that gives the smallest error,
and that will be an estimate of G1, P, Ga, Ps.

We tried this algorithm but it does not give accept-
able estimates, particularly for large p. A second ap-
proach to this problem is to look for a Modified ARMA
estimator (MARMA estimator), adapted to our special
form. To do this we need to obtain the time-domain
evolution equation of the measurement. In the z trans-
form domain we have:

1 1 1 1
)P2(2)z(2) = GiRa ()i (2) + GaPi(D)ra(2)

z z z

Py(
which turns into the following equation:

z(n) + S22 (a* b)pz(n — k) = Givi(n) + Gavs(n)+
+ >0 (Gibgri(n — k) + Gaagra(n — k))

where (a*b) = Zf:o a;by_; with the convention ag =
bg = 1. To obtain the second order statistics evolu-
tion, we correlate xz(n) with z(n — ) and s1(n) with
v1(n — 1), respectively sa(n) with vo(n —1) in (1). Let
us denote as follows: r(I) = E[z(n)z(n — )], U1(I) =
E[si(n)vi(n = 1)], Ua(l) = E[sa2(n)va(n — 1)], where
E[X] is the expected value of the random variable X.
Then we obtain the following system of polynomial
equations:

r(1) + S0 (ax b)pr(l — k) = GiUy (1) 4+ GaWa(—1)+
+ sz:l Glbk\I/(k — l) =+ 22:1 Gzak\lf(k‘ — l)
— El:g:l ak\lll(l — k:) + G15170

— Ek:l bk\lfg(l — k) + Gg(slyo

Uy (1)
W (1)

(3)
where § is the Dirac impulse.

Now note two things; First we do not know the
theoretical autocovariance coefficients, so we have to
replace r(1) by the sampled values #([); Second note the
causality relations between s, s5 and the noise inputs.
This causality implies ¥(l) = Py(l) = 0 for every
1 < 0. Therefore the system (3) becomes:

P(U) + 30 (@ b)ki(l — k) — (G2 + G3)dio—
- Zizl(Glbklpl(k - l) + Ggak\llg(k‘ — l)) =0
Uy(l) = =m0 g w1 — k), W1(0) = Gy
W (1) = — S apWa(l — k), Wa(0) = Ga
(4)

We solve this nonlinear system in G1, G2, a,b by look-
ing for the least square solution that minimizes a quadratic



criterion of the form:

J = gauli(l) + 37 (ax b)er(l — k) (G2 + G3)d0—

=2 (G1bp Tk — 1) + Gaar Ta(k — 1)

()
where L > 2p+1 and (aq);>0 are some positive weights.
Thus the Least Square estimator (LS estimator) is given
by solving the following optimization problem:

(G1,Ga,a,b) = argmin J(7) (6)

3. IDENTIFICATION AND SEPARATION
ALGORITHMS

In this section we present an algorithm to solve the
identification issue and then we discuss the degenerate
case of the BSS problem. Here we report only one al-
gorithm we tried so far. A longer discussion will follow
in an extended version of this report.

3.1. The Least Square Estimator

The Least Square estimator presented before is based
on a gradient descent scheme. One issue related to this
algorithm is how to choose an initial point (G4, G2, a, b).
We present here an algorithm for obtaining this intial-
ization.

The idea is the following: we identify first the time
series {z(n)}, n = 1,...,Ng as a “long” AR process,
say AR(2Lg), and then we approximate its spectral
power density by a decomposition of the type (2).

ALGORITHM 2 (Initialization of G1,G2,a,b) 1.
Choose Lo > p and find an AR(2Ly) estimator of the
time series {x(n)}nzlmNo, say é/p(z)

2. For each partition of the 2Lg roots of P into
two groups of p zeros, construct Pi(z) and P(z) the
polynomials corresponding to these zeros. Let S(z) be
the remainder polynomial in P, P = PLP,S. Find Gy
and Go that best approzimate the equation:

G = AR (2)S(2) Pa(S)S () +GRP(2)S () P

z z

)S(
(

N | =

)

~
~

(we indicate below how to obtain Gy and G3)

3. Choose the best partition with respect to the ap-
prozimation error and obtain the corresponding esti-
mates for G1,G2, a, b.

To choose G and G2 in (7) we have tried both a
Padé approximation [K.K87] and a least 2-norm solu-
tion. Both seem to work equaly fine. We describe here
the 2-norm approximation.

Let us denote

1.1 ey
Pi(2)8(2)P1(2)S(5) = > f4, and
l=—2Lg+p
1.1 Hop
P(2)S(2)P2(2)S(5) = > 7
l=—2Lo+p

Then the 2-norm error computed on the unit circle in
the complex plane is given by:

2Lo—p

Error = Z

l=—2Lo+p

|GYfE+Gaf) — 6'251,0|2

Then we easily obtain a linear system in G2 and G3
by setting to zero the derivatives of the Error with
respect to G2, respectively G3.

3.2. The Estimation Problem

Recall the problem is the following: we have two voice
signals recorded by the same microphone and we want,
based on this mixed signal, to estimate the original two
signals. The solution we propose is represented in Fig-
ure 2 and consists of two stages: an identification part
and a linear estimation part. For identification, we as-
sume the two voices are approximated respectively by
AR(p) processes and our task is to identify the proc-
cesses parameters. For the linear estimation we tried
both the Wiener filtering [Poo94] as well the causal part
of the Wiener filter. It seems the causal part gives bet-
ter results is terms of the sound quality. The Wiener
filter formulae are given by:

_ GiP(2)Pa (1)
Fi(z) = G?Py(2)P2(1)+G2Pi(2)P1(1) (8)
Fy(z) = G3Pi(2)Pi(2)
2 GZP(2) P2 (2)+G2P, ()1 (2)

and the causal parts are then:

. G1P2(Zil)
O T(z Y

_ _ Ga Py (271)
c 1 c 1\
Fy(z) (2 )—T,l) 9)
where T'(z) is the spectral factor in the factorization
T(2)T(3) = GiPa(2)Pa(3) + G3Pi(2) P (3).

The adaptation algorithm is the following:

ALGORITHM 3 (On-line Adaptation) 1. Initial-
ize the parameter estimation on the first No samples
using the previous algorithm.

2. Apply a couple of gradient descent steps to “pol-
ish” the approximation.

3. At each new sample, update the sampled autoco-
variance coefficient by using a rectangular window (or
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Figure 2: The Adaptive Estimation Diagram.

an exponential window) and apply a gradient step to
adapt the estimation of G1,G2,a,b

4. Estimate $1, $3 using the updated (causal) Wiener
filters.

Experimentally, the gradient correction at Step 3
seems not to track well the actual values of the param-
eters (obtained by an AR(p) estimator on the actual
signals). Nonetheless, the more computationally ex-
pensive algorithm that simply applies the estimation
on a sliding nonoverlapping window gives better re-
sults. Future work is needed to obtain a better on-line
algorithm.

4. NUMERICAL EXPERIMENTS

We report experiments on both synthetic and voice
data. First we describe AR identification experiments
of singular mutivariate AR processes on synthetic data.
Second we describe an application of the theory to the
estimation of two voices from one scalar mixture. All
experiments were performed in Matlab.

4.1. Experiments on Synthetic Data

We constructed two stable and independent AR(p) pro-
cesses. Then we estimated the processes from their
sum by filtering the observed signal with Wiener filters
defined by parameters estimated by applying gradient
descent with the initialization given by the Algorithm
2. Here we report only one set of results, those corre-
sponding to p = 4.

We considered Ny = 500 samples to estimate the
autocovariance coefficients at various lags #(1); this cor-
responded to a 30ms window of a speech signal sam-
pled at 16000Hz, on which the signal may be considered
stationary (see [L.J93]). For the criterion (5) we took
L = 3p to avoid the contribution of the fluctuations in
7(l) for large {. For diferent values of Ly we obtained
different initializations. Surprisingly, the best initial-
ization has been given by the lowest value Ly = p = 4.

In Figure 3 we plot the initial spectral power ob-
tained with the Algorithm 2 using the 2-norm mini-
mization, for several values of Lg. The first plot gives
the Yule-Walker estimation [GH94] of the spectral pow-
ers of the two AR(4) processes. The theoretical spec-
tral power is depicted in Figure 4, top plots, using the
actual values of the parameters. In Figure 4 we also
present the spectral power densities where the gradi-
ent algorithm converged after 1000 steps. Different ini-
tializations implied different limiting densities each of
them corresponding to a different local minimum of the
criterion J. For Ly = 4 we show in Figure 5 the con-
vergence of the parameters. Figure 6 plots the decimal
logarithm of the criterion. Note how fast J decays dur-
ing the first 40 steps. The limiting spectral power den-
sities obtained in Figure 4, second row, approximates
very well the original spectral densities. The gradient
descent steps decreased the criterion to about 40 times
less the initial value. The parameters of the two AR(4)
proccesses used were the following: G; = G2 = 1,
a; = 0.1,a2 = —0.13,a3 = —0.001,a4 = 0.0012 and
bl = —0.4, b2 = 0.63, b3 = —0.43,b4 = 0.365. The
identification algorithm gave a better estimate for the
second process which was the most powerful process.

From these experiments we conclude that the algo-
rithm we proposed gives a fairly good estimate of the
spectral power densities of the two sources. The pa-
rameters of the most powerful process are estimated
better.

4.2. Experiments on Voice Data

We performed experiments with voices from the TIMIT
database. The two voice signals (called Al and A2
here) consist of 57448 samples at 16kHz sampling fre-
quency (about 3 seconds of data). We tested how fea-
sible the estimation problem is. We identified the two
voices as AR(4) processes, directly on the actual sig-
nals, and then we estimated the two voices from their
sum using the filters from equations ( 8) and ( 9). In
Figure 7 we show the time-series of the original voices
(upper graphs), of their sum (the middle plot), and
the estimated signals (lower plots). We used p = 4 and
Ny = 500. The quality of the outputs is good for this
rather low dimensional AR models we are approximat-
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Figure 7: Voice experiments: source voices (upper row), mix-
ture calculated as sum (middle row), and estimated outputs (bot-
tom row).

ing voices with. We experimented with longer AR pro-
cesses as well, but the quality of the outputs does not
improve significantly. These experiments were meant
to show that the estimation problem can be solved rea-
sonably well when we identify the two voices as AR
processes.

5. CONCLUSIONS

In this report we solved the identification problem of a
sum of two independent AR processes. First we proved
that this system is identifiable, next we deduced an
estimator for the processes parameters and finally we
presented a family of algorithms to implement this es-
timator. As a direct application we considered the de-
generate case of the Blind Source Separation problem
where a mixture of two voices is given, as recorded with
one microphone. From this one measurement (more
specifically one sequence of samples) we estimated the
original two signals. This application raised the adap-
tation problem of the singular AR identification algo-
rithm. We showed how to adapt the previous algorithm
to an on-line procedure.

The present study shows that the second order statis-
tics is sufficient for both the identification of singular

multivariate AR processes of the particular form con-
sidered here, as well as estimation of independent sig-
nals in a scalar mixture of two voices when these voices
can be well approximated by AR processes.

Future work will deal with various issues raised in
the on-line implementation, such as faster and more
reliable algorithms.
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