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ABSTRACT
In this paper we continue our treatment of source separa-
tion based on dynamic sparse source signal models. Source
signals are modeled in frequency domain as a product of a
Bernoulli selection variable with a deterministic but unknown
spectral amplitude variable. The Bernoulli variable is mod-
eled by a first order Markov process with transition probabil-
ities learned from a training database. We consider a scenario
where the mixing parameters are estimated by calibration. We
derive the MAP signal estimators and show that the optimiza-
tion problem reduces to a Belief Propagation Network simu-
lation. We also present preliminary separation performance
results using TIMIT database.

1. INTRODUCTION

Signal Separation is a well studied topic in signal process-
ing. Many studies were published during the past 10 years,
each of them considering the separation problem from differ-
ent points of view. One can use model complexity to classify
these studies into four categories:

1. Simple models for both sources and mixing. Typical
signals are modeled as independent random variables,
in their original domain, or transformed domain (e.g.
frequency domain). The mixing model is either instan-
taneous, or anechoic. The ICA problem [1], DUET al-
gorithm ([2]), or [3] belong to this category;

2. Complex source models, but simple mixing models. An
example of this type is separation of two speech signals
from one recording using one microphone. In this case,
source signals are modeled using complex stochastic
models , e.g. AR processes in [4], HMMs in [5], or
generalized exponentials in [6];

3. Complex mixing models, but simple source models.
This is the case of standard convolutive ICA. For in-
stance source signals are i.i.d. but the mixing operator
is composed of unknown transfer functions. Thus the
problem turns into a blind channel estimation as in e.g.
[7, 8, 9];

4. Complex mixing and source models. For instance [10]
uses AR to model source signals, and FIR transfer func-
tions for mixing.

We chose the complexity criterion in order to point out the
basic trade-off of signal separation algorithms. A more com-
plex mixing or source model may yield a better performance
provided it fits well the data. However more complex mod-
els are less robust to mismatches than a simpler model, and
may perform unexpectedly worse on real world data. In our
prior experiments [11] we found that simple signal and mix-
ing models yield surprisingly good results on real world data.
Robustness to model uncertainties explains these good re-
sults. Indeed this is the case with DUET. The basic idea
of the DUET approach is the assumption that for any time-
frequency point, only one signal from the ensemble of source
signals would use that time-frequency point. In [12] we ex-
tended this assumption in a system withD sensors to what we
calledgeneralized W-disjoint orthogonality hypothesisby al-
lowing up toD − 1 source signals to use simultaneously any
time-frequency point. In both cases source signals were as-
sumed mutually independent across both time and frequency.
In other words, any two different time-frequency coefficients
of the same source are assumed independent.

Source separation capability can be increased particularly
when there exists prior knowledge about the sources (see also
[5, 6, 13]). For this, we incrementally increased the source
model complexity in [14, 15] by allowing statistical depen-
dencies of source signals across time. More specifically fre-
quencies are treated independently from one another, and for
each frequency we assumed a first order Markov dependency.
We briefly review this approach below. The focus in this pa-
per however, is to deal with the generalized case of time and
frequency dependencies.

More precisely [16] postulates a signal model that states
that the time-frequency coefficientS(k, ω) of a (speech) sig-
nal s(t) factors as a product of a continuous random vari-
able, sayG(k, ω), and a 0/1 Bernoullib(k, ω), S(k, ω) =
b(k, ω)G(k, ω). This formula models sparse signals. See also
[17] for a similar signal model. Denoting byq the probability
of b to be 1, and byp(·) the p.d.f. ofG, the p.d.f. ofS turns



into pS(S) = qp(S) + (1 − q)δ(S), with δ, the Dirac distri-
bution. ForL independent signalsS1, . . . , SL, the joint p.d.f.
is obtained by conditioning with respect to the Bernoulli ran-
dom variables. The rankk term,0 ≤ k ≤ N , is associated to
a case when exactlyk sources are active, and the rest are zero.
In [12] we showed that by truncating to the first N+1 terms
the approximated joint p.d.f. corresponds to the case when
at mostN sources are active simultaneously, which consti-
tutes thegeneralized W-disjoint hypothesis. In [14, 15] we
assumed a conditional p.d.f. satisfying:

p(b(k, ω)|b(k′, ω′), k′ ≤ k−1) = p(b(k, ω)|b(k−1, ω)) (1)

This paper extends the signal model introduced before by as-
suming the Bernoulli variables are generated by a Markov
process dependent on previous realizations of the Bernoulli
variable at same and adjacent frequencies. The complex am-
plitudesG(k, ω) are modeled using uninformative priors. The
application we target is a meeting transcription system where
an array of microphones records the meeting, and the con-
volutive mixing parameters are learned during an initial cal-
ibration phase. Section 3 describes the statistical signal es-
timators. We show that MAP signal estimation is similar to
solving a Markov Random Field model. Section 4 presents
the methods for learning the transition probabilities of source
models, and of the mixing parameters. Section 5 contains nu-
merical results, and is followed by the conclusion section.

2. SIGNAL AND MIXING MODELS

2.1. Unechoic Mixing Model

In this paper we consider the measurements ofL source sig-
nals by an array ofD sensors in an unechoic fashion. In time
domain the mixing model is

xd(t) =
L∑

l=1

sl(t− (d− 1)τl) + nd(t) , 1 ≤ d ≤ D

wheren1, . . . , nD are sensor noises, andτ1, . . . , τL are the
relative delay (TDOA) for each source with respect to two
adjacent sensors. For simplicity of exposition, we neglect the
relative source attenuations.

We denote byXd(k, ω), Sl(k, ω), Nd(k, ω) the short-time
Fourier transform of signalsxd(t), sl(t), andnd(t), respec-
tively, with respect to a windowW (t), wherek is the frame
index, andω the frequency index. Then the mixing model
turns into

Xd(k, ω) =
L∑

l=1

Ad,l(ω)Sl(k, ω) + Nd(k, ω)

whereAd,l(ω) = e−iω(d−1)τl . When no danger of confusion
arises, we drop the argumentsk, ω in Xd, Sl andNd.

2.2. Signal Model

Consider a source signals(t), 1 ≤ t ≤ T , and its associ-
ated short-time Fourier transformS(k, ω), 1 ≤ k ≤ Kmax,
0 ≤ ω ≤ Ω. Each time-frequency coefficientS(k, ω) is mod-
eled by the productb(k, ω)G(k, ω) as before, whereb is a
Bernoulli (0/1) random variable, andG is an unknown de-
terministic complex amplitude, or a random variable with an
uninformative prior. In previous works we assumed either
{b(k, ω) ; k, ω} is a set of independent random variables, or
they satisfy a Marvov dependency as in (1). In this paper we
preserve the Markov dependency along time, but we intro-
duce dependency across adjacent frequencies. More specifi-
cally we assume the following model:

P (b(k, ω)|b(k′, ω′) , k′ < k) =
P (b(k, ω)|b(k − 1, ω − 1), b(k − 1, ω), b(k − 1, ω + 1))

(2)

This can be reduced to a2 × 8 matrix for each frequency,
and each source signal. We denote byqω this probability of
transition matrix. By successive conditioning we obtain that:

P ({b(k, ω) ; 1 ≤ k ≤ Kmax, ω}) =∏
ω

Kmax∏
k=2

qω(b(k, ω), (b(k−1, ω−1), b(k−1, ω), b(k−1, ω+1)))

where we neglected the initial probabilities. For each source
in the mixture we assume we have a database of training sig-
nals where we learn the matrices of transition probabilities
(see Section 5).

For a collection ofL source signals, we assume that only
N Bernoulli variables are nonzero; the rest are zero. We de-
note by{(bl(k, ω))1≤l≤L; k, ω} the collection of Bernoulli
random variables,σ(k, ω) = {l ; bl(k, ω) = 1} theN -set of
nonzero components ofS(k, ω), (ql

ω)1≤l≤L,0≤ω≤Ω the col-
lection of transition probability matrices.

Then the joint pdf becomes:

P ({bl(k, ω) ; l, k, ω}) =
∏
ω

Q0
ω(σ(1, ω))

∏
k≥2

Qω(σ(k, ω)|

σ(k − 1, ω − 1), σ(k − 1, ω), σ(k − 1, ω + 1))

whereQω(σ(k, ω)|σ(k−1, ω−1), σ(k−1, ω), σ(k−1, ω +
1)) =

∏L
l=1 ql

ω(bl(k, ω), (bl(k − 1, ω − 1), bl(k, ω), bl(k −
1, ω + 1))), Q0

ω(σ(1, ω)) =
∏L

l=1 P l
ω(bl(1, ω)). The col-

lection of all subsetsσ(k, ω) defines a trajectory through the
selection spaceΣN

L , the set ofN -subsets of{1, 2, . . . , L}.
Source estimation is then equivalent to estimating both the
selection space trajectories(σ(k, ω))k,ω and the complex am-
plitudes{Gl(k, ω) ; l ∈ σ(k, ω)}.

In this paper we assume that the mixing model is given
by an unechoic mixture, signalsSl(k, ω) satisfy the signal



model above, and noise componentsNd(k, ω) are Gaussian
i.i.d. with zero mean and spectral varianceν2.

Our problem is: Estimate the source signals(s1(t), . . .,
sL(t))1≤t≤T given measurements(x1(t), . . ., xD(t))1≤t≤T

of the linear mixing model, and assuming the following:

1. Mixing matrixA = (Ad,l(ω))1≤d≤D,1≤l≤L is known;

2. Noise{n(t)} is i.i.d Gaussian with zero mean and known
spectral powerν2;

3. The components of signalS are independent and sat-
isfy the stochastic model presented before, with known
probabilities of transition(ql

ω)l,ω;

4. At every time-frequency point(k, ω) at mostN com-
ponents ofS(k, ω) are non-zero, andN is known.

3. MAP SIGNAL ESTIMATION

In this paper we estimate the signals(sl(t))l,t by maximiz-
ing the posterior distribution of the Bernoulli variables, using
an uninformative prior distribution for the amplitudes. We
choose a uniform improper prior. The criterion to maximize
becomes:

I =
∏
ω

P ({X(k, ω); 1 ≤ k ≤ Kmax}|{bl(k, ω), G(k, ω); l,

1 ≤ k ≤ Kmax})P ({bl(k, ω); l, 1 ≤ k ≤ Kmax})

Using assumptions described before, we obtain the following

I = C
∏
ω

∏
k

exp

(
− 1

ν2
‖X −AσG‖2

)
Qω(σ(k, ω)|σ(k− 1, ω− 1), σ(k− 1, ω), σ(k− 1, ω +1))

(3)

Optimization overG is carried out immediately, and one ob-
tains

ĜMAP = (A∗
σAσ)−1A∗

σX (4)

Replacing this expression in (3) we obtain

σ̂ = argmaxσ[I = C
∏
ω

∏
k

exp

(
− 1

ν2
‖(1− [Aσ])X‖2

)
Qω(σ(k, ω)|σ(k−1, ω−1), σ(k−1, ω), σ(k−1, ω +1))]

(5)

where [Aσ] = Aσ(A∗
σAσ)−1A∗

σ is the projection onto the
span of columns ofAσ. In our previous papers [14, 15] the
second factor above depends only on variables at same fre-
quencyω, and thus the optimization decouples among fre-
quencies. In (5) no decoupling is possible.

In general solving (5) is hard. The underlying stochas-
tic model is a Markov Random Field (MRF) that we describe

next. Our program is to simulate the MRF starting with e.g. a
uniform distribution of messages, and then read off the marginal
distributions at saturation. Our approximate MAP estimator
is given by the maximum of each marginal posterior distribu-
tions. We follow [18] regarding Belief Propagation Networks
terminology and properties.

3.1. Pairwise Markov Random Field Description

The Markov dependency involved in (5) can be described as a
Pairwise Markov Random Field whose graphical description
is included in Figure 1.

At every time-frequency point(k, ω), the observed state
(node) isσ(k, ω) ∈ ΣN

L , and the hidden node isξ(k, ω) =
(ξ∗, ξ−1, ξ0, ξ1) ∈ (ΣN

L )4. The evidence at each node is given
by:

Φ(σ) = exp

(
− 1

ν2
‖(1− [Aσ])X‖2

)
Φ(ξ) = Qω(ξ∗, (ξ−1, ξ0, ξ1))

The compatibility mapsΨ(a, b) which govern transition from
nodea to nodeb are given by:

Ψσ(k−1,ω−1),ξ(k,ω)(σ, ξ) =
{

1 ξ−1 = σ
0 otherwise

Ψσ(k−1,ω+1),ξ(k,ω)(σ, ξ) =
{

1 ξ1 = σ
0 otherwise

Ψσ(k−1,ω),ξ(k,ω)(σ, ξ) =
{

1 ξ0 = σ
0 otherwise

Ψξ(k,ω),σ(k,ω)(ξ, σ) =
{

1 ξ∗ = σ
0 otherwise

and symmetricallyΨj,i(u, v) = Ψi,j(v, u). With these nota-
tions in place, the message update is given by:

mnew
i→j(xj) =

∑
xi

Φ(xi)Ψij(xi, xj)
∏

k∈N(i)\j

mold
k→i(xi) (6)

and the marginal probability distributions:

Ri(xi) = CΦi(xi)
∏

j∈N(i)

mj→i(xi) (7)

3.2. Optimization

The optimization is carried out as a Belief Propagation Net-
work as follows. First we initialize the message distribution
for instance with a uniform distribution. Then we iterate (6)
for each pair of connected states until saturation is reached
(i.e. there are no more significant changes in message up-
dates). Then at each time-frequency point(t, ω) we compute
the marginal distribution ofσ(k, ω) using (7) and the MAP
estimate as the maximizers ofR(k,ω)(σ):

σ̂(k, ω) = argmaxσ

[
Φ(k,ω)(σ)mξ(k,ω)→σ(k,ω)(σ)

mξ(k+1,ω−1)→σ(k,ω)(σ)mξ(k+1,ω)→σ(k,ω)(σ)mξ(k+1,ω+1)→σ(k,ω)(σ)
]



Fig. 1. The Pairwise MRFs. White circles correspond to
hidden statesξ(k, ω), filled-in circles correspond to observed
statesσ(k, ω).

4. MODEL TRAINING: LEARNING TRANSITION
PROBABILITIES MATRIX

For training, we used a fixed sentence uttered by the corre-
sponding speaker. We assumed the recorded voice is made out
of two components: one part which is critical to understand-
ing, and a second component which can be removed losslessly
from an information point of view. Thuss = scritic + sextra.
Assuming the first component has a Laplace distribution in
frequency domain whereas the second component is Gaus-
sian, the estimation ofscritic is done by (soft, or hard) thresh-
olding of the measured signal. We chose a threshold propor-
tional to square root of signal spectral power. Thus, in case
of hard thresholdingScritical(k, ω) = S(k, ω) if |S(k, ω)| ≥
τ
√

Rs(ω), and is zero otherwise. The factorτ is chosen so
that the thresholded signal sounds almost identical to the orig-
inal signals. Subjective experimentation showed that a factor
τ = 0.1 satisfies this requirement. Once{Scritical(k, ω); k, ω}
has been obtained, we estimate the binary sequence{b(k, ω); k, ω}
simply by settingb(k, ω) = 1 for Scritical(k, ω) 6= 0, and 0
otherwise. From the binary sequence{b(k, ω); k, ω} we es-
timate the transition probability matricesqω using maximum
likelihood estimators:

πω(1, (j, k, l)) =
N1,(j,k,l)(ω)

N1,(j,k,l)(ω) + N0,(j,k,l)(ω)
πω(0, (j, k, l)) = 1− πω(1, (j, k, l))

wherej, k, l ∈ {0, 1}, N0,(j,k,l)(ω), andN(1,(j,k,l))(ω) are,
respectively, the number of transitions from state(j, k, l) into
0, respectively1, at frequencyω. Figure 2 plots an example
of the distributionsπω(1, (j, k, l)).

Fig. 2. Transition probabilitites into state 1 from states
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) (top plot), and from states
(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1) (bottom plot), of one sig-
nal for τ = 0.1

5. EXPERIMENTAL EVALUATION

Consider the setup of a meeting recording system as described
before withL = 4 speakers placed around a conference table,
and recorded by a video camera (for postprocessing) and an
array ofD = 2 microphones. During the calibration phase
both the source model parameters and the mixing parame-
ters were learned. In our simulations we used a linear array
with inter-microphone distanceda = 5 cm and sampling fre-
quencyfs = 16 KHz. The simulated mixing environment
was unechoic. We used 2 female and 2 male speakers from
the TIMIT database at positions located at multiple of60 de-
grees. Testing was done on wavefiles of around 10 seconds
of normal speech. We added Gaussian noise withν = 0.1
(noteν is an absolute value rather than relative to signals).
We tested forN = 1 andN = 2 (the number of simultaneous
speakers), even though allL = 4 speakers were active most
of the time. We estimated each source using the MAP-based
Estimation Algorithm presented in Section 4 with transition
probability rates learned on clean speech signals.

We computed three measures of separation: Signal-to-
Interference-plus-Noise Ration gain (SINRg), Relative Dis-
tortion (DistR), and Distortion (Dist). The SINR gain for



Input After 1 step
Src iSINR
1 -7.9
2 -7.5
3 -3.3
4 -2.4

SINRg RDist Dist
9.2 -1.3 23.3
8.3 -0.9 24.2
4.8 -1.5 26.7
5.6 -3.1 25.7

Table 1. SING gain, and Distortions after one iteration

componentl as defined by:

SINRgl = oSINR − iSINR = 10 log10

E(x1 − sl)
E(ŝl − sl)

whereE(z) is the energy of signalz, andx1, sl, ŝl are re-
spectively, the microphone 1 measured signal, input signall
at microphone 1, and thelth estimated signal.

The Relative Distortion (RDist) represents the opposite of
output SINR:

RDistl = −oSINR = 10 log10

E(sl − ŝl)
E(sl)

The Distortion (Dist) is simply:

Distl = 10 log10 E(ŝl − sl)

The larger theSINRg the better; the smaller theRDist
andDist the better. After one iteration we obtained results in
Table 1.

6. CONCLUSIONS

Source separation algorithms can exploit prior Markov mod-
els of the sources as well as knowledge about the sources.
The latter can be used to train the prior models. In this pa-
per we expand our treatment of such prior models. Our ap-
proach addresses the case of underdetermined mixtures, i.e.
when there are fewer sensors than sources, and the presence
of noise. The main assumptions are: (i) source signals have
sparse time-frequency representations (although another rep-
resentation, such as time-scale, would work as well); (ii) each
time-frequency point depends on the immediately past and
frequency adjacent time-frequency points; (iii) the binary se-
lection variables obey a homogeneous Markov process model,
with transition and initial probabilities learned from a training
database. We derived the MAP estimator for the binary se-
lection variables and ML estimator of the complex signal TF
coefficients. Then we showed that the estimators can be im-
plemented using a Belief Propagation Network and obtained
preliminary results for a 4-voice mixture with a calibrated 2-
microphone array setup.
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