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ABSTRACT

We propose a noise cancellation technique that performs robustly
in the presence of poor channel estimates and channel synchro-
nization errors. The technique is based on the assumption that the
signals have a sparse representation in a chosen signal basis, in
this case, the time-frequency domain. Moreover, we assume the
components of the signal of interest that contain a majority of its
power overlap with components of the interference signal contain-
ing negligible power. In case of speech mixed with music, this oc-
curs because in the time-frequency domain both music and speech
are sparse and the large magnitude coefficients rarely overlap. The
robustness of the technique to channel estimation and synchroniza-
tion errors is demonstrated experimentally on speech/music mix-
tures.

1. INTRODUCTION

The problem of cancelling an unwanted interference signal from a
single mixture given an unfiltered version of the interference signal
has been well studied. Many of these techniques, however, rely on
precise channel estimates in order to cancel the interference. The
classical noise cancellation techniques often fail to remove the in-
terference, or even add more interference into the mixture, when
phase errors in the channel estimates occur. When the channel
changes suddenly, or when the reference interference signal and
mixture interference signal lack synchronicity, the performance of
the standard noise cancelling techniques suffers. Motivated by re-
cent advancements in field of blind source separation, we propose
here a noise cancellation technique which performs robustly in the
presence of poor channel estimates and channel synchronization
errors.

The DUET (Degenerate Unmixing Estimation Technique) al-
gorithm presented in [1] and [2] and analyzed further in, for exam-
ple, [3], [4], and [5], is a method for blind source separation in the
degenerate case, that is when the number of sources is greater than
the number of mixtures. In this situation, inversion of the mixing
matrix is impossible and thus prevents demixing via mixing matrix
inversion. The DUET method relies on the concept of approximate
W-disjoint orthogonality which quantifies the non-overlapping na-
ture of the time-frequency representations of the sources. This
property is exploited to facilitate the separation of any number of
sources from just two mixtures using the spatial signatures of each
source.

Separation in the monaural case is considerably more difficult
than in the binaural case given that the spatial cues arising from mi-
crophone separation, on which the latter relies, are notably absent
with only one mixture. As seen in [6], [7] and [8], prior infor-
mation on the nature of the sources is necessary to overcome this
challenge.

Alternatively, in the monaural case, often side information is
available to aid in separation. Such algorithms are known as adap-
tive noise cancelling techniques, and the algorithm analyzed in this
paper falls into this class. Specifically, we consider the case where
we have a single mixture,x(t), consisting of a speech source of
interest,s(t), and an interfering musical signal,n(t), where both
s(t) and n(t) incorporate the impulse responses resulting from
their respective transmission paths in the environment.

x(t) = s(t) + n(t) (1)

Using a reference signal,n′(t), which is the interference signal
which hasnotbeen passed through an unknown time-varying filter,
we want to recover the signal of interest from the mixture.

The established methods of noise cancelling in this situation
involve adaptive filtering and are essentially variations on the scheme
introduced in [9] and depicted in Figure 1.

Fig. 1. Adaptive Noise Cancelling. The reference signal is filtered
and subtracted from the mixture to produce an error signal that is
used to control the filtering process

Adaptive noise cancelling requires very little a priori knowl-
edge of the characteristics of either source since the adaptive filter
uses an adaptive process to adjust its own coefficients. It does this
such that the filtered reference (i.e. the output of the filter,y(t)
resembles, as closely as is possible, the interfering signal in the
primary input. The reference signal is related to the interference
in the primary input,n(t), by a convolution with the impulse re-
sponse of the environment, which we will denotehn(t),

n(t) = hn(t) ? n′(t). (2)

Thus, it ishn(t) which the adaptive filter must learn in order that
the subtraction will remove as much of the interference as possible.
It achieves this by using an adaptive algorithm which works to
minimize in some way the error signal

e(t) = s(t) + n(t)− y(t) = s(t) + n(t)− h(t) ? n′(t) (3)



by making adjustments to the adaptive filterh(t). There exist a
wide variety of recursive algorithms for adaptive filtering [10] and
we compare the technique described later in this paper to two of
the most established algorithms; normalised Least-Mean-Square
(NLMS) variant and Recursive-Least-Squares (RLS).

This paper analyzes MINUET (Musical Interference Unmix-
ing Estimation Technique), an adaptive noise cancelling algorithm
introduced in [11], which utilizes similar principles to those of
DUET and eliminates the interference using a binary time-frequency
mask instead of the classic approach of Figure 1. The technique
was originally developed to remove a musical interference signal
from a voice/music mixture, but all that MINUET requires is that
the signal of interest and interference are approximately W-disjoint
orthogonal, a concept quantified in [2] and briefly discussed in the
next section. The method consists of three steps. First, the mixture
and the side information signal are roughly aligned so that sounds
in each occur approximately at the same time. Second, an estimate
of the relationship (spectral weights) between the instantaneous
spectral powers of the side information signal and its presence in
the mixture is calculated, for example, using a section of the mix-
ture which contains little to no contribution from the desired signal
but a relatively large contribution of the interfering signal. Third,
a time-frequency mask is created comparing the weighted instan-
taneous spectral powers of the side information signal to the mix-
ture instantaneous spectral powers. Time-frequency points which
are likely dominated by the interfering signal are suppressed to
remove the interfering source from the mixture.

The rest of the paper is organized as follows. In Section 2,
we introduce MINUET and demonstrate how it can be used to
solve the noise cancellation problem. Section 3 presents results
of simple experiments to demonstrate MINUET’s robustness with
respect to phase errors. Finally, Section 4 contains conclusions and
suggestions for further work.

2. MINUET

We can express the mixing in the time-frequency domain using the
windowed Fourier transform. The windowed Fourier transform of
x is defined,

F W (x(·))(τ, ω) =
1√
2π

∫ ∞

−∞
W (t− τ)x(t)e−iωτdt, (4)

which we will refer to asx(τ, ω). The mixture in the time-frequency
domain is expressed,

x(τ, ω) = s(τ, ω) + n(τ, ω). (5)

We will assume the filter process can be modelled as

n(τ, ω) = Hn(ω)n′(τ, ω), (6)

whereHn(ω) is the Fourier transform ofhn(t). Mixing then be-
comes

x(τ, ω) = s(τ, ω) + Hn(ω)n′(τ, ω) (7)

Our goal is to create a time-frequency mask,m(τ, ω), such that
the mask preserves most of the desired source power,

‖m(τ, ω)s(τ, ω)‖2/‖s(τ, ω)‖2 ≈ 1, (8)

and results in a high output signal to interference ratio,

‖m(τ, ω)s(τ, ω)‖2 � ‖m(τ, ω)n(τ, ω)‖2. (9)

Approximate W-disjoint orthogonality is embodied by Equations
(8) and (9). That is, if a time-frequency mask exists such that it
captures a large percentage of the power of the signal of interest
without capturing a large percentage of power of the interference,
then the signal of interest and interference are approximately W-
disjoint orthogonal. For such a mask, convertingm(τ, ω)x(τ, ω)
back into the time domain will be the interference free signal.
Thus, our goal of estimatings(t) can be achieved by determining
an appropriate time-frequency maskm(τ, ω).

MINUET uses a binary time-frequency mask of the form

Mα(τ, ω) =

{
1 |x(τ, ω)| ≥ α|H(ω)||n(τ, ω)|
0 otherwise

(10)

whereH(ω) is an estimate of the interference channel transfer
function andα is parameter set to maximize intelligibility. Strict
W-disjoint orthogonality, as defined in [1], allows no more than
one source to have non-zero energy at every point in time-frequency
space. Since assumptions based on this rigid definition are violated
for speech, [2] introduces a measure of “approximate” W-disjoint
orthogonality which, for the purposes of MINUET implies that
the energy of one source dominates each time-frequency point. If
we find one of these points in the representation of the mixture
where the amplitude isα times greater than the amplitude of the
corresponding point in the representation of the reference times
the corresponding magnitude of the transfer function estimate, it is
reasonable to assume that this energy must come from some source
other than the interfering source, i.e. it must come from the speech
signal. Mα, therefore, is turned on for all time-frequency points
dominated by the speech signal. In this way,Mα is a binary mask
which can be applied to the mixture in order to recover an estimate
of the speech signal,

ŝ(τ, ω) = Mα(τ, ω)x(τ, ω) (11)

Convertingŝ(τ, ω), back into the time domain produces the esti-
mate of the signal of interest.

One way in order to estimateHn(ω), is to locate regions of
x(τ, ω) which are dominated byn(τ, ω). That is, we wish to find
a set of(τ, ω), S, such thatx(τ, ω) ≈ n(τ, ω) for (τ, ω) ∈ S. We
then estimate|Hn(ω)| via,

H(ω) =

∫
(τ,ω)∈S

∣∣∣x(τ, ω)n′(τ, ω)
∣∣∣ dτ∫

(τ,ω)∈S |n′(τ, ω)|2 dτ
(12)

Clearly, H(ω) will be real-valued in this case, which is fine as
we only require its magnitude in the mask generation Equation
(10). One possible choice forS is the set of time-frequency points
whereMα(τ, ω) is zero, as these are the points where the noise is
likely to have dominated the speech. We can imagine an iterative
batch technique where the mask estimation is performed for some
initial guess forH(ω), and then the channel estimation and mask
estimation are fed back into each other a number of times, each
time updating the estimate ofS. Alternatively, an online version
would update the current estimate forH(ω) based onS generated
from Mα(τ, ω) up to the current time.

The MINUET technique differs from classical adaptive noise
cancelling techniques which are sensitive to errors in the phase es-
timates of the filter and interfering signal and the synchronization
of the side signal to the mixture. The proposed technique does not
estimate the phase but is based on instantaneous time-frequency
magnitude estimates resulting in the technique being more robust



Fig. 2. Time-frequency representation of the reference signal (up-
per left), the original speech signal (upper right), the mixture of
speech and reference (lower left), and the binary mask forα = 2.
The binary mask captures81.1% of the energy of the speech, while
improving the SNR of the mixture by 20.7 dB (from -7.8 dB to
12.9 dB).

to alignment errors. If we can ensure that the mixture and the ref-
erence are roughly aligned by some method so that sounds in each
occur at approximately the same time, MINUET is robust enough
to alleviate the need for perfect synchronization that is crucial for
successful operation of the adaptive filtering methods.

This filtering scheme can be viewed as a thresholded form of
the time-frequency formulation of the time-varying Wiener filter as
discussed in [12], [13] and [14] which is an optimal filter designed
to adapt to spectral change in nonstationary signals. This scheme
can also be thought of as an adaptive hard thresholding scheme,
where the threshold isα|H(ω)n(τ, ω)|.

Although the presentation here was done for continuous time
signals, the application would be for sampled signals. In dis-
crete time, the windowed Fourier transform would be a windowed
DFT (discrete time Fourier transform) and the estimates ofHn(ω)
would be finite sums over discrete time points for each frequency
center.

For illustration purposes, let us assume thatHn(ω) = 1, ∀ω,
and look to a sample speech/music mixture. Images of the time-
frequency domain representations of a music signal, a speech sig-
nal, their mixture, andMα(τ, ω) with α = 2 are shown in Fig-
ure 2. The similarities between the music and the mixture are
clearly evident as the speech signal present in the mixture is of
a very low amplitude. The fact thatMα(τ, ω) matches so well
with the speech shows the approximate W-disjoint orthogonality
of the signals.

3. EXPERIMENTS

We present here some simple experiments which demonstrate the
robustness of MINUET to synchronization errors. One issue un-
resolved at this point is the selection of a value for the parameter
α. For the purposes of the experiments in the following section, a
value of 2 has been used for this parameter throughout.

For the first experiment, we imagine a system where the ref-
erence signal has lost synchronicity with the mixture and test time-
frequency masking versus subtraction-based noise cancelling meth-
ods. The music in the mixture is simply a perfect copy of the music
delayed by a certain number of samples. We fix the filter used by
both MINUET and in the conventional noise canceller to be the
unit impulse response with no delay and do not allow either al-
gorithm to adapt. Thus, this test evaluates the robustness of the
removal step of the algorithms to phase errors in the channel esti-
mates. All signals were sampled at 16kHz and normalised to unit
energy. Each datapoint in the graphs depicting the results repre-
sents the average of 100 tests corresponding to mixtures created
from speech signals taken from the TIMIT database mixed with
classical or pop music. Figure 3 displays the results in SNR im-
provement for both MINUET and the subtraction based schemes
as a function of synchronization error.

Fig. 3. Algorithm robustness alignment errors. SNR improve-
ment (dB) for MINUET (solid) and subtraction based noise can-
cellers (dashed) as a function of synchronization error sample shift
{1, 2, . . . , 25} (upper plot) and{21, 22, . . . , 210} (lower plot).

It can be seen from Figure 3 that even when the reference is
shifted by just one sample, the SNR improvement for the sub-
traction method falls dramatically below that for time-frequency



masking. Moreover, after about 10 samples, the subtraction method
hits a noise floor of approximately -3dB which confirms that at this
level of misalignment, subtraction effectively doubles the noise
power present in the mixture. Meanwhile, the graphs clearly demon-
strate MINUET’s robustness to synchronisation errors in this envi-
ronment, with a constant SNR improvement of 15dB even with a
relatively large shift in the reference.

While SNR improvement is a standard performance measure,
it is not well correlated with speech quality. [2] presents an alterna-
tive measure, one of approximate W-disjoint orthogonality, which
is correlated with the perceived quality of speech. It can be de-
fined via two other important performance criteria: the preserved-
signal ratio (PSR) and the signal-to-noise ratio (SNR). The PSR
is, for our purposes, the portion of energy of the speech signal
preserved after noise cancellation. Clearly, PSR = 1 for the sub-
traction method since none of the speech signal is removed, only
the interference. For MINUET, on the other hand, we have:

PSR:=
‖Mα(τ, ω)s(τ, ω)‖2

‖s(τ, ω)‖2 (13)

SNR is defined in the usual way for the subtraction method while
MINUET’s SNR measure is:

SNR :=
‖Mα(τ, ω)s(τ, ω)‖2

‖Mα(τ, ω)n(τ, ω)‖2 (14)

We can now combine Equations (13) and (14) into the measure of
approximate W-disjoint orthogonality as follows:

WDO := PSR− PSR
SNR

(15)

The results for the same tests as in Figure 3 are displayed in Fig-
ure 4 as WDO versus synchronisation error. Again, as expected,
we note the rapid fall in performance of the subtraction based
schemes even for small synchronization errors while MINUET is
not even affected by large synchronization errors.

Next, we test the performance of NLMS and RLS along with
that of MINUET in an environment with synchronization jitter.
We model reference signal jitter by shifting the reference everyN
samples by just one sample. In these tests we allow all algorithms
to adapt their channel estimate and measure their performance in
response to reference jitter as outlined above, setting the value of
N equal to 100. NLMS is used in our experiments as it adapts to
non-stationarity in far fewer iterations to a result comparable with
that of the regular LMS algorithm employed in [9]. RLS offers
even faster convergence than NLMS along with smaller misad-
justment. For both NLMS and RLS, we use MATLAB implemen-
tations from the MATLAB Filter Design Toolbox with 13 taps in
each filter. For both adaptive filtering algorithms, given the value
N , empirical optimum values were obtained for the step size,µ,
of NLMS and the forgetting factor,λ, in RLS. These values were
0.64 and 1 respectively. For a full discussion of the adaptive filter-
ing algorithms see [10]. Three experimental setups were used: (a)
the reference signal was unfiltered (unity channel) and every 100
samples the reference signal was shifted forward or backward one
sample with equal probability (b) the interference was first passed
through a random 13-tap FIR filter and every 100 samples the ref-
erence signal was shifted forward one sample (c) the interference
was first passed through a random 13-tap FIR filter and and every
100 samples the reference signal was shifted forward or backward
one sample with equal probability. The results of the experiments
for each of the algorithms are tabulated in Table 1, given in both
SNR improvement and WDO.

Fig. 4. Algorithm robustness alignment errors. WDO for MIN-
UET (solid) and subtraction based noise cancellers (dashed) as a
function of synchronization error sample shift{1, 2, . . . , 25} (up-
per plot) and{21, 22, . . . , 210} (lower plot).

Algorithm SNR (dB) WDO

NLMS -0.76 -0.09
RLS 7.94 0.84
MINUET 14.34 0.73

(a) forward/backward jitter test for unity channel

Algorithm SNR (dB) WDO

NLMS -0.84 -0.21
RLS 10.10 0.90
MINUET 19.27 0.55

(b) forward-only jitter test for random 13 tap channel

Algorithm SNR (dB) WDO

NLMS -2.19 -0.66
RLS -0.73 -0.18
MINUET 6.71 0.44

(c) forward/backward jitter test for random 13 taps channel

Table 1. Results of jitter tests averaged over 200 mixtures.



4. CONCLUSIONS

A method for eliminating an unwanted signal from a mixture via
time-frequency masking was analyzed. Given a mixture of a signal
of interest and unwanted interference, our goal was to eliminate the
interfering signal to obtain an estimate of the desired signal. The
signal of interest could be speech and the interference music, and
the goal would be to eliminate the music from the mixture. The
method requires side information, namely, it requires a signal with
related instantaneous spectral powers to the unwanted signal. Such
a signal is often available. For example in the scenario where the
unwanted signal is a music signal which was played from a CD
or tape, the original recording can serve as the side information
signal. In the presence of synchronization errors between the side
signal and the mixture, the performance of subtraction-based noise
cancellation methods, such as NLMS and RLS, falls quickly as
the misalignment grows. Such misalignment could be caused, for
example, by varying playback speed of the reference or mixture
recording. The performance of the time-frequency based masking
technique presented here did not decrease when the side signal was
misaligned to the mixture and such a technique may be well suited
for applications where there is jitter in the alignment between the
side signal and the mixture.

5. REFERENCES

[1] A. Jourjine, S. Rickard, and O. Yilmaz. Blind separation of dis-
joint orthogonal signals: Demixing N sources from 2 mixtures. In
ICASSP, volume 5, pages 2985–2988, 2000.

[2] O. Yilmaz and S. Rickard. Blind separation of speech mixtures via
time-frequency masking.IEEE Transactions on Signal Processing,
2004. To appear.

[3] M. Baeck and U. Zolzer. Performance analysis of a source separation

algorithm. In Int. Conference on Digital Audio Effects, September
2002.

[4] H. Viste and G. Evangelista. On the use of spatial cues to improve
binaural source separation. Proceedings of the 6th Int. Conference
on Digital Audio Effects, London, UK, 2003.

[5] N. Roman, D. Wang, and G. Brown. A classification-based cocktail-
party processor.Neural Information Processing Systems (NIPS*04),
2004.

[6] G. Cauwenberghs. Monaural separation of independent acoustical
components. Neural Information Processing Systems (NIPS*00),
2000.

[7] S. Roweis. One microphone source separation.Neural Information
Processing Systems (NIPS’00), pages 793–799, 2000.

[8] G.-J. Jang and T.-W. Lee. A probabilistic approach to single chan-
nel blind signal separation.Neural Information Processing Systems
(NIPS*02), 2002.

[9] B. Widrow, J. Glover, J. McCool, J. Kaunitz, C. Williams, R. Hearn,
J. Ziedler, E. Dong, and R. Goodlin. Adaptive noise cancelling: Prin-
ciples and applications.Proceedings of the IEEE, 63:1692–1716,
1975.

[10] S. Haykin.Adaptive Filter Theory. Prentice-Hall, London, 1996.

[11] R. Balan, S. Rickard, and J. Rosca. Method for eliminating an un-
wanted signal from a mixture via time-frequency masking. Siemens
Corporate Research Report, August 2002.

[12] F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time-frequency
formulation, design and implementation of time-varying optimal fil-
ters for signal estimation.IEEE Transactions on Signal Processing,
48:1417–1432, 2000.

[13] T. Quatieri and R. Baxter. Noise reduction based on spectral change.
In IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, 1997.

[14] T. Quatieri and R. Dunn. Speech enhancement based on auditory
spectral change. InICASSP, April 2002.


