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Abstract—In this paper we present an Information
Theoretic Estimator for the number of sources mutually
disjoint in a linear mixing model. The approach follows
the Minimum Description Length prescription and is
roughly equal to the sum of negative normalized maximum
log-likelihood and the logarithm of number of sources.
Preliminary numerical evidence supports this approach
and compares favorabily to both the Akaike (AIC) and
Bayesian (BIC) Information Criteria.

I. THE MIXING MODEL AND SIGNALS

Consider the following mixing model:

xd(t) =
L∑
l=1

ad,lsl(t)+nd(t) , 1 ≤ d ≤ D , 1 ≤ t ≤ T

(1)
This model corresponds to an Instantaneous Linear
Mixing Model with L souces and D sensors. We
will frequently use the vector notation X(t) =
(x1(t), . . . , xD(t))T , and matrix A = (ad,l).

In this paper the following assumptions are made:
1) (H1) Noise signals (nd)1≤d≤D are Gaussian

i.i.d. with zero mean and unknown variance
σ2;

2) (H2) Source Signals are unknown, but at every
moment t at most one signal sl(t) is nonzero,
among the total of L signals;

3) (H3) The number of source signals L is an
unknown random variable;

4) (H4) The columns of the unknown matrix A
have unit Euclidian norm.

The probem is to design a statistically principled
estimator for L, the number of source signals.

For this model, the measured data is Ξ =
{(xd(t))1≤d≤D , 1 ≤ t ≤ T}. Furthermore the

number of sensors D is also known. The rest of pa-
rameters are unknown. Let us denote by θ = (θ′, L),
where:

θ′ =
(
{(sl(t))1≤l≤L ; 1 ≤ t ≤ T} , σ2

)
(2)

Notice that hypothesis (H2) above imposes a con-
straint on set (sl(t))1≤l≤L, for every t. More specif-
ically, the L-dimensional vector (sl(t))1≤l≤L has to
lay in one of the L 1-dimensional coordinate axes
(that is, all but one component has to vanish). This
fact has a profound implication on estimating the
complexity penalty associated to the parameters set.
We will comment towards the end of this paper on
how to extend this hypothesis to the case when M
components of (sl(t))1≤l≤L are allowed to be non-
zero, for every t.

A. Prior Works
The signal and mixing model described before

has been analyzed by many works before.
A similar mixing model to (1) has been studied in

[1], [2], and [3]. As the authors mentioned there, as
well as in [4], [5], and several others, a new signal
separation class is defined by sparsness assumption,
called Sparse Component Analysis (SCA). In this
vein, this present paper proposes a look at the Min-
imum Description Length paradigm in the context of
Sparse Component Analysis framework. The reader
is refered to our recent paper [6] where we analyzed
similar estimators for number of sources but for an
anechoic mixing model.

In the past series of papers [7], [8], [9], [10], [11]
the authors studied the non-instantaneous anechoic
version of (1), and several generalizations of this



model in the following respects. Mixing model: each
channel may have a delay and an attenuation factor;
Noise statistics: noise signals may have inter-sensor
correlations; Signals: more signals may non-vanish
at each time-frequency point (maximum number
allowed is D − 1); more recently we have consid-
ered temporal, and time-frequency, dependencies on
signal statistics [12].

In the absence of noise, the number of sources
can be estimated straightforwardly by building a
histogram of the ratios xl(t)/x1(t), or for a more
general model see [3].

II. ESTIMATORS

Assume the mixing model (1) and hypotheses
(H1),(H2),(H3),(H4). Then its associated likelihood
is given by

L(θ) := P (Ξ|θ) (3)

=

T∏
t=1

1

(2π)D/2σD
exp

(
− 1

2σ2
‖X(t)−AS(t)‖2

)
In the next subsection the maximum likelihood

estimator for θ′, and the maximum likelihood value
are going to be derived.

Following a long tradition of statistics papers,
consider the following framework. Let P (X) denote
the unknown true probability of data (measure-
ments), P (X|θ) denote the data likelihood given
the model (1) and (H1-H4). Then the estimation
objective is to minimize the misfit between these
two distributions measured by a distance between
the two distribution functions. One can choose the
Kullback-Leibler divergence, and obtain the follow-
ing optimization criterion:

J(θ) = D(PX ||PX|θ) :=

∫
log

P (X)

P (X|θ)dP (X) (4)

=

∫
log P (X) dP (X)−

∫
log P (X|θ) dP (X)

Since the first term does not depend on θ, the
objective becomes maximization of the second term:

θ̂ = argmaxθE[log PX|θ(X|θ)] (5)

where the expectation is computed over the true
data distribution PX . However the true distribution
is unknown. A first approximation is to replace the
expectation E by average over data points. Thus one
obtains the maximum likelihood estimator (MLE):

θ̂ML = argmaxθ
1

T

T∑
t=1

log PX|θ(Xt|θ) (6)

where T is the number of sample points (Xt)1≤t≤T .
As is well known in statistical estimation (see

[13], [14]), for finite sample size the MLE is usually
biased. For discrete parameters, such as number
of source signals, this bias has a bootstraping
effect that monotonically increases the likelihood
and makes the number of parameter estimation
impossible through naive MLE. Several approaches
proposed to estimate and make correction for this
bias. In general, the optimization problem is restated
as:

θ̂ = argminθ

[
− 1

T

T∑
t=1

log P (Xt|θ) + Φ(θ, T )

]
(7)

Following e.g. [14] we call Φ the regret. Akaike
[13] proposes the following regret:

ΦAIC(θ, T ) =
|θ|0
T

(8)

where |θ|0 represents the total number of param-
eters. Schwarz [15] proposes a different regret,
namely

ΦBIC(θ, T ) =
|θ|0 log T

2T
(9)

In a statistically plausible interpretation of the
world, Rissanen [16] obtains for regret the shortest
possible description of the model using the univer-
sal distribution function of Kolmogorov, hence the
name Minimum Description Length,

ΦMDL(θ, T ) = Coding LengthUniversal Distribution(Model(θ, T ))
(10)

Based on this interpretation, Φ(θ, T ) represents a
measure of the model complexity.

In this paper we propose the following regret
function

ΦMDL−BSS(θ, T ) = log2(L) (11)

Thus the optimization in (7) is carried out in two
steps. First, for fixed L, the log likelihood is opti-
mized over θ′:

θ̂′MLE(L) = argmaxθ′P (X|θ′, L) (12)
MLV (L) = P (X|θ̂′MLE, L)

Here MLV denotes the Maximum Likelihood Value.
Then L is estimated via:

L̂MDL−BSS = arminL [− log(MLV (L)) + log2(L)] (13)



In the next subsection we present the computation
of the Maximum Likelihood Value (MLV). Then,
in the following subsection we argue the partic-
ular form (11) for Φ(θ, T ) inspired by the MDL
interpretation. In same subsection we also discuss
difficulties in a straightforward application of AIC
or BIC criteria.

A. The Maximum Likelihood Value
The material from this subsection is presented in

more detail in [2]. Results are summarized here for
the benefit of the reader.

The constraint (H2) assumed in section I can be
recast by introducing the selection variable V (t):
V (t) = l iff Sl(t) 6= 0, and the amplitudes G(t).
Thus a slightly different parametrization of the
model is obtained. The new set of parameters is
now ψ = (ψ′, L) where

ψ′ =
(
{(G(t), V (t)) ; 1 ≤ k ≤ T} , σ2

)
(14)

The signals in θ′ are simply obtained through:
SV (t)(t) = G(t), and Sl(t) = 0 for l 6= V (t).

The likelihood (3) becomes:

L(ψ) =
1

(2π)DT/2σDT
exp

(
− 1

2σ2

∑
t

‖X(t)−G(t)AV (t)‖2
)

(15)
where T is the number of data points, and Al de-

notes the lth column of matrix A. The optimization
over G is performed immediately, as a least square
problem. The optimum value is replaced in L(ψ):

logL((V )t, L) = −DT
2

log(2π)−DT log(σ) (16)

− 1

2σ2

∑
t

[
‖X(t)‖2 − |〈X(t), AV (t)〉|2

]
The optimization over (V )t and A is performed by

an algorithm similar to the K-means algorithm:
• For a fixed matrix A the optimal selection

variables are

V (t) = argmaxm|〈X(t), Am〉| (17)

• For a fixed selection map (V (t))k,ω, consider
the induced partition Πm = {t ; V (t) = m}.
Then Am is obtained as the principal eigenvec-
tor of the covariance matrix

Rm =
∑
t∈Πm

x(t)x(t)∗ (18)

Thus RmAm = λmaxAm.

These steps are iterated until convergence is
reached (usually in a relatively small number of
steps, e.g. 10). Denote V̂MLE(t) and Âl the final
values, and replace these values into L. The noise
variance parameter is estimated by maximizing L
over σ2,

σ̂2
MLE =

1

T

T∑
t=1

[
‖X(t)‖2 − |〈X(t), ÂV̂MLE(t)〉|

2
]

(19)
Finally, the log maximum likelihood value becomes:

log(MLV (L)) =
1

T
log(L(ψ̂′MLE ;L)) (20)

= −D
2
log(2π)− 1/2− D

2
log(σ̂2

MLE)

where ψ̂′MLE denoted the optimal parameter set ψ′

containing the combined optimal values (V̂MLE(t))t,
(ĜMLE(t))t, (Âl)1≤l≤L, σ̂2

MLE .

B. Number of Sources Estimation
The next step is to establish the regret function.

As mentioned earlier the approach here is to use
an estimate of the Minimum Description Length of
the model (1) together with hypotheses (H1-H4).
In general this is an impossible task since the Kol-
mogorov’s complexity function is unkown. However
the L-dependent part of the model description is
embodied in the mixing parameters (Al)1≤l≤L, and
the selection map (V (t))t. First we model the mix-
ing matrix by a uniform distribution in the space of
unit vectors with a finite discretization of, say, M
levels. Then we discretize the source amplitudes by
Q levels, and we give no prior preferential treatment
of one source signal versus the others. Thus an
upper bound on the description length is obtained
as the code length of an entropic encoder for this
data added to the description length of the entire
sequence of models with respect to the Kolmogorov
universal distribution:

l∗(Model;T ) ≤ Llog2(M) + T (log2(L) + log2(Q)) (21)

+C(Model)

This represents an upper bound since l∗(Model;N)
is supposed to represent the optimal description
(minimal description) length, whereas the descrip-
tion splits into two parts: the sequence of models
parametrized by ψ and T , and then, for a given
(L, T ) the entropic length of ψ. This clearly rep-
resents only one possible way of encoding the pair
(Model(ψ), T ).



This discussion justifies the following choice for
the regret function ΦMDL−BSS

ΦMDL−BSS(L, T ) =
L log2(M) + T (log2(L) + log2(Q))

T
(22)

= log2(L) +
L log2(M)

T
+ log2(Q)

which, for large T reduces to (11).
Before presenting experimental evidence support-

ing this approach, I would like to comment on
AIC and BIC criteria. The main difficulty comes
from the estimation of the number of parameters.
Notice that, using θ description, the number of
parameters becomes LT + L + 1, whereas in ψ
description, this number is only 2T + L + 1. The
difference is due to that fact that the set of realizable
signal vectors (Sl)1≤l≤L lays in a collection of L 1-
dimensional spaces. Thus this can be either modeled
as a collection of L variables, or by 2 variables: an
amplitude, and a selection map V . Consequently, the
regret function for AIC can be either L + L+1

T
, or

2+L+1
T

. Similarly, for BIC the regret function can be
L log(T )/2+ (L+1)log(T )

2T
, or log(T )+ (L+1)log(T )

2T
. The

criterion we propose in (22) interpolates between
these two extrema, and captures better the actual
size of the model parametrization.

III. EXPERIMENTAL EVALUATION

We have generated mixing data according to
model (1) with the following parameters. The num-
ber of sensors (D) varied from 2 to 4. The number
of sources L ran from 1 to 8. Signal amplitude
was generated as a unit variance Gaussian random
variable. At every time t, the activation map was
generated as a uniform random variable ranging
from 1 to L. Gaussian noise was added to mixture
with five levels of signal-to-noise ratio: 0, 25, 50,
75, and 100 dB.

There were 10 experiments, and in each experi-
ment 10000 samples of signal were generated. Two
signal traces for D = 2, L = 3, and two levels of
SNR (0dB on top, and 100dB on the bottom) are
rendered in Figure 1. Since the correction terms are
of order log(L+ 1)/T = 10−4. the only meaningful
AIC and BIC were given by the former regret func-
tions. To summarize, the source number estimator
is given by:

L̂MDL−BSS = argminL [−logMLV (L) + log2(L)] (23)

L̂AIC = argminL [−logMLV (L) + L] (24)

L̂BIC = argminL [−logMLV (L) + L log(T )/2](25)

Fig. 1. Two scatter plots for D = 2, L = 3 and SNR = 0dB (top),
respectively SNR = 100dB (bottom).

For an experiment with D = 2 sensors, L = 5
sources, and SNR = 100dB, the plot of Maximum
Log Likelihood, Regret, and combined criterion is
plot in Figure 2; top plot refers to the MDL criterion,
middle plot refers to the AIC criterion, bottom plot
relates to the BIC criterion.

For a total of 1200 experiments (5 levels of noise
x 3 choices of array size x 8 number of sources x
10 realizations), the histogram of estimation error
has been obtained. For each of the three estimators,
the histogram is rendered in Figure 3. Statistical
performance of these estimators is presented in
Table at right.

IV. CONCLUSIONS

The MDL-BSS estimator clearly performed best
among the three estimators, since the error distribu-
tion is the most concentrated to zero, in every sense:
the number of errors is the smallest, the average
error is the smallest, the variance is the smallest,
the bias is the smallest.

This paper provides a theoretical framework for a
statistical criterion to estimate number of source sig-
nals in a linear instantaneous mixing scenario with
sparse signals. The numerical simulations confirmed
the estimation performance.



Fig. 2. MDL (top), AIC (middle), and BIC (bottom) related plots
for D = 2, L = 5 and SNR = 100 dB.
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