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Abstract—This paper presents a framework for discrete-
time signal reconstruction from absolute values of its short-
time Fourier coefficients. Our approach has two steps. In
step one we reconstruct a band-diagonal matrix associated
to the rank-one operator Kx = xx∗. In step two we recover
the signal x by solving an optimization problem. The two
steps are somewhat independent, and one purpose of this
paper is to present a framework that decouples the two
problems. The solution to the first step is connected to
the problem of constructing frames for spaces of Hilbert-
Schmidt operators. The second step is somewhat more
elusive. Due to inherent redundancy in recovering x from
its associated rank-one operator Kx, the reconstruction
problem allows for imposing supplemental conditions. In
this paper we make one such choice that yields a fast
and robust reconstruction. However this choice may not
necessarily be optimal in other situations. It is worth
mentioning that this second step is related to the problem
of finding a rank-one approximation to a matrix with
missing data.

I. INTRODUCTION

This paper presents a framework for discrete-time
signal reconstruction from absolute values of its short-
time Fourier coefficients. In this paper we consider 1-
dimensional signals in the infinite dimensional Hilbert
space H = l2(Z). The term “signal” means a vector in
this Hilbert space.

The short-time Fourier transform is defined using a
“window” g ∈ H as follows. Fix two integer: number of
frequencies F , and time step b. For every vector x ∈ H
its short-time Fourier transform is defined by

ck,f = 〈x, gk,f 〉 :=
∑
t∈Z

e−2πift/Fx(t)g(t− kb) (1)

with f ∈ ZF , k ∈ Z. Thus the short-time Fourier
transform maps H = l2(Z) into l2(Z×ZF ), as is well-
known from square integrable representation theory of
the discrete Weyl-Heisenberg group (see [1], [2]). Let
L denote the length of the support of g, and assume the

following support condition supp(g) ⊂ {0, 1, . . . , L−1}.
The problem we study in this paper is the following:
given {|ck,f | , (k, f) ∈ Z×ZF } for b = 1 and F ≥ 2L,
we want to reconstruct x up to a global phase factor. We
will analyze an algorithm for this task, whose origins are
inspired by the analysis done in [3], [4]. Some parts of
this algorithm are similar to the reconstruction algorithm
proposed in [5]. Our approach has two steps (or phases).
In step one we reconstruct a band-diagonal matrix as-
sociated to the rank-one operator Kx = xx∗. In step
two we recover the signal x by solving an optimization
problem. The two steps are somewhat independent, and
one purpose of this paper is to present a framework
that decouples the two problems. The solution to the
first step is connected to the problem of constructing
frames for spaces of Hilbert-Schmidt operators. This
latter topic seems well studied in the context of Gabor
multipliers (see [6]). The second step is somewhat more
elusive. Due to inherent redundancy in recovering x from
its associated rank-one operator Kx, the reconstruction
problem allows for imposing supplemental conditions.
In this paper we make one such choice that yields
a fast and robust reconstruction. However this choice
may not necessarily be optimal in other situations. It is
worth mentioning that this second step is related to the
problem of finding a rank-one approximation to a matrix
with missing data. The organization of the paper is the
following. Section II presents the two step approach for
our problem, and contains fundamental properties for the
objects of interest. Section III analyzes the specific case
of STFT in H = l2(Z) presents reconstruction methods
for the truncated Kx. Section IV analyzes the second step
and presents a causal algorithm that solves this problem.
Section V contains numerical examples and conclusions.

II. NONLINEAR EMBEDDING AND INVERSE MAPS

Consider a frame F = {fi; i ∈ I} for the Hilbert
space H , indexed by a countable index set I . As it is



well known in frame theory, the (linear) analysis map:

x ∈ H 7→ T (x) = {〈x, fi〉}i∈I ∈ l2(I)

admits a left inverse (possibly non-unique) R : l2(I)→
H implementable via a linear synthesis formula:

R(c) =
∑
i∈I

dif
′
i , c ∈ l2(I)

where {f ′i ; i ∈ I} is a dual frame. Thus RT (x) = x.
Define |.| : l2(I) → l2(I) the nonlinear map that
applies the absolute value on each entry, |c| = {|ci|}i∈I .
The problem is now to construct a left inverse for
the nonlinear analysis map |T | : H → l2(I), where,
explicitely, |T |(x) = {|〈x, fi〉|}i∈I .

The approach we study here is the following. Denote
by HS(H) the Hilbert space of Hilbert-Schmidt opera-
tors over H endowed with the inner product

〈A,B〉HS = trace(AB∗) =
∑
i,j

Ai,jB̄j,i

where (Ai,j), (Bi,j) are the matrix representations of
the compact operators A,B with respect to a fixed
orthonormal basis {ei} of H . Consider the nonlinear
embedding K of H into HS(H) given by

x 7→ Kx , Kx(y) = 〈y, x〉x

that associates a rank-one operator to vector x.
Note the following key relation:

|〈x, y〉|2 = trace(KxKy) = 〈Kx,Ky〉HS
Thus, the information contained in the magnitude of
frame coefficients |T (x)| is equivalent to the following
scalar products:

|T (x)|2i = 〈Kx,Kfi
〉HS

This simple observation implies the following result:
Theorem 2.1 ([7]): Assume {Kfi

}i∈I is a frame for
HS(H). Denote by {K̃i; i ∈ I} one of its dual frames.
Let di = |〈x, fi〉|. Then for every vector y ∈ H so that
〈y, x〉 6= 0 there exists a unit complex number z (i.e.
|z| = 1) so that:

R =
∑
i∈I

d2
i K̃i (2)

zx =
1√

〈R(y), y〉
R(y) (3)

However in the case of STFT coefficients, the set Kfi

turns out not to be frame for the entire Hilbert-Schmidt
space HS(H). Instead, the linear combination in (2)
yields PKx, the orthogonal projection of Kx onto the
span of Ki’s.

III. GABOR-LIKE FRAME SEQUENCES FOR

HILBERT-SCHMIDT OPERATORS

Consider the specific case H = l2(Z), I = Z × ZF ,
and the frame vectors gk,f (t) = e2πift/F g(t − k). As
mentioned in the introduction, we consider the case of
1-sample step size (b = 1) and frequency oversampling
factor F ≥ 2L where supp(g) ⊂ {0, 1, . . . , L− 1}.

The nonlinear embedding K : l2(Z) → HS(l2(Z))
with respect to the canonical basis of l2(Z) has the
following representation: (Kx)t1,t2 = xt1xt2 . The rank-
one operator associated to each gk,f is represented by
the following matrix:

(Gk,f )t1,t2 = e2πif(t2−t1)/F g(t1 − k)g(t2 − k)

Consider the frame operator associated to
{Gk,f}(k,f)∈Z×ZF

, S : HS(l2(Z))→ HS(l2(Z)),

S(X) =
∑

(k,f)∈Z×ZF

〈X,Gk,f 〉HSGk,f

Denote by T and Σ the unitary operators acting on
HS(l2(Z)) via conjugation with the shift operator T and
modulation operator M respectively,

T (X) = T ∗XT , Σ(X) = M∗XM

where T,M : l2(Z) → l2(Z) are Tf(t) =
f(t − 1), Mf(t) = e2πit/F f(t). Note the frame
operator S commutes with T and Σ, and S =∑

(k,f)∈Z×ZF
T kΣf (G0,0). Via Borel functional calcu-

lus, for any Borel function φ on the spectrum of S, there
is a Hilbert-Schmidt operator Gφ so that

φ(S) =
∑

(k,f)∈Z×ZF

T kΣf (Gφ)

where the series converges weakly. If φ is continuous
then the series converges in operator norm. In particular,
if {Gk,f}k,f is a frame for its span, then the spectrum of
S is included in {0}∪ [A,B] for some 0 < A ≤ B <∞,
and the orthogonal projection P onto the span of Gk,f ’s
is given by

P =
∑

(k,f)∈Z×ZF

T kΣf (G̃0,0)S

where G̃0,0 = S−1G0,0.
In the continuous time case (that is for H = L2(R))

this result was first obtained by H.Feichtinger in a series
of papers that started around 2000 (see e.g. [8], [9]).
In that case, the authors proved that the set {Gk,f} if
frame for its span if and only if it is Riesz basis for its
span, hence there is no redundancy. In the case studied in



this paper the situation is different. It turns out (we will
explore this result in a separate paper) the coherent set
{Gk,f}k,f∈Z×ZF

may be frame for its span without being
Riesz basic sequence. The reason for this phenomenon
lays in the fact that the dual group of Z × ZF has
nontrivial connected components.

Let us analyze the span of {Gk,f}. Note that for
any Hilbert-Schmidt matrix X ∈ HS(l2(Z)) so that
Xt1,t2 = 0 for |t1 − t2| ≥ L, 〈X,Gk,f 〉HS = 0. Hence
only information about the L-band part of a matrix X is
contained in coefficients 〈X,Gk,f 〉HS . Denote by E the
closure of the span of {Gk,f}(k,f)∈Z×ZF

in HS(l2(Z)),
and by ML the set of L-band matrices, ML = {X ∈
HS(l2(Z)) , Xt1,t2 = 0 ∀|t1 − t2| ≥ L}. Theorem 3.1
below gives necessary and sufficient conditions so for E
to coincide with ML.

Let zat = xt+axt be the ath-diagonal of the rank-
one operator Kx. Set hat = g(−t)g(a− t), Ha(ω) =∑

t∈Z e
−2πiωthat and let ck,f = 〈x, gk,f 〉. Then a direct

computation shows that:

1
F

F−1∑
f=0

e2πifa/F |ct,f |2 =
∑
s∈Z

hat−sz
s
s (4)

In turn this yields the following:
Theorem 3.1: Assume supp(g) ⊂ {0, 1, . . . , L − 1}

and consider the functions Ha : [0, 1) → C defined
above. Then:

1) E = ML if and only if for every 0 ≤ a ≤ L − 1
and ω ∈ [0, 1), Ha(ω) 6= 0;

2) The set {Gk,f ; (k, f) ∈ Z × ZF } is frame for
ML with frame bounds A,B is and only if A ≤
|Ha(ω)|2 ≤ B for all ω ∈ [0, 1) and 0 ≤ a ≤
L− 1;

3) The set {Gk,f ; (k, f) ∈ Z × ZF } is frame for
its span with frame bounds A,B if and only if
for every ω ∈ [0, 1) and 0 ≤ a ≤ L − 1 either
Ha(ω) = 0 or A ≤ |Ha(ω)|2 ≤ B.

This theorem suggests a reconstruction algorithm for
(zat ) using linear filters. The block diagram of this
scheme is included in Figure 1 where the linear filters
W a are inverse filters of Ha. Explicitely, if W a(ω) =∑

t e
−2πiωtwat then the tap-t coefficient wat of filter W a

is given by

wat =
∫ 1

0

e2πiatω

Ha(ω)
dω (5)

IV. RANK ONE APPROXIMATIONS

Previous section shows how to estimate zat =
x(t+ a)x(t). In this section we present an on-line least-
square estimate of the signal x = (xt)t. Specifically,

Fig. 1. Block diagram for linear reconstruction of sequences (za
t )t.

assume we have estimated the previous J samples (for
some J < L), x̂t−1, . . . , x̂t−J , then the estimator for xt
is obtained by minimizing:

I(u) = p0||u|2 − |ẑ0
t ||+

J−1∑
k=1

pk|(u)x̂t−k − ẑkt−k|
2

over u. Here the weights p0, . . . , pJ−1 can be set as
variances of the estimators of z0

t , . . . , z
J−1
t . Explicitely,

the solution is given by

x̂t =


u+ if |u+|2 ≥ |ẑ0

t | and
J(u+) ≤ min(J(u0), J(u−))

u− if |u−|2 ≤ |ẑ0
t | and

J(u−) ≤ min(J(u0), J(u+))
u0 if otherwise

(6)

where

u± =

∑J−1
k=1 pkx̂t−kẑ

k
t−k∑J−1

k=1 pk|x̂t−k|2 ± p0

(7)

u0 =
√
|ẑ0
t |

∑J−1
k=1 pkx̂t−kẑ

k
t−k

|
∑J−1

k=1 pkx̂t−kẑ
k
t−k|

(8)

V. EXAMPLES AND CONCLUSIONS

The block diagram of the solution is depicted in figure
2.

Unfortunately, as observed with the algorithm pro-
posed in [5], this reconstruction algorithm is not very
robust to coefficient estimation error. One contribution of
this paper is to explain the cause of this instability. The
perfect reconstruction result hinges on the assumptions
that {Gk,f}(k,f)∈Z×ZF

is frame for its span and its span
coincides with ML. Theorem 3.1 expresses necessary
and sufficient conditions for this to happen. However
in many cases of interest the filters Ha(ω) have at least
one zero on [0, 1) which introduces an instability in the



Fig. 2. Block diagram of the reconstruction algorithm.

Fig. 3. The Hamming window (top) and the corresponding filter
H0(ω) (bottom) in log-log scale.

inverse filter W a. For instance, for the Hamming window
(figure 3, top plot):

g(t) = 0.54− 0.46cos(2πt/(L− 1)) , 0 ≤ t ≤ L− 1

with L = 256, the filter H0(ω) is depicted in a log-log
scale in the lower plot of Figure 3.

On the other hand, the exponential window

g(t) = e−3t/256 , 0 ≤ t ≤ 255

has the assocoated filter H0 as depicted in Figure 4.
For this window, the reconstruction algorithm works

very well.

Fig. 4. The exponential window (top) and the corresponding filter
H0(ω) (bottom).
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