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ABSTRACT

There is increased interest in using microphone arrays
in a variety of audio source separation and consequently
speech processing applications. In particular, small arrays
of two to four microphones are presently under focus in
the research literature, especially with regard to real-time
source separation and speech enhancement capability. In
this paper we focus on a real-time implementation of the
delay and attenuation compensation (DAC) algorithm. Al-
though the algorithm is designed for anechoic environments,
its complexity and performance on real data represent a ba-
sis for designing more complex approaches to deal with re-
verberant environments. We highlight real-time issues and
analyze the algorithm’s real-time performance on a database
of more than 1500 mixtures of real voice recordings ranging
from an anechoic to a strongly echoic office with reverber-
ation time of 500 msec.

1. INTRODUCTION

Speech enhancement and audio source separation applica-
tions are fertile ground for blind source separation (BSS)
techniques using small arrays of microphones. Such solu-
tions present an economic potential due to their low cost
and improvement capability over single microphone solu-
tions [1]. BSS approaches have been applied here but with
limited success so far. Challenges highlighted two years
ago in [2] still plague current approaches to blind separa-
tion of audio signals. Paramount among these challenges
are methods for separating audio signals in real (echoic) en-
vironments and real-time performance on such data. These
issues are increasingly being dealt with in the recent litera-
ture [3, 4, 5, 6] and are also dealt with here.

In this paper, we describe a real-time implementation
of an algorithm for separating two audio signals recorded
using a small array of two microphones. The algorithms
relies on an anechoic mixture model, however it is shown
to offer a basis for a fast implementation and offers insights
when dealing with real data. Our main goals herein are to

highlight such critical insights: determine complexity and
performance factors on one side and measure limitations of
the simple anechoic approach in real environments on the
other. We expect that more complex solutions can be build
upon these results.

Although our approach is derived from blind source sep-
aration principles, we use an anechoic propagation model in
order to reduce the complexity of the problem and make it
possible to effectively identify and invert the mixing process
using second order statistics. For sources far away from the
microphone array (in practice this means one meter at least,
compared to the several centimeter distance between sen-
sors), the model is simplified to depend on just a few pa-
rameters: relativedelays of arrival of the wave front and
attenuations at the microphones. The algorithm estimates
the parameters in order tocompensate for their true values,
hence the name of the source separation algorithm is delay
and attenuation compensation (DAC). An early description
and results with DAC have been reported in [7].

Its real-time implementation has presented a number of
challenges. We managed to simplify the estimation prob-
lem and also account for the fact that microphones are nei-
ther identical nor calibrated. The evaluation of our system
is done using the instantaneous SNR measure for over 1500
mixtures of real data collected in both anechoic and echoic
environments. The average instantaneous SNR gain was
13dB for anechoic environments and 3dB in echoic environ-
ments, where the better voice was separated at an average of
6 dB. In all cases processing introduces no artifacts.

The paper is organized as follows. Section 2 defines the
parametric model used in our approach. Section 3 presents
the real time algorithm used in this work. Section 3.3 dis-
cusses implementation challenges. Section 4 presents in-
stantaneous SNR separation results obtained on anechoic
and office data. Section 5 contrasts this work with related
work published recently. Finally, Section 6 concludes and
highlights challenges to be overcome in the near future.
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2. PARAMETRIC MODEL

A general convolutive model for the mixing of two source
signals at two sensors is:

x1(t) = h1 
 s1(t) + h2 
 s2(t)
x2(t) = s1(t) + s2(t)

(1)

wherehi represent unknown relative transfer functions of
the first sensor versus the second and
 represents convolu-
tion. We will use the assumptions that sources are decorre-
lated at all lags.

With a low complexity source separation algorithm in
mind, we first simplify our treatment of the mixing problem
by considering only direct path signal components, rather
than use the general convolutive propagation model above.
The direct-path component from one source arrives at two
closely spaced sensors with a fractional delay between sen-
sors. By fractional delay, we mean that delay between sen-
sors is not generally an integer multiple of the sampling pe-
riod [8]. The delay and attenuation compensation (DAC)
mixing model in the time domain corresponds to the fol-
lowing equations [7]:

x1(t) = s1(t� �1) + c1 � s2(t � �2)
x2(t) = c2 � s1(t + �1) + s2(t + �2)

(2)

where: the delays�i are functions of the directions of arrival
�j . They are defined with respect to the midpoint between
sensors and depend also on the distance between sensorsd

and the speed of soundc: �i = d
2c
cos �i; i = 1; 2. We

denote by� the maximal possible delay between sensors,
� = d

c
. c1, c2 are two positive real numbers that account for

the ratio of attenuations of the paths between sources and
sensors for non-calibrated microphones and for deviations
from the far-field assumption. Equation 2 describes the
mixing matrix for the model in the time domain, in terms of
four parameters,�1,�2, c1, c2.

The DAC solution to source separation in a nondegen-
erate case (number of sensors equals number of sources) is
to invert this mixing matrix. This is obvious to perform in
the frequency domain, and results into the following time
domain solution:

y1(t) = h
 (x1(t+ �2)� c1x2(t � �2)) (3)

y2(t) = h
 (�c2x1(t + �1) + x2(t � �1))

where the convolutive filterh = h(t; �1; �2; c1; c2) accounts
for the division with the determinant of the mixing matrix.

In practice we simplified the criterion above to a suffi-
cient condition: decorrelation between fractionally delayed
sensor recordings:

y1(t) = x1(t + d1)� c1x2(t)
y2(t) = c2x1(t+ d2) + x2(t)

(4)

This is possible due to the freedom to shift signals under the
assumption of decorrelation at any lag.

The DAC algorithm performs source separation by com-
pensating for the true fractional delays and attenuations in
the time domain with values determined by minimizing the
output decorrelation objective:

Ry1y2(� ) = hy1(t); y2(t� � )i = 0; 8� (5)

as a function of two unknown delaysd1 and d2 and un-
known scalar coefficientsc1 and c2. h�; �i is the sampled
cross-correlation between differences of fractionally delayed
measurements. This is equivalent to the following optimiza-
tion problem:

n
d̂1; d̂2; ĉ1; ĉ2

o
= argmin

X
�

jRy1y2(� )j (6)

Note that the objective above relies on the anechoic model.
A generalization of the solution in the reverberant case fol-
lows similar arguments, but introduces additional param-
eters to account for secondary propagation paths [9]. A
classical approach to signal enhancement that implicitly ac-
counts for convolutional effects is to consider all Wiener-
like linear filtering combinations ofX1 = X1(!; t) and
X2 = X2(!; t), the windowed Fourier transforms of the
measurements, of the form:

Yi = Gi1X1 + Gi2X2 (7)

If Yi is an estimate of sourceXi, then the minimum variance
criterion

argminGi1;Gi2
Var(Yi � Si)

results in a paradoxically simple solution whose implemen-
tation necessitates the estimation of complex filtersH1 and
H2 defining the mixing model in 1 of a desired complexity:

Y (!) =
1

H1 �H2

�

�
1 �H2

1 H1

�
�X (8)

In the simple anechoic case, this reduces to our solution (4).
In the case when the variances of the sources can be esti-
mated, the solution can be extended to the degenerate case
of more sources that sensors.

In the rest of the paper we focus on a real-time imple-
mentation of separation for the anechoic solution described
by Equation 6 for reasons listed before. Complexity and
performance characteristics of the simple algorithm particu-
larly on real data from typical environments would influence
decisions for the choice of a model to deal with reverberant
conditions, which still results in an effective real-time im-
plementation.
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3. ON-LINE ALGORITHM

The algorithm used in the present implementation simplifies
the estimation problem by dealing with attenuations in a cal-
ibration phase and evaluating output decorrelation based on
the covariance of the mixtures. Calibration is performed on-
line and also accounts for the fact that either microphones
are not identical or that there is a deviation from the far-field
assumption.

3.1. Online Calibration

Ideally, c1 = c2 = 1 under the far-field assumption, and
microphones have identical gain characteristics. In prac-
tice however, it is hard to impose the latter condition. In
the following we consider anonline calibration criterion for
making gain levels commensurate on the two channels. The
criterion is to equalize variances of the channels on the cur-
rent data frame. Below, assume the upper index represents
the data frame index,m is the frame size, andN is total
number of samples in a finite horizon before reading the
current block of data. We recursively express the equalized
means and variances of the mixtures afterk frames using the
present frame means and variancesxj andV ar(xj), and
then normalize the second channel to bring it to a similar
variance level with the first channel as follows:

x
(k)
j = N

N+m
x
(k�1)
j + m

N+m
xj

V ar(xj)(k) =
N�1

N+m�1
V ar(xj)(k�1) +

m�1
N+m�1

V ar(xj)

x2  

q
V ar(x1)(k)

V ar(x2)(k)
� x2

(9)

The recursive formulae above have direct online implemen-
tation. This allows us to drop the attenuation parameters in
equation (4) and simplify the estimation of delays.

3.2. Delay Estimation

The decorrelation criterion (4) can be further simplified by
expressing the cross-covariance ofy1 andy2, Ry1y2(� ), as:

E[(x1(t+ d1)� x2(t)) (x1(t+ d2 � � )� x2(t� � ))]
= Rx1

(d1 � d2 + � ) �Rx1x2
(d2 � � )�

� Rx1x2
(d1 + � ) + Rx2

(� )

(10)

Delay parameters are estimated by minimizing this expres-
sion. Note that in order to compute subunit delayed versions
of cross correlations, correlations have to be computed for a
number of lagsL.

3.3. Implementation

The real-time application is implemented as a multi-threaded
Windows task on a Pentium III PC. The algorithm inputs

come from the auxiliary input of the standard PC sound
card, while outputs are continuously streamed to the head-
phones. One thread performs the I/O of audio data in real
time. The second thread is responsible with the analysis,
calibration, delay estimation and synthesis of the demixed
signals.

Calibrated data are fed into the delay parameter estima-
tion module, which uses the Amoeba optimization method
[10] to find a locally optimal solution. We can ensure that
the solution is also global by constraining the delay values
based ond. Optimization uses the cost function (10). It
starts with an initial simplex of three pairs of delays. The
initial simplex is centered at the delays of last data block
(d1 + 0:05; d2 + 0:05), (d1 � 0:05; d2 � 0:05), and(d1 +
0:05; d2� 0:05) (in samples). Solutions(d�1; d

�

2) of the op-
timization are smoothed using a learning rate�:

dj = d
k
j = (1 � �) � dk�1j + � � d

�

j ; j = 1; 2: (11)

Delays are sorted in order to insure stability to the per-
mutation problem [7] and are then directly used to generate
the separated outputs.

4. EXPERIMENTAL RESULTS

4.1. Tests and evaluation

The algorithm was extensively evaluated on real data recorded
at 16kHz in an anechoic room and an echoic office environ-
ment. Male, female (TIMIT database voices) and noises
(e.g. printing, vacuuming, abd typing) were played from
a loudspeaker placed at positions which were multiple of
30 degrees. Pairwise mixtures were created for all possible
voice and angle combinations (excluding same voice or an-
gle mixtures). The process resulted in more than one thou-
sand test files. In the case of the office environment, the
measured impulse revealed a reverberation time of about
500 msec. Figure 1 shows the time required for the energy
to decrease by 60dB, which defines room reverberation.

We evaluated the online DAC method by computing SNR
measures for each frame as follows. Denote the energy con-
tribution of sourcej on output channelk byP o

jk. Similarly,
a superscripti denotes contributionat the microphone. Then
a conservative measure of the SNR gain is:

SNR1 = maxf10log10
Po

11

Po

21
; 10log10

Po

12

Po

22
g

�maxf10log10
P i

11

P i

21

; 10log10
P i

12

P i

22

g

SNR2 = �minf10log10
Po

11

Po

21
; 10log10

Po

12

Po

22
g

+minf10log10
P i

11

P i

21

; 10log10
P i

12

P i

22

g

The SNR results averaged the contribution of each frame
except the first half a second of data, discarded to let the
process converge. The other parameters used in the results
below wereL, m, � = 0:5, P = 0.

3



−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−70

−60

−50

−40

−30

−20

−10

0

dB

Time(sec)

Fig. 1. Impulse response for echoic data set.

m=512 m=1024. m=4096

L=8 990 ms/s 500 ms/s 200 ms/s
L=10 1050 ms/s 600 ms/s 205 ms/s
L=20 1500 ms/s 750 ms/s 260 ms/s

Table 1. Real-time performance on a Pentium III 600 Mhz
for various values ofL (number of lags) and window size.

4.2. Performance

A first important characteristic of the DAC approach in gen-
eral and the present real-time implementation is the artifact-
free nature of the outputs. Table 4.2 presents performance
measurements with this implementation. Overall, form =
4096 andL = 8 the algorithm used 200msec CPU time
for every second of real-time. The average instantaneous
SNR gain varied somehow with angle, and achieved 10-
14dB in anechoic environment and 3dB in echoic environ-
ments, where the better voice was separated at an average
of 6dB. The performance was confirmed by audibility tests.

Figures 2,3 and 4,5 present the average of SNR values
obtained on a frame basis during online processing for the
anechoic and echoic data respectively.

The delay estimation algorithm converged close to the
true delay values provided voice was present after process-
ing only about 150-200 milliseconds of anechoic data (or
about 2500 samples at 16kHz sampling frequency). Figures
6 and 7 exemplify the convergence and variation in the de-
lay estimates and the instantaneous SNR as the online algo-
rithm progresses as a function of the number of data frames
processed.

5. RELATED WORK

[11] introduced a delay approach similar to the one used
here. Their model is justified on logical grounds rather than

Fig. 2. SNR separation results as a function of the difference
in angles of arrival for anechoic data set.

Fig. 3. SNR separation results as a function of the higher
angle of one of the two sources for anechoic data set.

Fig. 4. SNR separation results as a function of the difference
in angles of arrival for echoic data set.
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Fig. 5. SNR separation results as a function of the higher
angle of one of the two sources for echoic data set.

Fig. 6. Evolution of absolute and smoothed delay param-
eters (in samples) as a function of the number of frames
processed for an anechoic example.

Fig. 7. Evolution of the instantaneous SNR for the example
in Figure 6.

being derived from first principles. One difference with
this work in the compensation for attenuations due to dif-
ferences in the calibration of the microphones. In [11], this
is taken care by a deconvolution stage using filters of of
about a thousand taps. This is expensive computationally
and may be hard to implement in real-time at the present
computational load. Another difference, the direct path de-
lay estimation is solved by a double filtering, which may
be less efficient computationally. The work has a good dis-
cussion about the role of non-stationarity in the sources for
achieving separation. This is an important observation for
the way computation is to be decomposed for an effective
implementation.

[12] uses a mixing model similar to that in equation 2.
However, the decorrelation criterion it uses is computed for
integer delays, therefore the technique assumes a large dis-
tance between the microphones. Under such conditions the
assumption about sources being far-field may not hold well,
and the model may not be a good approximation. Therefore,
[12] further develops the model to include higher order tap
coefficients. The overall model in that case suggests being
constrained to a particular physical situation. No extensive
results were presented to prove the contrary.

Another set of related spatial filtering techniques are an-
tenna array processing techniques [1, 13]. Such techniques
assume as given information about the microphone array
layout. The DAC separation approach does not necessarily
make this assumption, however weaker information such as
the distance or a bound on the distance between sensors can
help during the parameter estimation phase. Of particular
interest for comparison are robust beamforming techniques
[14]. Adaptive beamformers assume a known direction of
arrival, while the present source separation technique esti-
mates them. Separation is then performed in a manner sim-
ilar to the way a Griffiths-Jim beamformer’s blocking ma-
trix obtains estimates of the noise by exploiting the addi-
tional channels available in a microphone array. Directional
notches are placed in the direction of sources of interfer-
ence.

Improvements from the beamforming literature, as dis-
cussed in [14], could be applied as well in order to de-
convolve source estimates. Recent source separation ap-
proaches attempt to combine independent component anal-
ysis (ICA) or blind source separation (BSS) and elements
of a beamformer in order to improve the performance of
ICA/BSS techniques (see for example [4]).

6. CONCLUSIONS

This paper presented a real-time implementation of delay
and attenuation based source separation model. The im-
plementation has been tested on more than one thousand
mixtures of voices recorded in real anechoic and echoic en-
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vironments. The performance of the system is good on ane-
choic data. Although the algorithm is designed for anechoic
environments, its complexity and performance on real data
represent a basis for designing more complex approaches,
as suggested in Section 2 to deal with reverberant environ-
ments.

One limitation of the approach is that it can only deal
with a number of sources equal to the number of micro-
phones. Recent work exploiting both time and frequency
distributions can also deal with more sources than the num-
ber of sensors [15]. The filtering approach mentioned here
applies more generally but has the drawback of requiring
source variances.

Future work will address extensions of this work for
echoic environments, along the lines of the general solution
presented in Section 2. There is evidence that low order pa-
rameterizations of the model can buy slightly improved per-
formance [9], but how this can be effectively implemented
is still open. More complex parameterization, on the other
side, appear ineffective because even slight deviations from
true parameters results in significant performance degrada-
tion.
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