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Abstract

In this paper we construct a theory of codistributions with singularities
that is the dual of the theory of distributions with singularities. We
present the Freeman’s construction, our punctual results and a new proof
of a Freeman’s theorem about integrability and normal form of finitely-
generated module of germs of smooth 1-forms.

1 Introduction

Let M be a C" finite-dimensional, connected and paracompact manifold (r = oo
or w, by the case); let F(M) denote the ring of C" real-valued functions defined
on M, let V"(M) be the F(M)-module of C" vector fields and A*(M) be the
F(M)-module of C" k-forms on M.

By a Pfaffian form we shall mean a C" 1-form. We call C"-(Pfaffian) dif-
ferential system on M a F(M )-module of C" 1-forms. We shall denote it by P.
We call codistribution on M, the mapping: P: 2 € M — P(z) C Ty M where
P(z) is a vector subspace of the cotangent space to M at z. The dimension (or
rank) of the codistribution is dim P(z) (it is punctually defined).

Let S be a set of C" 1-forms everywhere defined. The codistribution gener-
ated by the set § is:

P(z) = spang{wle, w € S}Vz e M.



We call " -codistribution on M, a codistribution P generated by a set S of C”
1-forms. The codistribution P is called integrable in Cartan sense at zo € M if

there exists a submanifold NV, , <M (7 being the canonical inclusion) passing
through g, such that:

TeNe oy = (P(:c))l , forallz € N, 4,
(more precisely, we have: ¢*,(P(z)) = 0 and dim P(z) + dimN; z, = dim M

'
for all z € NV, ;,, where zfm 1s the standard pull-back of i in ). N 4, is called
an integral manifold of the codistribution and we say also that P is punctually
integrable at zo. From definition it follows directly that P is also punctually
integrable at every q € N, ., .

The codistribution is called locally integrable if for each point in M there is
an integral manifold of the codistribution (namely if it is punctually integrable
at every point of M).

The differential system P is called integrable in Pfaff sense if there exists a
finite set of generators of exact forms (i.e. if there exist f; : M - R, 1 <{ < p,
such that: P = span}—(M){dfl, o dfp} ).

Let us consider the codistribution P and a point g € M. If there exists a
neighborhood of zy where the codistribution has constant dimension then the
point zg is called an ordinary point (or a regular point), otherwise it is called a
singular point. If the codistribution has singular points then we say that it 1s a
codistribution with singularities.

Our goal 1s to find criteria of punctual and local integrability of a codistribu-
tion generated by a F(M)-module of C" 1-forms (possibly having singularities)
and a complete characterization of a special class of finitely-generated differen-
tial systems. This paper actually aims to etablish a dual version of a previous
study [Ba92]

In §2 we give a few examples about both types of integrability.

In §3 we present the Freeman’s construction and our split of codistribution.
We define also the concept of involutivity of a differential system showing the
connection with the involutivity of some module of smooth vector fields.

In §4 we prove our results about punctual integrability for smooth and ana-
lytic codistributions.

In §5 we give a new proof of the normal form theorem of a finitely-generated,
involutive, differential system. The idea of this proof can be used to find a
normal form of systems of k-forms.

Since our study is punctually or locally we point out that here the integral
manifolds are regular embedding submanifolds.

2 Preliminary definitions and examples

Let P be a C" differential system and P denote the generated codistribution.
The following two examples prove the independence between the two types of



integrability:

EXAMPLE 2.1 P s integrable in Pfaff sense, but P 1s not integrable in Car-
tan sense.
Let fi=z+yand fo =sinz+vy, and P = span}—(M){dfl, df2}, M = R2.

To find wintegral manifold we have the system:

wi=df1 =0 z+y =
{w2:df2:0 <:>{ sine+y = Cs

where C1,Cy € R are real constants. Since the system has a unique solution:
z = 2(C1,C2) & y = y(C1,C2) for every pair (C1,C3) it follows that at the

origin the codistribution is not punctually integrable. &

EXAMPLE 2.2 ([Fr84|) P is integrable in Cartan sense but P is not inte-
grable in Pfaff sense.

Let P = span}—(M){w = dz — zzdy}, M = R®. We have: dw = —zdz A
dy—xzdzAdy and dw Aw = ade AdyAdz Z 0. It follows that P s not integrable
in Pfaff sense. But: Ng = {(0,v,2);y,2 € R} ts an integral manifold of P,
passing through the origin. <

Remark This example is the dual of Example 2.7 (see [Ba92] or [Fr78]) that
shows that it 1s not necessary to have involutive module of smooth vector field
for obtain punctual integrability.

Let P = span}—(M){wl, -+ +,wg}t be a differential system. By searching a

dual definition of involutivity for differential systems we can try the following
conditions that we call Frobenius’ conditions:

q
(F1) Yw EP,EIWl,...,WqEAl(M) | dw:Zm/\wi
i=1

(F2) Vw eP, dw Awi A...Awg =10

If P is a codistribution without singularities (a codistribution with constant
rank) then we can choose for the set of generators of P exactly ¢ = dim P
elements and an algebraic result says that F; and F; are equivalent conditions.
In this case (of codistribution with constant rank) the problem of integrability
1s solved by the classical Frobenius theorem:

THEOREM 2.3 If P is a C" codistribution without singularities then the fol-
lowing conditions are equivalent:

(a) P is locally integrable (that means in Cartan sense at every point); (b) P
1s integrable in Pfaff sense; (c) F1 or Fs (because they are equivalent). D



In the general case of the codistributions with singularities, the following impli-
cations are obvious:

PROPOSITION 2.4 P s integrable in Pfaff sense — F, — F,. O

A converse of this result is given in Malgrange’s papers (see [Ma76, Ma77])
where are imposed supplementary conditions about the codimension of the set
of singularities.

For obtain integrability in Cartan sense, we will start by constructing a
few objects associated to the differential system and then we can impose the
dual condition of involutivity (to transfer results from our previous paper about
distributions to the codistributions).

3 Construction of objects

Let P be a F(M)-module of C" 1-forms and let P denote the associated distri-
bution. Let zg € M be a fixed point. Let n = dim M and k = n —dim P(z¢) =
n—dimP|z,.

A vector field X € V" (M) will be called an elementary vector field if there
exist n — k Pfaff forms in P : wry1,...,w, € P such that:

1) Wkt1lzoy - - -» Wnlz, are independent;
Dwj(X)=0,j=k+1,n
where w;(X) = ixw; = X |w; and denotes the inner product.

We denote by TP the F(M)-module generated by the elementary vector
fields and we call it the tangent module of P at zg. By convention, if £ = n then
TP =V"(M).

Remark The set of elementary vector fields is not closed under the addition
operation (that means that there ewist two elementary vector fields (X1, X3)
such that X1 + X5 is not an elementary vector field).

We associate an ideal of functions to the differential system:

P ¥ {w(z);w € P, X € TP}

It is an ideal in the ring F(M) of all C" real-valued functions.
We call the annthilator of P the F(M)-submodule of V(M) :

PLE X € VI(M)|w(X) =0, Yw € P}
We introduce now the derived system of P:
Dp Epy span}—(M){LXw;X €TP and w € P}

where Lxw denotes the Lie derivative of the Pfaff form w with respect to the

vector field X. Inductively we put: D*+1p = D(D*P), where D°P = P and
by convention: D®°P = .5, D*P.



We choose a neighborhood ¥/ of z and a set of generators (in this neighbor-
hood) of the module of the following form:

95 1<i<k 0
B gel
B = w? 1<i<k I & (1)
E+1<j<n

where I is an index set and gé,wé are the components of the Pfaff forms that
span P and ordered according to the row (gé(:co) = 0). From now on we will
agree implicitly that @ € i/ and every object is restricted on U.

The connections among the previous notions are given by the following
proposition that we give without proof (for a proof see [Fr84]).

PROPOSITION 3.1 a) The module TP is generated by the vector fields:

0 ., 0
fo T 2 “igai
J=k+1

%36 = 99 57
where 1 <t <kk+1<j<nandfel

b) The ideal IP is generated by {g;j} Ip = (g;j)

c) Pt CcTP

d) Let P and J denote two differential systems such that Plyy, = J |z, Then:
P-CJtCTJ CTP.

e) If Ply, # {0} (i.e. k < n) then:

DP =P+ d(IP) + irp(dP)

where: d(IP) = {df|f € IP} and irp(dP) = {ixdw|X € TP,w € P}
(ixdw = X |dw denotes the inner product).
f) D(D*P)=D*P O

a; =

The previous construction is entirely due to Freeman. We complete this by
introducing two structures:

k n
F_1y et spang {wjlw; = Zw;d:ci—l—d:cj Pkl <j<n}=A{ Z ajw; ; a; € R}
1=1 J=k+1
d f k . k .
HE{wePly, w= Zwld:ci} =Hu = span}-(u){z_qzad:cﬂﬁ el}
i=1 i=1

From the dimensional relation: dim F(_1)|s, = dim P(zo) results #|;, = {0}.
It is very easy to prove the following lemma:



LEMMA 3.2 The codistribution generated by H & F(_1) coincides locally
with P. That means: P(z) = M|z ® F(_1)|z, for all z €U (© denotes the
direct sum). O

We have obtained two algebraic structures which generates locally the codistri-
bution: F(_yy, which is a (n — k)-dimensional R-vector subspace and , which
is a F(U)-module. We say that (F(_1),H) is a split of codistribution generated
by P.

We define:

e 0 =~ ;0 . .
L(+1) d:fspanR{aAai:@_ Z wl'—'yZ:]-y ,]:k+1,n}

which is a k-dimensional R-vector subspace orthogonal to F(_1) (with respect
to the inner product). Obvious: L(11)lz, = TP|z,-
We put:

Ne 2o def {exp( Zalvl z |Z || < €}

for an £ > 0 small enough, and denote by:
gd:efspanf(u){vj|v] gﬁa | 1<i<kk+1<jij<npBel}

a F(U)-module. We observe that (L(41),G) is a split of distribution generated
by TP (see [Ba92]).

The following lemma results directly from definition of integrability and
construction of the tangent module (see also [Fr84]):

LEMMA 3.3 If P|s, # {0} then the codistribution P is integrable in Car-
tan sense at zo if and only if the distribution generated by TP 1is punctually
integrable at xg. a

We will apply all results about integrability of distributions from our previous
paper to the module TP.

Now we search a condition equivalent to involutivity of distributions wich
enables us to obtain a reciproc of Theorem 4.4 from [Ba92]. Example 2.1 shows
that the conditions F; or F; are not sufficient for integrability in Cartan sense.
We say that P is involutive if:

(In) Dp =P

We remark that in the case of codistributions without singularities all the three
conditions (Fy, Fy and In) are equivalent. The meaning of the definition is
given by the following result:

PROPOSITION 3.4 IfP is wnvolutive then TP is involutive.



Proof
We use the form gwen by Proposition 3.1.
Let wg = Zle géd:ci €P. From Lywg = Zle(ngé)d:ci € P we conclude
that: [v,gza B%J—] e TP, forallve TP.
We have also:

(La,wj)(as) = ai(wj(as)) — wj([ai, as]) = wj([as, ai])
T/

(Laws)(as) = (O fijawa+ 3 Fispwp)(as) = > fipgp

Bel gel
where 1 < 1,5 < k. Then:

n n

0 0
las,a;] = Z wj([asyai])% = Z Zfijﬁgza% eTpP

j=k+1 j=k+18€l
Q.E.D. O

Remarks
1. The reciproc of Proposition 3.4 is not true. For example let P =
span}—(M){yd:c} in R?. Since TP = V"(R?) we conclude that TP is invo-

lutive but Lai(yd:c) =dz & P. So P is not involutive. &
2. We have also another example: M = R* P = span}—(M){:cad:cl +
z*dzs, dzs, dzs} and zo = (0,0,0,0) (the origin). We obtain:

_ ERE R R R R S
TP_span}—(M){a:cl,a:cT:c 8:03’50 8:04’50 8:03’50 81:4}

which is involutive. But L: o (z®dz; + z*dzs) = 23dz; ¢ P.
Ere

4 Punctual results

We remark that (L(41),G) is a split of the distribution generated by TP (see [Ba92]).
We obtain very easy the following result that is dual of Proposition 4.1 from

[Ba92]:

PROPOSITION 4.1 The codistribution P 1s integrable in Cartan sense at zg
if and only if:
1) F(—1)|z = (Tz/\/’a.zu)ly V& € Na.zu
2) H|n. ., =0 (that means H|, =0 for all z € N, 5,).
In this case N, 5, is an integral manifold of the codistribution passing through
Q. (]



Remark Equivalent to 2 is the condition: 2') IP|y, . = 0.

£.@g

Let u,v € L(41) and w € F(_1). We have:

dw(u,v) = uw(w(v)) —v(w(w)) —w([v,v]) = —w([y, v])
and:
(Luw)(v) = u(w(v)) — w([u,v]) = —w([u,v])
So, if we require that dw(u,v)|; = 0 or (Lyw)(v)|; = 0 for all w € F(_;y and

v € L(41), we obtain [u,v]|; = 0. Then the dual version of Corollary 4.3 (from
[Ba92]) and also a corollary of Proposition 4.1 is the following:

COROLLARY 4.2 The codistribution P 1s integrable in Cartan sense at zg
if and only if:

1) dw(w, v)|exptv.zo = 0, for allv € Ly1) , w € F_1) and [t| < ¢, € depending
on v.

or equivalent:

I’) Lywlexptv.z, € Plexptv.zg), for all v € Lij1y,w € F_1y and [t| < ¢, ¢
depending on v.

and

2) H|n.., =0. O

THEOREM 4.3 Let P be an analytic F(M)-module of 1-forms and let P
denote the associated codistributions. Then P 1is integrable in Cartan sense at
zg if and only if D®°P|,, = P(zq).

Proof
“= 7 Let ./\790[J denote an wntegral manifold. We shall prove by induction that
D*P|, = P(z) for all z € Ny,. Then we can conclude that D®P|,, = P(z).
For k = 0 is obvious. We have D*P|, = P(z) for all z € Ny, and using
Lemma 3.3 and Nagano’s theorem (see [Na66]) we obtain:
TD*P|, = Tm./\TmD, Vz € ./\7900. Then: Lxwl, € (TENED)J‘ = P(z), for all
X € TD*P, w € D*P and © € N,,. So: D**t'P|, = P(z), for all z € N,.

“<«= 7 It 1s sufficiently to consider the following sequence:
Q' =P, Q"' =QF + Span}—(M){LXw, X €Ly andw € Q*}

Since Q¥ C D*P we conclude Q% |, = P(z0) = Q°|s,. We consider the split
(F(~1), ) of codistribution as in §3.

a) Letw € 1, w = Zle g'dx; ; ¢° € I'P. By a simple checking:

Lyxw = Zle(LXgi)d:ci, Vo € L(y1). Since @° |z, = P(zo) we obtain

=0 & IP|y.. =0.

£.@g

Lale, = 0 and so: ¢y, .
b) Let w € F(_1y and u,v € L(y1). We have:
Lyw|exp tv.wo(¥) = dw(v, u)|exptv.oo = 0 (using Taylor series).

Using Corollary 4.2 we obtain the integrability. @Q.E.D. O



We can give a criterion of integrability in the smooth case (r = oo) dual of

Theorem 4.6 ([Ba92]):

THEOREM 4.4 Let P be a C*-differential system and let P denote the codis-
tribution generated. Let zg € M be a fized point so that P(zq) # {0}. Let
k = codimP(zg) = n — dim P(zg). Then P is integrable in Cartan sense at g

if and only of there exist an € > 0, 1-forms wi41, . ..,wn € P and a neighborhood
U of zg that satisfy the following conditions:
1) In the point zq: Wkt1lzos - - -» Wnlee sPan P(zg).

2) For every smooth vector field a € TP there exist smooth functions
N (—pia, pa) — R such that for all t € (—pq, pa) we have:

n
Lawi|expta.z0: Z )\Z'(t)wj|expta.zu (2)
j=k+1

where: g et sup{v|v < ¢ and expta.zqg € U for all |t| < v}

Proof

‘= " Let P be integrable in Cartan sense at zg. We choose {w;}, € and U

as in §3.
1) It 1s checked by construction of the 1-forms.
2) Let a € TP. Thena = 2?21 fja; + b where a; are as in the definition of
Liy1y, b€ G and f; € F(U). We put: z; = expta.zo. Since by, = 0 from
Corollary 4.2 we obtain:

Lawile, = L(Z:f:lfjaj+b)wi|““:LZ:’c fjajwi|m‘

=1

k k n
Y i Laywile,+ > wilag) dfla, = D M()wjlo
j=1 ~—~— o j=k+1

€P(z¢) =0
“= 7 First we see that the relation (2) is invariant under the change of the
set {w;} (we have a result as Lemma 4.5 from [Ba92)). We consider for {w;}
the same 1-forms as in §3. We choose a € L(11) and we obtain 1’ from
Corollary (4.2). We have to prove that H|exptas, = 0. Let a = v + b where
v E Fy andb:gﬁa—‘;—;ﬁEI and k+ 1 <j <n. We have:

(Laws) )l =0 = (Lowrs) ()l 5 ([0, ),
=0
and (Law;)(b)]z, = La(w;)(5))|z, — w;j([v,b])]s,. With relation
(2) 1 (Law;)(®)]z, = A5(t) - gplz.-

So: Laggle, = )\g(t) - g8la,. Since gg(zo) =0, from the theorem of unicity of
the solution of the Cauch problem we obtain: gg(x.) = 0. But
zy = expt(v +b).zo = exptv.zo. So: gg|n. ., = 0. Q.E.D. O



5 Local results

Now we give a new proof of the main theorem of [Fr84].

THEOREM 5.1 Let P be a finitely-generated C*° F,,-module of germs of 1-
forms at zg and n — k = dimP|y, (Fz, denotes the ring of germs of smooth
real-valued functions at ©o). Then P is involutive if and only if there exist a

coordinate system (y*,...,y") and a finite number of germs of functions gg(8 €
I and I a finite set of indices) depending only on the last n — k coordinates
(96 = 95(¥* T, ..., y™)) and vanishing at zq, such that:

P = span}—mo{d:ckﬂ, .o, Az, gpde, ..., ggde, | €T}

Proof
Y= 7 It is very easy to prove in this sense.
U:> ”

1. From Proposition 3.4 we obtain that T'P is an involutive, finitely-generated
module of germs of smooth vector fields .

2. We apply Theorem 5.4 from [Ba92] and obtain a system of generators for
TP of the form:

o 9 9 9
ayl ) ) ayk 9B ayk_l_l ) 9B ayn
where gg = gﬁ(yk‘l'l,'. L Y"); gs(zo) =0; Bel.
3. Letw; = 2?21 w]dy; + dy; as in §3. Since:
L =L 9 y4
yi g2 Wi = v 2 Wi +wi(a—yj) Y
———

=w
1

we conclude that wfdyj €P, foralll < j<k. Thenuw;— 2?21 wgdyj eP.
That means dy; € P; 1 <1< k.

4. For obtain the generators gg o

8y*
of the form: Zle ggdyi where gg = gé(yk‘l'l, oo, y™). Then:

of TP we must have also generators of P

2 2
PN ir i dus e D :
Lyj%(z;gﬁdyz) = ZgﬁLyJ%dyl =gpdy; €P; 1< <k
1=

=1
So: ggdy; € P and the proof is complete. Q.E.D. O
Remarks 1) An integral manifold of P that passes through zg is given by:
Nyy={ye Mly*t' = g5, .. " =43}

2) We see also that P is integrable in Pfaff sense around zg. A set of generators
of exact forms is given by:

{d(ylgﬁ)x R d(ykgﬁ), dyk+11 o dyn, B E I}

10



COROLLARY 5.2 ([Fr84]) If D*®P is finitely-generated then it is integrable
in Cartan sense at ©g and Pfaff sense around zq.

COROLLARY 5.3 ([Fr84]) If D°P is finitely-generated then P is integrable
in Cartan sense at zg if and only if: D®°P|y, = P(a0).

6 Discussion

We want to point out one type of result arising from our studies. Let Ob denote
a C"-module of vector fields or 1-forms and let zy be a fixed point. To this
object we associate a module of smooth vector fields: T(Ob. We carry on the
iterative sequence:

OpF T & opk 4 span}—(M)LTOb(’)bk, For k>0, O = Ob

Jo def ke oo Dot ke
(LTObOb = {LXy|X eTOb, Y € Ob }and O™ = UkZOOb )

A local result is: If Ob is finitely generated and @b = Ob° = Ob then
there exist a system of coordinates such that (b has a normal form and the
(co)distribution is punctually integrable at zg.

A punctual result is: If Ob% is finitely generated (that is happened, for
example, in the analytic case) then the (co)distribution associated is punctually
integrable at zg if and only if: Ob% |, = Ob|,,.

We see that in the case of distributions T'"Ob = Ob and in the case of codis-
tributions TOb is exactly the tangent module.

This technique may be applied also at the systems of smooth k-forms.
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