
CODISTRIBUTIONS WITH

SINGULARITIES: Punctual

and Local Study

R. BALAN

Polytechnic Institute of Bucharest

Department of Automatic Control and Computers

313, Splaiul Independentei, Bucharest , Romania

14 July 1992

Abstract

In this paper we construct a theory of codistributions with singularities

that is the dual of the theory of distributions with singularities. We

present the Freeman's construction, our punctual results and a new proof

of a Freeman's theorem about integrability and normal form of �nitely-

generated module of germs of smooth 1-forms.

1 Introduction

Let M be a Cr �nite-dimensional, connected and paracompact manifold (r =1
or !, by the case); let F(M ) denote the ring of Cr real-valued functions de�ned

on M , let V r(M ) be the F(M )-module of Cr vector �elds and �k(M ) be the

F(M )-module of Cr k-forms on M .

By a Pfa�an form we shall mean a Cr 1-form. We call Cr-(Pfa�an) dif-

ferential system on M a F(M )-module of Cr 1-forms. We shall denote it by P.
We call codistribution on M , the mapping: P : x 2M �! P (x) � T �

x
M where

P (x) is a vector subspace of the cotangent space to M at x. The dimension (or

rank) of the codistribution is dimP (x) (it is punctually de�ned).

Let S be a set of Cr 1-forms everywhere de�ned. The codistribution gener-

ated by the set S is:

P (x) = spanRf!jx; ! 2 Sg 8 x 2M:
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We call Cr-codistribution on M , a codistribution P generated by a set S of Cr

1-forms. The codistribution P is called integrable in Cartan sense at x0 2M if

there exists a submanifoldN":x0

i

,!M (i being the canonical inclusion) passing

through x0, such that:

TxN":x0
= (P (x))? ; for all x 2 N":x0

(more precisely, we have: i�
;x
(P (x)) = 0 and dimP (x) + dimN":x0

= dimM

for all x 2 N":x0
, where i�

;x
is the standard pull-back of i in x). N":x0

is called

an integral manifold of the codistribution and we say also that P is punctually

integrable at x0. From de�nition it follows directly that P is also punctually

integrable at every q 2 N":x0
.

The codistribution is called locally integrable if for each point in M there is

an integral manifold of the codistribution (namely if it is punctually integrable

at every point of M ).

The di�erential system P is called integrable in Pfa� sense if there exists a

�nite set of generators of exact forms (i.e. if there exist fi :M ! R; 1 � i � p,

such that: P = spanF(M )fdf1; : : : ; dfpg ).

Let us consider the codistribution P and a point x0 2 M . If there exists a

neighborhood of x0 where the codistribution has constant dimension then the

point x0 is called an ordinary point (or a regular point), otherwise it is called a

singular point. If the codistribution has singular points then we say that it is a

codistribution with singularities.

Our goal is to �nd criteria of punctual and local integrability of a codistribu-

tion generated by a F(M )-module of Cr 1-forms (possibly having singularities)

and a complete characterization of a special class of �nitely-generated di�eren-

tial systems. This paper actually aims to etablish a dual version of a previous

study [Ba92]

In x2 we give a few examples about both types of integrability.

In x3 we present the Freeman's construction and our split of codistribution.

We de�ne also the concept of involutivity of a di�erential system showing the

connection with the involutivity of some module of smooth vector �elds.

In x4 we prove our results about punctual integrability for smooth and ana-

lytic codistributions.

In x5 we give a new proof of the normal form theorem of a �nitely-generated,

involutive, di�erential system. The idea of this proof can be used to �nd a

normal form of systems of k-forms.

Since our study is punctually or locally we point out that here the integral

manifolds are regular embedding submanifolds.

2 Preliminary de�nitions and examples

Let P be a Cr di�erential system and P denote the generated codistribution.

The following two examples prove the independence between the two types of
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integrability:

EXAMPLE 2.1 P is integrable in Pfa� sense, but P is not integrable in Car-

tan sense.

Let f1 = x+ y and f2 = sinx+ y, and P = spanF(M )fdf1; df2g, M = R2.

To �nd integral manifold we have the system:

�
!1 = df1 = 0

!2 = df2 = 0
()

�
x+ y = C1

sinx+ y = C2

where C1; C2 2 R are real constants. Since the system has a unique solution:

x = x(C1; C2) & y = y(C1; C2) for every pair (C1; C2) it follows that at the

origin the codistribution is not punctually integrable. 3

EXAMPLE 2.2 ([Fr84]) P is integrable in Cartan sense but P is not inte-

grable in Pfa� sense.

Let P = spanF(M )f! = dx � xzdyg; M = R3. We have: d! = �zdx ^

dy�xdz^dy and d!^! = xdx^dy^dz 6� 0. It follows that P is not integrable

in Pfa� sense. But: N0 = f(0; y; z); y; z 2 Rg is an integral manifold of P ,

passing through the origin. 3

Remark This example is the dual of Example 2.7 (see [Ba92] or [Fr78]) that

shows that it is not necessary to have involutive module of smooth vector �eld

for obtain punctual integrability.

Let P = spanF(M )f!1; � � � ; !qg be a di�erential system. By searching a

dual de�nition of involutivity for di�erential systems we can try the following

conditions that we call Frobenius' conditions:

(F1) 8! 2 P; 9�1; : : : ; �q 2 �1(M ) j d! =

qX
i=1

�i ^ !i

(F2) 8! 2 P; d! ^ !1 ^ : : :^ !q = 0

If P is a codistribution without singularities (a codistribution with constant

rank) then we can choose for the set of generators of P exactly q = dimP

elements and an algebraic result says that F1 and F2 are equivalent conditions.

In this case (of codistribution with constant rank) the problem of integrability

is solved by the classical Frobenius theorem:

THEOREM 2.3 If P is a Cr codistribution without singularities then the fol-

lowing conditions are equivalent:

(a) P is locally integrable (that means in Cartan sense at every point); (b) P
is integrable in Pfa� sense; (c) F1 or F2 (because they are equivalent). 2
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In the general case of the codistributions with singularities, the following impli-

cations are obvious:

PROPOSITION 2.4 P is integrable in Pfa� sense =) F1 =) F2. 2

A converse of this result is given in Malgrange's papers (see [Ma76; Ma77])

where are imposed supplementary conditions about the codimension of the set

of singularities.

For obtain integrability in Cartan sense, we will start by constructing a

few objects associated to the di�erential system and then we can impose the

dual condition of involutivity (to transfer results from our previous paper about

distributions to the codistributions).

3 Construction of objects

Let P be a F(M )-module of Cr 1-forms and let P denote the associated distri-

bution. Let x0 2M be a �xed point. Let n = dimM and k = n� dimP (x0) =

n� dimPjx0 .
A vector �eld X 2 V r(M ) will be called an elementary vector �eld if there

exist n� k Pfa� forms in P : !k+1; : : : ; !n 2 P such that:

1) !k+1jx0; : : : ; !njx0 are independent;
2) !j(X) = 0, j = k + 1; n

where !j(X) = iX!j = Xc!j and denotes the inner product.

We denote by TP the F(M )-module generated by the elementary vector

�elds and we call it the tangent module of P at x0. By convention, if k = n then

TP = V r(M ).

Remark The set of elementary vector �elds is not closed under the addition

operation (that means that there exist two elementary vector �elds (X1; X2)

such that X1 +X2 is not an elementary vector �eld).

We associate an ideal of functions to the di�erential system:

IP
def
= f!(x);! 2 P; X 2 TPg

It is an ideal in the ring F(M ) of all Cr real-valued functions.

We call the annihilator of P the F(M )-submodule of V r(M ) :

P?
def
= fX 2 V r(M )j!(X) = 0; 8! 2 Pg

We introduce now the derived system of P:

DP
def
= P + spanF(M )fLX!;X 2 TP and ! 2 Pg

where LX! denotes the Lie derivative of the Pfa� form ! with respect to the

vector �eld X. Inductively we put: Dk+1P
def
= D(DkP), where D0P = P and

by convention: D1P =
S

k�0D
kP.
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We choose a neighborhood U of x0 and a set of generators (in this neighbor-

hood) of the module of the following form:

B =

0
BB@

gi
�

1 � i � k

� 2 I

0

!i
j

1 � i � k

k + 1 � j � n

In�k

1
CCA (1)

where I is an index set and gi
�
; !i

j
are the components of the Pfa� forms that

span P and ordered according to the row (gi
�
(x0) = 0). From now on we will

agree implicitly that x 2 U and every object is restricted on U .
The connections among the previous notions are given by the following

proposition that we give without proof (for a proof see [Fr84]).

PROPOSITION 3.1 a) The module TP is generated by the vector �elds:

ai =
@

@xi
�

nX
j=k+1

!i
j

@

@xj
;

aij� = gi
�

@

@xj

where 1 � i � k k + 1 � j � n and � 2 I

b) The ideal IP is generated by fgi
�
g: IP = (gi

�
):

c) P? � TP
d) Let P and J denote two di�erential systems such that Pjx0 = J jx0 : Then:
P? � J ? � TJ � TP:
e) If Pjx0 6= f0g (i.e. k < n) then:

DP = P + d(IP) + iTP(dP)

where: d(IP) = fdf jf 2 IPg and iTP(dP) = fiXd!jX 2 TP; ! 2 Pg
(iXd! = Xcd! denotes the inner product).

f) D(D1P) = D1P 2

The previous construction is entirely due to Freeman. We complete this by

introducing two structures:

F(�1)
def
= spanRf!jj!j =

kX
i=1

!i
j
dxi+dxj ; k+1 � j � ng = f

nX
j=k+1

aj!j ; aj 2 Rg

H
def
= f! 2 PjU ; ! =

kX
i=1

!idxig = HjU = spanF(U)f

kX
i=1

gi
�
dxij� 2 Ig

From the dimensional relation: dimF(�1)jx0 = dimP (x0) results Hjx0 = f0g:

It is very easy to prove the following lemma:
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LEMMA 3.2 The codistribution generated by H� F(�1) coincides locally

with P . That means: P (x) = Hjx � F(�1)jx, for all x 2 U (� denotes the

direct sum). 2

We have obtained two algebraic structures which generates locally the codistri-

bution: F(�1), which is a (n� k)-dimensional R-vector subspace and H, which
is a F(U)-module. We say that (F(�1);H) is a split of codistribution generated

by P.
We de�ne:

L(+1)
def
= spanRfaijai =

@

@xi
�

nX
j=k+1

!i
j

@

@xj
; i = 1; k; j = k + 1; ng

which is a k-dimensional R-vector subspace orthogonal to F(�1) (with respect

to the inner product). Obvious: L(+1)jx0 = TPjx0 :
We put:

N":x0

def
= fexp(

kX
i=1

�ivi:x0)j

kX
i=1

j�ij < "g

for an " > 0 small enough, and denote by:

G
def
= spanF(U)fvjjvj = gi

�

@

@xj
j 1 � i � k; k + 1 � j � n; � 2 Ig

a F(U)-module. We observe that (L(+1);G) is a split of distribution generated

by TP (see [Ba92]).

The following lemma results directly from de�nition of integrability and

construction of the tangent module (see also [Fr84]):

LEMMA 3.3 If Pjx0 6= f0g then the codistribution P is integrable in Car-

tan sense at x0 if and only if the distribution generated by TP is punctually

integrable at x0. 2

We will apply all results about integrability of distributions from our previous

paper to the module TP.
Now we search a condition equivalent to involutivity of distributions wich

enables us to obtain a reciproc of Theorem 4:4 from [Ba92]. Example 2:1 shows

that the conditions F1 or F2 are not su�cient for integrability in Cartan sense.

We say that P is involutive if:

(In) DP = P

We remark that in the case of codistributions without singularities all the three

conditions (F1; F2 and In) are equivalent. The meaning of the de�nition is

given by the following result:

PROPOSITION 3.4 If P is involutive then TP is involutive.
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Proof

We use the form given by Proposition 3:1.

Let !� =
P

k

i=1 g
i

�
dxi 2 P. From Lv!� =

P
k

i=1(Lvg
i

�
)dxi 2 P we conclude

that: [v; gi
�

@

@xj
] 2 TP, for all v 2 TP.

We have also:

(Lai
!j)(as) = ai(!j(as)| {z }

=0

)� !j([ai; as]) = !j([as; ai])

(Lai
!j)(as) = (

kX
�=1

fij�!� +
X
�2I

fij�!�)(as) =
X
�2I

fij�g
s

�

where 1 � i; s � k: Then:

[as; ai] =

nX
j=k+1

!j([as; ai])
@

@xj
=

nX
j=k+1

X
�2I

fij�g
s

�

@

@xj
2 TP

Q.E.D. 2

Remarks

1. The reciproc of Proposition 3:4 is not true. For example let P =

spanF(M )fydxg in R2. Since TP = V r(R2) we conclude that TP is invo-

lutive but L @
@y
(ydx) = dx 62 P. So P is not involutive. 3

2. We have also another example: M = R4;P = spanF(M )fx
3dx1 +

x4dx2; dx3; dx4g and x0 = (0; 0; 0; 0) (the origin). We obtain:

TP = spanF(M )f
@

@x1
;
@

@x2
; x3

@

@x3
; x3

@

@x4
; x4

@

@x3
; x4

@

@x4
g

which is involutive. But L
x1

@

@x1
(x3dx1 + x4dx2) = x3dx1 62 P:

4 Punctual results

We remark that (L(+1);G) is a split of the distribution generated by TP(see [Ba92]).
We obtain very easy the following result that is dual of Proposition 4:1 from

[Ba92]:

PROPOSITION 4.1 The codistribution P is integrable in Cartan sense at x0
if and only if:

1) F(�1)jx = (TxN":x0
)?; 8x 2 N":x0

2) HjN":x0
= 0 (that means Hjx = 0 for all x 2 N":x0

).

In this case N":x0
is an integral manifold of the codistribution passing through

x0. 2
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Remark Equivalent to 2 is the condition: 20) IPjN":x0
= 0:

Let u; v 2 L(+1) and ! 2 F(�1): We have:

d!(u; v) = u(!(v)) � v(!(u)) � !([u; v]) = �!([u; v])

and:

(Lu!)(v) = u(!(v)) � !([u; v]) = �!([u; v])

So, if we require that d!(u; v)jx = 0 or (Lu!)(v)jx = 0 for all ! 2 F(�1) and

v 2 L(+1), we obtain [u; v]jx = 0: Then the dual version of Corollary 4:3 (from

[Ba92]) and also a corollary of Proposition 4:1 is the following:

COROLLARY 4.2 The codistribution P is integrable in Cartan sense at x0
if and only if:

1) d!(u; v)jexp tv:x0 = 0, for all v 2 L(+1) , ! 2 F(�1) and jtj < ", " depending

on v.

or equivalent:

1') Lv!jexp tv:x0 2 P (exp tv:x0), for all v 2 L(+1); ! 2 F(�1) and jtj < ", "

depending on v.

and

2) HjN":x0
= 0: 2

THEOREM 4.3 Let P be an analytic F(M )-module of 1-forms and let P

denote the associated codistributions. Then P is integrable in Cartan sense at

x0 if and only if D1Pjx0 = P (x0):

Proof

\ ) " Let ~Nx0
denote an integral manifold. We shall prove by induction that

DkPjx = P (x) for all x 2 ~Nx0
. Then we can conclude that D1Pjx0 = P (x0).

For k = 0 is obvious. We have DkPjx = P (x) for all x 2 ~Nx0
and using

Lemma 3:3 and Nagano's theorem (see [Na66]) we obtain:

TDkPjx = Tx ~Nx0
; 8x 2 ~Nx0

. Then: LX!jx 2 (Tx ~Nx0
)? = P (x), for all

X 2 TDkP; ! 2 DkP and x 2 ~Nx0
. So: Dk+1Pjx = P (x), for all x 2 ~Nx0

.

\ ( " It is su�ciently to consider the following sequence:

Q0 = P; Qk+1 = Qk + spanF(M )fLX!; X 2 L(+1) and ! 2 Qkg

Since Qk � DkP we conclude Q1jx0 = P (x0) = Q0jx0: We consider the split

(F(�1);H) of codistribution as in x3:

a) Let ! 2 H, ! =
P

k

i=1 g
idxi ; g

i 2 IP. By a simple checking:

LX! =
P

k

i=1(LXg
i)dxi; 8x 2 L(+1): Since Q

1jx0 = P (x0) we obtain

Lk

X
!jx0 = 0 and so: gijN":x0

= 0 , IPjN":x0
= 0:

b) Let ! 2 F(�1) and u; v 2 L(+1): We have:

Lv!jexp tv:x0(u) = d!(v; u)jexp tv:x0 = 0 (using Taylor series).

Using Corollary 4:2 we obtain the integrability. Q.E.D. 2
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We can give a criterion of integrability in the smooth case (r = 1) dual of

Theorem 4:6 ([Ba92]):

THEOREM 4.4 Let P be a C1-di�erential system and let P denote the codis-

tribution generated. Let x0 2 M be a �xed point so that P (x0) 6= f0g: Let
k = codimP (x0) = n� dimP (x0). Then P is integrable in Cartan sense at x0
if and only if there exist an " > 0, 1-forms !k+1; : : : ; !n 2 P and a neighborhood

U of x0 that satisfy the following conditions:

1) In the point x0: !k+1jx0 ; : : : ; !njx0 span P (x0).

2) For every smooth vector �eld a 2 TP there exist smooth functions

�
j

i
: (��a; �a)! R such that for all t 2 (��a; �a) we have:

La!ijexp ta:x0 =

nX
j=k+1

�
j

i
(t)!j jexp ta:x0 (2)

where: �a
def
= supf�j� � " and exp ta:x0 2 U for all jtj < �g

Proof

\) " Let P be integrable in Cartan sense at x0. We choose f!jg, " and U
as in x3.
1) It is checked by construction of the 1-forms.

2) Let a 2 TP. Then a =
P

k

j=1 fjaj + b where aj are as in the de�nition of

L(+1), b 2 G and fj 2 F(U). We put: xt = exp ta:x0. Since bjxt = 0 from

Corollary 4:2 we obtain:

La!ijxt = L
(
P

k

j=1
fjaj+b)

!ijxt = LPk

j=1
fjaj

!ijxt

=

kX
j=1

fj Laj
!ijxt| {z }

2P (xt)

+

kX
j=1

!i(aj)| {z }
=0

dfj jxt =

nX
j=k+1

�
j

i
(t)!j jxt

\( " First we see that the relation (2) is invariant under the change of the

set f!jg (we have a result as Lemma 4:5 from [Ba92]). We consider for f!ig
the same 1-forms as in x3. We choose a 2 L(+1) and we obtain 10 from

Corollary (4:2). We have to prove that Hjexp ta:x0 = 0. Let a = v + b where

v 2 F(+1) and b = g�
@

@xj
; � 2 I and k + 1 � j � n: We have:

(La!j)(v)jxt = 0 = (Lv!j)(v)jxt| {z }
=0

+!j([v; b])jxt

and (La!j)(b)jxt = La(!j)(b))jxt � !j([v; b])jxt. With relation

(2) : (La!j)(b)jxt = �
j

j
(t) � g�jxt.

So: Lag�jxt = �
j

j
(t) � g�jxt. Since g�(x0) = 0, from the theorem of unicity of

the solution of the Cauch problem we obtain: g�(xt) = 0. But

xt = exp t(v + b):x0 = exp tv:x0. So: g�jN":x0
= 0: Q.E.D. 2
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5 Local results

Now we give a new proof of the main theorem of [Fr84].

THEOREM 5.1 Let P be a �nitely-generated C1 Fx0
-module of germs of 1-

forms at x0 and n � k = dimPjx0 (Fx0
denotes the ring of germs of smooth

real-valued functions at x0). Then P is involutive if and only if there exist a

coordinate system (y1; : : : ; yn) and a �nite number of germs of functions g�(� 2
I and I a �nite set of indices) depending only on the last n � k coordinates

(g� = g�(y
k+1; : : : ; yn)) and vanishing at x0, such that:

P = spanFx0

fdxk+1; : : : ; dxn; g�dx1; : : : ; g�dxk j � 2 Ig

Proof

"( " It is very easy to prove in this sense.

") "

1. From Proposition 3:4 we obtain that TP is an involutive, �nitely-generated

module of germs of smooth vector �elds .

2. We apply Theorem 5:4 from [Ba92] and obtain a system of generators for

TP of the form:
@

@y1
; � � � ;

@

@yk
; g�

@

@yk+1
; � � � ; g�

@

@yn

where g� = g�(y
k+1; : : : ; yn); g�(x0) = 0; � 2 I:

3. Let !i =
P

k

j=1 !
j

i
dyj + dyi as in x3. Since:

L
yj

@

@yj
!i = yjL @

@yj
!i + !i(

@

@yj
)

| {z }
=!

j

i

dyj

we conclude that !
j

i
dyj 2 P, for all 1 � j � k. Then !i �

P
k

j=1 !
j

i
dyj 2 P.

That means dyi 2 P; 1 � i � k.

4. For obtain the generators g�
@

@yi
of TP we must have also generators of P

of the form:
P

k

i=1 g
i

�
dyi where g

i

�
= gi

�
(yk+1; : : : ; yn): Then:

L
yj

@

@yj
(

kX
i=1

gi
�
dyi) =

kX
i=1

gi
�
L
yj

@

@yj
dyi = g

j

�
dyj 2 P; 1 � j � k

So: g�dyj 2 P and the proof is complete. Q.E.D. 2

Remarks 1) An integral manifold of P that passes through x0 is given by:

Nx0
= fy 2M jyk+1 = yk+10 ; : : : ; yn = yn0 g:

2) We see also that P is integrable in Pfa� sense around x0. A set of generators

of exact forms is given by:

fd(y1g�); : : : ; d(y
kg�); dyk+1; : : : ; dyn; � 2 Ig
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COROLLARY 5.2 ([Fr84]) If D1P is �nitely-generated then it is integrable

in Cartan sense at x0 and Pfa� sense around x0.

COROLLARY 5.3 ([Fr84]) If D1P is �nitely-generated then P is integrable

in Cartan sense at x0 if and only if: D1Pjx0 = P (x0):

6 Discussion

We want to point out one type of result arising from our studies. Let Ob denote
a Cr-module of vector �elds or 1-forms and let x0 be a �xed point. To this

object we associate a module of smooth vector �elds: TOb. We carry on the

iterative sequence:

Obk+1
def
= Obk + spanF(M )LTObOb

k
; for k � 0; Ob0 = Ob

(L
TObOb

k def
= fLXY jX 2 TOb; Y 2 Obkg and Ob1

not
= [k�0Ob

k).

A local result is: If Ob is �nitely generated and Ob1 = Ob0 = Ob then

there exist a system of coordinates such that Ob has a normal form and the

(co)distribution is punctually integrable at x0.

A punctual result is: If Ob1 is �nitely generated (that is happened, for

example, in the analytic case) then the (co)distribution associated is punctually

integrable at x0 if and only if: Ob1jx0 = Objx0 .
We see that in the case of distributions TOb = Ob and in the case of codis-

tributions TOb is exactly the tangent module.

This technique may be applied also at the systems of smooth k-forms.
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