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ABSTRACT

Detecting when voice is or is not present is an outstanding prob-

lem for speech transmission, enhancement and recognition. Here

we present a novel multichannel source activity detector that ex-

ploits the spatial localization of the target audio source. The

detector uses an array signal processing technique to maximize

the signal-to-interference ratio for the target source thus decreas-

ing the activity detection error rate. We compare our two-channel

voice activity detector (VAD) with the AMR voice detection algo-

rithms on real data recorded in a noisy car environment. The new

algorithm shows improvements in error rates of 55-70% compared

to the state-of-the-art adaptive multi-rate algorithm AMR2 used

in present voice transmission technology.

1 Introduction

The voice (and more generally acoustic source) activ-

ity detection (VAD) is a cornerstone problem in signal

processing practice and often it has a stronger in
uence

on the overall performance of a system than any other

component. Speech coding, multimedia communication

(voice and data), speech enhancement in noisy condi-

tions and speech recognition are important applications

where a good VAD can substantially increase the per-

formance of the respective system. The role of a VAD is

basically to extract features of the signal that emphasize

di�erences between speech and noise and then classify

them to take a �nal VAD decision. The variety and the

varying nature of speech and background noises makes

the VAD problem challenging.

Traditionally, VADs use energy criteria such as SNR

estimation based on long-term noise estimation [1]. Im-

provements proposed use a statistical model of the signal

and derive the likelihood ratio [2] or compute the kurto-

sis [3]. Alternatively, methods attempt to extract robust

features (e.g. the presence of a pitch [4], the formant

shape [5], or the cepstrum [6]) and compare them to

a speech model. Recently, multiple channel VAD algo-

rithms have been investigated [7, 8, 9] to take advantage

of the extra information provided by additional sensors.

In this article we focus on a multi channel VAD al-

gorithm. Spatial localization is the key underlying our

scheme, which can be used equally for voice and non-

voice signals of interest. We assume the following sce-

nario: the target source (such as a person speaking) is

located in a noisy environment, and two or more mi-

crophones record the audio mixture. Noise is assumed

di�use, but not necessarily uniform, i.e. the sources

of noise are not spatially well-localized, and the spec-

tral coherence matrix may be time-varying. Under this

scenario we propose an algorithm that blindly identi-

�es the mixing model and outputs a signal with the

largest signal-to-interference-ratio (SIR) possibly ob-

tainable through linear �ltering. Although the output

signal contains large artifacts and is unsuitable for signal

estimation it is ideal for signal activity detection.

In the next section we present the mixing model and

main statistical assumptions. Section 3 shows the �lter

derivations and presents the overall VAD architecture.

Section 4 addresses the blind model identi�cation prob-

lem. Section 5 discusses the evaluation criteria used

and section 6 discusses implementation issues and ex-

perimental results on real data.

2 Mixing Model and Statistical Assumptions

The time-domain mixing model assumes D microphone

signals x1(t); : : : ; xD(t), which record a source s(t) and

noise signals n1(t); : : : ; nD(t):

xi(t) =

LiX
k=0

aiks(t � � ik) + ni(t); i = 1; :::; D: (1)

where (ai
k
; � i

k
) are the attenuation and delay on the kth

path to microphone i.

In frequency domain, convolutions become multipli-

cations. Furthermore, since we are not interested in

balancing the channels, we rede�ne the source so that

the �rst channel becomes unity:

X1(k; !) = S(k; !) +N1(k; !)

X2(k; !) = K2(!)S(k; !) + N2(k; !)

� � � (2)

XD(k; !) = KD(!)S(k; !) +ND(k; !)

where k is the frame index, and ! the frequency index.



More compactly, this model can be rewritten as:

X = KS + N (3)

where X;K;N are complex vectors.

We make the following assumptions: (1) The source

signal s(t) is independent of the noise signals ni(t), for

all i; (2) The mixing parameters K(!) are either time-

invariant, or slowly time-varying; (3) S(!) is a zero-

mean stochastic process with spectral power �s(!) =

E[jSj2]; (4) (N1; N2; : : : ; ND) is a zero-mean stochastic

signal with spectral covariance matrix Rn(!).

3 Algorithm Design

In this section we obtain the optimal-gain �lter, and

then we present the overall system architecture.

A linear �lter A applied on X produces:

Z = AX = AKS + AN

We look for the linear �lter that maximizes the SNR

(SIR). The (output) SNR achieved by A is:

oSNR =
E[jAKSj2]

E[jAN j
2]

=
�sAKK�A

ARnA�
(4)

Maximizing oSNR over A results in a generalized eigen-

value problem: ARn = �AKK�, whose maximizer can

be obtained based on the Rayleigh quotient theory [10]:

A = �K�R�1
n

where � is an arbitrary nonzero scalar. This expression

suggests to run the output Z through an energy detector

with an input dependent threshold in order to decide

whether the source signal is present or not in the current

data frame. The detection decision becomes:

V AD(k) =

�
1 if jZj2 � BjXj

2

0 if otherwise
(5)

where B > 0 is a constant boosting factor. Since on

the one hand A is determined up to a multiplicative

constant, and on the other hand we want to maximize

the output energy when the signal is present, we choose

� = Rs, the estimated signal spectral power. The �lter

we use becomes:

A = �sK
�R�1

n
(6)

Now we can present the overall architecture of our

VAD, as in Figure 1. The VAD is based on equations 5

and 6. We assumed that K, �s, Rn are estimated from

data, as will be described next.

4 Mixing Model Identi�cation

Here we present estimators for the transfer function ra-

tios K and spectral power densities �s and Rn. We also

use the most recently available VAD signal.

4.1 Adaptive Model-based Estimator of K

The adaptive estimator of K makes use of the direct

path mixing model to reduce the number of parameters:

Kl(!) = ale
i!�l ; l � 2 (7)

We choose parameters (al; �l) that best �t into

Rx(k; !) = �s(k; !)KK� + Rn(k; !) (8)

Fitting uses the Frobenius norm. Thus we have to min-
imize:

I(a2; ::; aD; �2; ::; �D) =
X

!

tracef(Rx �Rn � �sKK�)2g (9)

Summation above is across frequencies because the
same parameters (al; �l)2�l�D should explain all fre-
quencies. The gradient of I evaluated on the current
estimate (al; �l)2�l�D is:

@I

@al
= �4

X

!

�s � real(K
�Evl) (10)

@I

@�l
= �2al

X

!

!�s � imag(K
�Evl) (11)

where E = Rx � Rn � �sKK� and vl the D-vector of
zeros everywhere except on the lth entry where it is ei!�l ,
vl = [0 � � � 0 ei!�l 0 � � � 0]T . Then the updating rule
is given by:

a
0

l
= al � �

@I

@al
(12)

�
0

l
= �l � �

@I

@�l
(13)

with 0 � � � 1 the learning rate.

4.2 Estimation of Spectral Power Densities

The estimation of Rn is done based on the VAD signal

simply by:

Rn =

�
(1� �)Rold

n
+ �XX� if voice present

Rold
n if otherwise

(14)

The signal spectral power �s is estimated through spec-

tral subtraction. The estimate we use is:

�s =

�
Rx;11 � Rn;11 if Rx;11 > �SSRn;11

(�SS � 1)Rn;11 if otherwise
(15)

where �SS > 1 is a 
oor-dependent constant.

Figure 1: Two-channel VAD block scheme.



5 VAD Performance Criteria

We �rst de�ne the possible errors that can be obtained

when comparing the VAD signal with the true source

presence signal. Errors take into account the \context"

of the VAD prediction, i.e. the true VAD state (desired

signal present or absent) before and after the state of

the present data frame as follows (see Figure 2): (1)

Noise detected as useful signal (e.g. speech); (2) Noise

detected as signal before the true signal actually starts;

(3) Signal detected as noise in a true noise context; (4)

Signal detection delayed at the beginning of signal; (5)

Noise detected as signal after the true signal subsides;

(6) Noise detected as signal in between frames with sig-

nal presence; (7) Signal detected as noise at the end of

the active signal part, and (8) Signal detected as noise

during signal activity.

The literature is mostly concerned with four error

types showing that speech is misclassi�ed as noise (types

3,4,7,8 above). Some only consider errors 1,4,5,8: these

are called \noise detected as speech" (1), \front-end clip-

ping" (2), \noise interpreted as speech in passing from

speech to noise" (5), and \mid-speech clipping" (8) in

[11].

Our evaluation aims at assessing VAD in three prob-

lems (1) Speech transmission/coding, where error types

3,4, 7, and 8 should be as small as possible so that speech

is rarely if ever clipped and all data of interest (voice but

noise) is transmitted; (2) Speech enhancement, where

error types 3,4, 7, and 8 should be as small as possi-

ble, nonetheless errors 1,2,5 and 6 are also weighted in

depending on how noisy and non-stationary noise is in

common environments of interest; and (3) Speech recog-

nition (SR), where all errors are taken into account.

In particular error types 1,2,5 and 6 are important for

non-restricted SR. A good classi�cation of background

noise as non-speech allows SR to work e�ectively on the

frames of interest.

6 Experimental Results

We compare three VAD algorithms: (1-2) Implemen-

tations of two adaptive multi-rate (AMR) algorithms,

as described in [4], targeting discontinuous transmission

of voice; (3) Two-Channel (TwoCh) VAD following the

approach described in this paper. We evaluated the al-

gorithms on real data recorded in a car environment

in two setups, where the two sensors are either closeby

or distant. For each case car noise while driving was

recorded separately and additively superimposed on car

voice recordings from static situations. The average in-

put SNR for the \medium noise" test suite was zero dB

for the closeby case, and -3dB for the distant case. In

both cases, we also considered a second test suite \high

noise" where the input SNR dropped another 3dB.
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Figure 3: Frame error rates by error type and total error

for medium noise, distant microphone scenario.

6.1 Algorithm Implementation

The implementation of the AMR1 and AMR2 algo-

rithms is based on the GSM AMR speech encoder ver-

sion 7.3.0 [12]. The VAD algorithms use results calcu-

lated by the encoder, which may depend on the encoder

input mode, therefore a �xed mode of MRDTXwas used

here. The algorithms indicate whether each 20 ms frame

(160 samples frame length at 8kHz) contains signals that

should be transmitted, i.e. speech, music or information

tones. The output of the VAD algorithm is a boolean


ag indicating presence of such signals.

We have implemented the TwoCh VAD based on the

MaxSNR �lter, adaptive model-based K estimator and

spectral power density estimators as presented before

(5,10,11,14,15) . We used a boost factor B = 100, the

learning rates � = 0:01 (in K estimation), � = 0:2 (for

Rn), and �SS = 1:1 (in Spectral Subtraction). Process-

ing was done block wise with a frame size of 256 samples

and a time step of 160 samples.

6.2 Results

We obtained \ideal" VAD labeling on car voice data

only with a simple power level voice detector. Then we

obtained overall VAD errors with the three algorithms

under study. Errors represent the average percentage of

frames with decision di�erent from ideal VAD relative

to the total number of frames processed.

Figures 3 and 4 present individual and overall errors

obtained with the three algorithms in the medium and

high noise scenarios. Table 1 summarizes average re-

sults obtained when comparing the TwoCh VAD with

AMR2. Note that in the described tests, the mono AMR

algorithms utilized the best (highest SNR) of the two

channels (which was chosen by hand).



Figure 2: Types of errors considered for evaluating VAD algorithms.
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Figure 4: Frame error rates by error type and total error

for high noise, distant microphone scenario.

TwoCh VAD is superior to the other approaches when

comparing error types 1,4,5, and 8, used for example

in [11] and other reports. In terms of errors of type

3,4,7, and 8 only, AMR2 has a slight edge over the

TwoCh solution which really uses no special logic or

hangover scheme to enhance results. However, with dif-

ferent settings of parameters (particularly the boost fac-

tor) TwoCh VAD becomes competitive with AMR2 on

just this subset of errors. We expect it to perform better

with the suggested improvements. Nonetheless, in terms

of overall error rates, TwoCh VAD was clearly superior

to the other approaches. This indicates the two channel

VAD is a viable detector particularly for speech recog-

nition or speech enhancement scenarios.

Data Med.Noise High Noise

Best mic (closeby) 54.5 25

Worst mic (closeby) 56.5 29

Best mic (distant) 65.5 50

Worst mic (distant) 68.7 54

Table 1: Percentage improvement in overall error rate

over AMR2 for the two-channel VAD across two data

and microphone con�gurations.

7 Conclusions

The paper presented a novel multichannel source ac-

tivity detector that exploits the spatial localization of

the target audio source. The implemented detector

maximizes the signal-to-interference ratio for the target

source and uses two channel input data. We compare

our two channel VAD with the AMR VAD algorithms on

real data recorded in a noisy car environment. The two

channel algorithm shows improvements in error rates of

55-70% compared to the state-of-the-art adaptive multi-

rate algorithmAMR2 used in present voice transmission

technology. Future enhancement of the algorithm will

explore parameter optimization and post-processing de-

cision enhancement based on a VAD dependent state.
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