GENERALIZED STOCHASTIC PRINCIPLE FOR MICROPHONE ARRAY
SPEECH ENHANCEMENT AND APPLICATIONS TO CAR ENVIRONMENTS

Radu Balan, Justinian Rosca

Siemens Corporate Research,
755 College Road East, Princeton, NJ 08540
{rvbalan,rosca}@scr.siemens.com

ABSTRACT

In this paper we present novel solutions for microphone array
speech enhancement systems that intelligently use the mul-
tipath environment to enhance signal coming from a desired
location. We obtain a statistical principle that explains pre-
viously known factorization results of optimal beamformers,
and proves a similar factorization holds for other new opti-
mal estimators. Our solution requires a low computational
load, and can be deployed on most of the platforms. We
present speech recognition rates on real data, and compare
a stereo versus a mono solution on this database.

1. INTRODUCTION

Recent research in microphone-array systems indicate the
promise of such techniques in speech enhancement and
hands-free communication applications. Of particular in-
terest are techniques using small arrays of microphones, e.g.
two-four, in designs of several centimeters in diameter whose
goal is to offer a few dB improvement when compared with
mono techniques [1] in the case of real-world environments.

Beamforming techniques and in general approaches
grounded in the array processing literature indicate tiny
SNR improvements in the case of a small number of micro-
phones. Rather than directly considering such approaches,
we explore extensions of successful classical mono noise re-
duction technique to multiple channels. In particular, in
this paper we discuss a multi-channel factorization result,
which turns out to generalize the well-known single chan-
nel statistical estimators of Ephraim-Malah [2; 3], as well
as the psychoacoustically motivated speech signal estima-
tor of Gustafsson [4], and sheds more light on the optimal
beamformer construction as described in e.g. [5].

Next section formulates the generalized estimation prob-
lem for D > 1 sensors and solves it under fairly general
stochastic hypotheses. Section 3 presents implementation
details where some of the formulae are modified to pro-
duce less artifacts based on subjective testings. In Section
4 we present numerical results in terms of Speech Recogni-
tion Rate for a car environment. We compare the SR rates
obtained with the 2-microphone solution with results from
mono solution.

2. THE SPEECH ENHANCEMENT
ALGORITHM
2.1 Mixing Model and Signal Assumptions

The mixing model we consider is as follows. We assume D
microphone signals z1(t),...,zp(t) record a source s(t) and
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noise n1(t),...,np(t) signals,
L
mi(t) =Y ags(t— ) +m(t) (1)
k=0

where (a}, 7}) are the attenuation and delay on the k" path
to microphone [. In frequency domain, the convolutions be-
come multiplications. Furthermore, since we are not inter-
ested in balancing the channels, we redefine the source so
that the first channel becomes unity:

Xi(k,w) = S(k,w)+ Ni(k,w)
Xo(kyw) = Ma(w)S(k,w)+ Na(k,w)

(2)
Xp(k,w) = Mp(w)S(k,w)+ Np(k,w)

where k is the frame index, and w the frequency index. More
compactly, this model can be rewritten as

X=MS+N (3)
where X, M, S, N are D-complex vectors. Regarding this
model, we make the following assumptions:

1. S(w) are zero-mean stochastic processes with spectral
power ps(w) = E[S]*];

2. (N1, Na,...,Np) is a zero-mean stochastic signal with
spectral covariance matrix R,.

3. s is independent of n.

The problem is to estimate s (or S) given the measurements

X =(X1,...,Xp)".

2.2 The Factorization and the Optimal Filter

Since there are many ways one can estimate the signal .S, we
consider here several approaches and show they all admit a
similar solution.

2.2.1 Statistic Estimators

We are interested in a principled statistical way of estimat-
ing S. In [5], Chapter 6, the author briliantly summarizes
several optimal beamformers and show them all admit a fac-
torization through so-called Capone beamformer. For some
of them the noise needs to be assumed Gaussian, for oth-
ers this is not a necessary hypothesis. More specifically he
addresses the following estimators: the BLUE (Best Linear
Unbiased Estimator) that minimizes the output noise vari-
ance, the MVUE (Minimum Variance Unbiased Estimator)



also known as MVDR, the ML estimator, the MMSE esti-
mator, the Max-SNR estimator, and the MPDR (minimum
Power Distortionless Response) filter. Independently of [5],
in [6], Simmer and collaborators obtained the factorization
of the MMSE estimator of S. In both works, the factoriza-
tion of the solution comes a posteriori, once the actual solu-
tion has been found. The authors merely verify the overall
filter (which is linear in all these cases) factors as mentioned
before. Our approach and the purpose of this section is dif-
ferent. We point out a statistical principle that explains &
priori why the (possibly nonlinear) estimator has to factor
into the MVDR beamformer followed by a scalar estimator.
To obtain this we need to make the stochastic assumption
mentioned above:

4. N = (Ny,..., ND)T is a Gaussian random variable.
With this assumption in place we obtain, as in [7], that the
linear functional

M*R,'X
T MRM @

is a sufficient statistics both in classical (i.e. Fisher) and
Bayes sense for S, and for any function of S. Hence any
MMSE or MAP estimator of S, or a function of S (like
|S|, log|S|, S/|S|) factors through T'(X). More specifically,
the MMSE or MAP estimator of ¢(S), where ¢ is a scalar
function of S (identity, or modulus, or logarithm of modulus,
or the complex phase) is given by

T(X)

o()rrmrse = Elp(9) | X] (5)
o($)rrap = argmazs p(p(S)X) (6)

and factors as:
¢(rrse = Elp(S) | T(X)] (7)
P(pap = argmazs p(e(S)|T(X))  (8)

Hence the optimal (in MMSE or MAP sense) estimator of
©(S) is obtained by solving a single-channel optimization
problem, and thus reduces to previously known estimators.
In particular the multichannel MMSE estimator of short-
time spectral amplitude (i.e. |S|), known in the mono case as
the Ephraim-Malah filter [2], as well as the MMSE estimator
of log-STSA (see [3] for the mono case), or several multi-
channel MAP estimators as in [8] can all be easily derived.
They all factor as the linear beamformer (4) followed by a
scalar signal estimator from:

Z=T(X)=S8+ Negs , Negs =T(N) 9)

To obtain Z an estimate of the noise spectral covariance
matrix R, is required. However this is a cumbersome task
involving the use of a Voice Activity Detector, and hence
prone to errors. Note the Minimum Statistics approach as
proposed by R.Martin in [9] cannot be used here, since we
deal with nonpositive estimates (the crosscovariance terms).
Instead we propose a different way of computing Z that
does not use R,. This is based on the Matrix Inversion
Lemma and has also been noticed in e.g. [5]. Since R, =
Ry + RsMM™ a direct computation shows

1 * y—1
Z=——=—MR;"X (10)
M*Rz;"M
which is implemented by computing R, instead of R,. This
is a much easier task, since R, corresponds to the measured
signal spectral covariance matrix, easily available.

2.2.2 Psychoacoustically Motivated Estimators

In [10] we looked for a linear filter A = [A4,...
applied to X that minimizes the variance

, Ap]

Re =E[JAX — (S+ Ny +...+C(oNp)[] (1)

subject to (A — ¢)Rn(A* —¢T) = Rr and |AM| < 1, where
¢ =1¢1,-++,¢p] is the 1 x D vector of desired levels of noise
in the estimate, and Rr is a psychoacoustically motivated
threshold so that any noise with spectral power below Rr
becomes unnoticeable.

The solution in [10] for this constrained optimization
problem turns into:

1-(M Rr
|1 —C¢M|\ M*R;'M

Ao =C+ M*R;! (12)

when the right-hand side satisfies |[A,M| < 1, and
Ao =11,0,...,0] (13)
otherwise. Furthermore, if we define

1

=———-—M'R,'X (14)
M*R,'M

then Z = S + N.yy where the effective noise spectral power

is R?\ff = m, and the previously known Gustafsson’s

psychoacoustically motivated mono filter ([4]) applied on Z

becomes:
Rt
He=(+,/|—= 15
W/R?fo (15)

which yields virtually the same output as A, applied on
X, when we properly define ( above. As proved before,
one would implement (10) rather than (14) since it is more
robust to errors.

The conclusion of these two approaches is that, from an
algorithmic point of view, the estimation problem decouples
(or, factors) into two components: first a generalized beam-
former given by (14), and then a mono optimization problem
of the signal (or a function of the signal) based on Z only.

3. IMPLEMENTATION

3.1 Implementation Details

1. Beamformer. The theory developed so far showed that
for a large class of signal estimators, the implementation
factors into two steps: a generalized beamformer that lin-
early filter the multidimensional input into a mono signal,
followed by a single-channel signal enhancement block that
is optimized for a mono mixing setup

Z:S—l—Naff

However, listening tests showed that for high input SNR, the
preprocessing (10) introduces some distortions due to poor
conditioning of R;. Instead we use a different filter, namely

M*X
ZhighSNR = W (16)



which is a plain beamformer adapted to the mixing envi-
ronment though. For a range of estimated input SNR, we
linearly interpolate between these two filters:

Zactual = (1 — a(SNR))Z + (l(SNR)ZhighSNR (17)

where 0 < a(SNR) <1, and

0 for SNR<SNR
a(SNR) ={ £xe=S18 for SNR, < SNR<SNR,
1 for SNR>SNR:

(18)
The SN R is estimated in the mono block and the two thresh-
olds SNRi, SNRy are estimated experimentally.

2. Estimation of M. The mixing vector (or the stir-
ring vector as used in beamforming literature, see [11]) is
estimated here by calibration. This means that is low-noise
condition, a voice signal is measured by the device. This is
done at the begining of use, and fixed thereafter. Assume
the measuring noise is independent on the D channels, and
has estimated SNR; on channel i, the spectral autocovari-
ance of channel i, and the spectral cross-covariance between
channel ¢ and channel 1 become

Reys = |Mi’Rs + Ry (19)
Ry = MiM;Rs (20)
An “easy”, but biased, estimator of M is given by
Mipiased = g”ff"_. Solving for M; in (19,20) we obtain:
Mi;biased
M; = SNR; (21)

1
T BNE D2 Mipiaseal®

3. Estimation of R,
For R, we used a first order learning rule with learning
constant o:
R = (1— )R, + aX X" (22)

Since the inverse of R, is required, for large number of micro-
phones it makes sense to apply the Matrix Inversion Lemma
again and obtain a nice updating rule for R,

1
11—«

(1—0a)? +of[(RE) X2
(Ry) 'XX*(Ry) ! (23)

(R:H™ = (Re) ™ =

whose computational complexity scales quadratically with
the number of microphones (not cubically as the inverse may
suggest).

4. Emphasis/Deemphasis Filters

To attenuate the high-frequency constribution to filter-
ing and parameter estimation, we use an emphasis filter on
the input signals:

y(t) = z(t) + ax(t — 1) (24)

before computing FFT, but after windowing, and a deem-
phasis filter:

u(t) = —au(t — 1) + v(t) (25)

after inverse FF'T, but before overlap-add procedure.
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Figure 1: The Overall Architecture.

3.2 The Overall Architecture

The overall architecture is presented in Figure 1. The mono
part is simply represented as a block in this architecture.
Depending on the global criterion, one can use the Wiener
filter, the Ephraim-Malah filter(s), or the Gustafsson filter
for this block. The mono block has to feedback into the
beamformer an estimate of its input SNR. The results re-
ported in section 4 were obtained using a modified Wiener
filter (as described in [12]), namely

Rz
Hw = . eff
Rz + min(256RY 7, 2Rz)

(26)

The noise spectral power R?\,ff was estimated using a min-
imum statistics filter similar to [9]. At the same time, this
yields an estimate of SNR. Note there is no need of a Voice
Activity Detector.

4. RESULTS ON REAL DATA

In this section we describe the experimental setup. We
recorded data in a car environment. More specifically, in
a noise-free garage we recorded in car several voices using
2 microphones. With the same microphones we recorded
street noise while driving. Then we mixed together voice
and noise signals at different input SNR levels. The cali-
bration was done using only one voice signal per speaker.
In total there were 20 speakers, 4 noise files, and 50 voice
files per speaker. Therefore we had a database of 4000 files,
each containing a 10-digit phone number. The output of
our speech enhancement processor was feed into the Speech
Recognition Engine described in [12]. For each frame the
SRE front-end computes 12 MFCC coefficients plus the to-
tal frame energy, as well as their corresponding delta and
acceleration values. The inclusion of delta and acceleration
coefficients is known to improve robustness of the features
against noise. The frames have 32 ms length and an overlap
of 17 ms.

The Speech Enhancement processor used the same frame
length and overlap, for signals sampled at 8KHz. The
thresholds in (18) where SNRy = 0dB, SNR» = 6dB. We
performed speech recognition tests at four levels of input
SNR, namely for SNR = —6,0,6,12dB. We also applied
the mono filter to one channel, and retained the best re-
sults among the two recognition rates. The rate measures
the number of files correctly recognized. A file is correctly
recognized when all 10 digits are correctly recognized. In
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Figure 2: SRR Improvement for the two channel scheme
(top curve) and mono scheme (bottom curve) with respect
to the input mix.

iSNR[D] 6 0 g 2
Mix SRR[%] | 893 40.23 64.10 77.13
Mono SRR[%] | 15.32 479 68 784

Stereo SRR[%] | 31.63 59.55 75.90 82.82
Voice SRR[%)] 81.5 81.5 81.5 81.5

Table 1: Speech Recognition Rates.

terms of recognition rates, the results are presented in Table
1. For four input SNRs we present the speech recognition
rate (SRR) for the input mix, the output of the mono so-
lution only, the output of the 2-channel system, and the
clean voice signal (obviously, independent of input SNR). A
clearer visualisation of the 2-channel processing gain versus
mono processing gain is rendered in Figure 2. There we plot
the SRR improvement of mono and the 2-channel scheme
versus the input mix at the four SNRs.

This plot shows the relative improvement of the stereo
solution versus mono solution. At low SNR the relative im-
provement is as high as 100%, i.e. the SR rate doubles. As
higher the SNR gets as lower the SRR improvement is ob-
tained. Yet, even at 12dB, there is still an improvement of
about 4.5% in absolute recognition rate terms.

5. CONCLUSIONS

In this paper we presented a multi-channel speech enhance-
ment scheme and we validated its performance on real data
in a 2-microphone car environment setup where the speech
recognition rate was used as criterion. Based on general
statistics principle we showed an optimal signal estimator
factors into a linear generalized beamformer followed by a
(usually) nonlinear mono filter that solves a mono estimation
problem. This factorization scheme holds true for several
MMSE and MAP estimators, as well as for psychoacousti-
cally motivated multi-channel speech enhancement systems.
Numerical experiments were performed where we compared
a 2-microphone scheme with the mono solution on real car
environment data. The 2-microphone system improved the

recognition rate by up to 16% in absolute terms, where a
successful recognition was considered when an entire set of
10 digits was correctly recognized. The algorithm involves
little computational load and scales nicely with the number
of microphones.
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