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Introduction

Measures of functional connectivity such as partial directed
coherence (PDC) derive from fitting multivariate autoregres-
sive (MVAR) models to functional magnetic resonance imag-
ing (fMRI) data. To regularize the ill-posed parameter es-
timation problem of fitting MVAR models, recent work has
focused on LASSO and group LASSO-type penalties. These
approaches consider the model parameters in the usual Eu-
clidean (what we call time-based) basis. Motivated by solving
inverse problems in alternative bases, we introduce LASSO-
type penalty in a Fourier basis (frequency-based). Then, we
propose an iterative shrinkage algorithm to solve it and re-
port preliminary results from applying it on a tMRI dataset.

Time-based M VAR Model

MVAR Process
Let (x; € R"), .,y be a causal and stable m-order MVAR
process,

Xy = A X1+ Aoxy o+ - - + ApXy_ + 1, (1)
with n; iid Gaussian, i.e. n; ~ N (0, uI) for p > 0 € R.
Maximum a Posteriori (M AP) Estimator
We want to find Ay, ..., A, € R"" a typically ill-posed

parameter estimation problem. It can be solved using a
LASSO-type penalty as in [1]:

N 1 m 2 nom
Slxe =D A || ) > [Adigl]-

s=1 1,7=1 s=1
(2)

arg min
Aq,... A, eRmn t=m-+1 2

Frequency-based M VAR Model

Let H = 0% (Zy) @ (R, ||-||,) such that (x; € R"),., € H.
Then, we are looking for a linear operator on H, A € B (H).

Hilbert-Schmidt Operators
We consider compact Hilbert-Schmidt operators, S (H) C

B(H). Let & = (¢)),o, be an orthonormal basis of H.
Then,
SH)={AcBM): |Alsp <o}  (3)
where the Hilbert-Schmidt norm is
|Allsa = D 1AGAl5, - (4)
AEA

Orthonormal Basis of H

Let E = (e;)~ be any orthonormal basis of (R”, [|-||,) and
F = (Fi)pez, be the discrete Fourier basis of €% (Zy). We
choose ® = F ® F such that A =Zy x {0,...,n —1}.

Convolution Operators
A € S (H) must be a convolution operator, 4.e. non-identity
and diagonal in the ® basis,
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MAP Estimator
This leads to the following generalization of (2):
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Results

Iterative Shrinkage Algorithm

Surrogate Functional

The algorithm derives from |2|, in which a surrogate func-
tional is solved iteratively. That surrogate functional is
strictly convex and asymptotically equivalent to (6). For

a diagonal operator D : S (H) — S (H) and A, Z € C(H),

1
argmin  [[x — Ax|ly; + 13 [|Adaly
AcC(H) AEA (7)
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Algorithm
Let A ¢ C(H). Then,
a2 o) <X,;b)\>\>7{ <X _ Albx, ¢A>H
ag\kﬂ) _ SM (ag\kH)/Q) (8)
A(k+1) _ Z ag\lﬁLl) <.7 Qb)\> gb)\
A€

converges to the minimizer of (6) if dy > |{x, dx)4,|" for all
A € A. The shrinkage operator S, (+) is defined as

o —p o>
S, (z) =140 ) < (9)
Ehal r < —U

Model Order
A fixed model order can be defined as a convex set in the
usual Euclidean orthonormal basis, and it can be enforced
with an additional step in which A% is projected onto
that convex set.
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(a) The dorsal attention (blue) and
cingulo-opercular (green) networks had the
strongest connectivity across frequency. Here,
the networks are plotted on a common brain
template.
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(b) Functional connectivity (PDC) from a dorsal attention network to cingulo-opergular network

plotted as a function of frequency using time-based (red) and frequency-based (blue) sparsity penalties.
Results are shown for two subjects across different sparsity parameters (u). As expected, increasing the
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time-based sparsity penalty results in smearing of the connectivity in the frequency domain.

On-going Analysis
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Figure: Preliminary analysis yielded unexpected results such as
high sensitivity to the sparsity parameter in some subjects as well
as high intersubject variability. The results from one subject are
shown above in which PDC shows high sensitivity to both time-
and frequency-based sparsity penalties.

Methods

» Task-based tMRI data in which participants made
speeded responses to letter stimuli

« MRI voxels clustered into thirteen functional systems
(n = 13) derived from a task-free network approach

» Functional connectivity derived from PDC:

pij(w) o< D [A; ;™ (10)

teLyn

« fMRI frequency responses (0.0625-0.1458 Hz) |3]

« model order of ten (m = 10)

Conclusion

Preliminary analysis suggests that time-based sparsity penal-
ties may smear important functional connectivity features,
especially if not optimally tuned.
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(¢c) Previous fMRI research has shown that specific frequency bands
of the BOLD response are susceptible to non-neural contamination,
such as respiration, heart-rate, and general vascular properties of the
brain. A small portion of this research is summarized above.
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